
 ISSN (Online) : 2319 - 8753
 ISSN (Print) : 2347 - 6710

 International Journal of Innovative Research in Science, Engineering and Technology

 Volume 3, Special Issue 3, March 2014

 2014 International Conference on Innovations in Engineering and Technology (ICIET’14)

 On 21st & 22nd March Organized by

 K.L.N. College of Engineering, Madurai, Tamil Nadu, India

Copyright to IJIRSET www.ijirset.com 976

 M.R. Thansekhar and N. Balaji (Eds.): ICIET’14

Network Congestion Control over TCP Using

BW Estimation Technique
Arun Kumar.R.S.,

Department of Computer Science, Arunai Engineering College, Tiruvannamalai, Tamilnadu, India.

ABSTRACT—When multiple synchronized servers

send data to the same receiver in parallel Transport

Control Protocol (TCP) incast congestion happens in

high-bandwidth and low-latency networks.In data-center

applications such as MapReduce and Search, this many-

to-one traffic pattern is frequent. Hence TCP incast

congestion may severely degrade their performances,

e.g., by increasing response time. In this paper, we study

TCP incast in detail by focusing on the relationships

between TCP throughput, round-trip time (RTT), and

receive window. Unlike previous approaches, which

mitigate the impact of TCP incast congestion by using a

fine-grained timeout value, ouridea is to design an Incast

congestion Control for TCP (ICTCP) scheme on the

receiver side. In particular, our method adjusts the TCP

receive window proactively before packet loss occurs.

The implementation and experiments shows that almost

zero timeouts and high goodput for TCP incast is

achieved.

KEYWORDS—Data-Center Networks, Incast

Congestion, Synchronized Servers , TCP.

I. INTRODUCTION

ransport Control Protocol (TCP) is widely used on

the Internet and generally works well. However, recent

studies [1], [2] have shown that TCP does not work well

for many-to-one traffic patterns on high-bandwidth, low-

latency networks. Congestion occurs when many

synchronized servers under the same Gigabit Ethernet

switch simultaneously send data to one receiver in

parallel. Only after all connections have finished the data

transmission can the next round be issued. Thus, these

connections are also called barrier-synchronized. The

final performance is determined by the slowest TCP

connection,which may suffer from timeout due to packet

loss. The performance collapse of these many-to-one

TCP connections is called TCP incast congestion.

 The traffic and network conditions in data-center

networks create the three preconditions for incast

congestion as summarized in [2]. First, data-center

networks are well structured and layered to achieve high

bandwidth and low latency, and the buffer size of top-of-

rack (ToR) Ethernet switches is usually small. Second, a

recent measurement study showed that a barrier-

synchronized many-to-one traffic pattern is common in

data-center networks [3], mainly caused by MapReduce

[4] and similar applications in data centers. Third, the

transmission data volume for such traffic patterns is

usually small, e.g.,ranging from several hundred

kilobytes to several megabytes in total.

 The root cause of TCP incast collapse is that the

highly bursty traffic of multiple TCP connections

overflows the Ethernet switch buffer in a short period of

time, causing intense packet loss and thus TCP

retransmission and timeouts. Previous solutions focused

on either reducing the wait time for packet loss recovery

with faster retransmissions [2], or controlling switch

buffer occupation to avoid overflow by using ECN and

modified TCP on both the sender and receiver sides [5].

 This paper focuses on avoiding packet loss before

incast congestion, which is more appealing than recovery

after loss. Of course, recovery schemes can be

complementary to congestion avoidance. The smaller the

change we make to the existing system, the better. To

this end, a solution that modifies only the TCP receiver is

preferred over solutions that require switch and router

support (such as ECN) and modifications on both the

TCP sender and receiver sides.

T

Network Congestion Control Over TCP Using BW Estimation Technique

Copyright to IJIRSET www.ijirset.com 977

 M.R. Thansekhar and N. Balaji (Eds.): ICIET’14

 The idea is to perform incast congestion avoidance at

the receiver side by preventing incast congestion. The

receiver side is a natural choice since it knows the

throughput of all TCP connections and the available

bandwidth. The receiver side can adjust the receive

window size of each TCP connection, so the aggregate

burstiness of all the synchronized senders are kept under

control. We call our design Incast congestion Control for

TCP (ICTCP).

 However, adequately controlling the receive window

is challenging: The receive window should be small

enough to avoid incast congestion, but also large enough

for good performance and other nonincast cases. A well-

performing throttling rate for

one incast scenario may not be a good fit for other

scenarios due to the dynamics of the number of

connections, traffic volume,network conditions, etc.

This paper addresses the above challenges with a

systematically designed ICTCP. We first perform

congestion avoidance at the system level. We then use

the per-flow state to finely tune the receive window of

each connection on the receiver side. The technical

novelties of this work are as follows:

 1) To perform congestion control on the receiver side,

we use the available bandwidth on the network interface

as a quota to coordinate the receive window increase of

all incoming connections.

2) Our per-flow congestion control is performed

independently of the slotted time of the round-trip time

(RTT) of each connection, which is also the control

latency in its feedback loop.

3) Our receive window adjustment is based on the ratio

of the difference between the measured and expected

throughput over the expected. This allows us to estimate

the throughput requirements from the sender side and

adapt the receiver window accordingly.

We also find that live RTT is necessary for throughput

estimation as we have observed that TCP RTT in a high-

bandwidth low-latency network increases with

throughput, even if link capacity is not reached We have

developed and implemented ICTCP as a Windows

Network Driver Interface Specification (NDIS) filter

driver.

Our implementation naturally supports virtual

machines that are now widely used in data centers. In our

implementation, ICTCP as a driver is located in

hypervisors below virtual machines. This choice removes

the difficulty of obtaining the real available bandwidth

after virtual interfaces’ multiplexing. It

also provides a common waist for various TCP stacks in

virtual machines. We have built a testbed with 47 Dell

servers and a 48-port Gigabit Ethernet switch.

Experiments in our testbed demonstrated the

effectiveness of our scheme.

The rest of this paper is organized as follows. Section

II discusses research background. Section III describes

the design rationale of ICTCP. Section IV presents the

ICTCP algorithms. Section VI shows the implementation

of ICTCP as a Windows driver. Section VII presents

experimental results. Section VIII discusses the

extension of ICTCP. Section IX presents related work.

Finally, Section X concludes the paper.

II. BACKGROUND AND MOTIVATION

 TCP incast has been identified and described by

Nagle et al. [6] in distributed storage clusters. In

distributed file systems, the files are deliberately stored

in multiple servers. However, TCP incast congestion

occurs when multiple blocks of a file are fetched from

multiple servers at the same time.

 Several application-specific solutions have been

proposed in the context of parallel file systems. With

recent progress in data-center networking, TCP incast

problems in data-center networks have become a

practical issue. Since there are various data-center

applications, a transport-layer solution can obviate the

need for applications to build their own solutions and is

therefore preferred.

In this section, we first briefly introduce the TCP incast

problem, then illustrate our observations for TCP

characteristics on high-bandwidth, low-latency networks.

Next, we explore the root cause of packet loss in incast

congestion, and finally, after observing that the TCP

receive window is the right controller to avoid

congestion, we seek a general TCP receive window

adjustment algorithm.

A. TCP Incast Congestion

 In Fig. 1, we show a typical data-center network

structure. There are three layers of switches/routers: the

ToR switch, the Aggregate switch, and the Aggregate

router. We also show a detailed case for a ToR connected

to dozens of servers. In a typical setup, the number of

servers under the same ToR ranges from 44 to 48, and

the ToR switch is a 48-port Gigabit switch with one or

multiple 10-Gb uplinks.

 Incast congestion happens when multiple sending

servers under the same ToR switch send data to one

Network Congestion Control Over TCP Using BW Estimation Technique

Copyright to IJIRSET www.ijirset.com 978

 M.R. Thansekhar and N. Balaji (Eds.): ICIET’14

Fig. 1. Data-center network and a detailed illustration

of a ToR switch connected to multiple rack-mounted

servers.

Fig. 2. Scenario of incast congestion in data-center

networks, where multiple (n) TCP senders transmit data

to the same receiver under the same ToR switch.

 receiver server simultaneously, as shown in Fig. 2. The

amount of data transmitted by each connection is

relatively small, e.g, 64 kB. In Fig. 3, we show the

goodput achieved on multiple connections versus the

number of sending servers. Note that we use the term

goodput as it is effective throughput obtained and

observed at the application layer. The results are

measured on a testbed with 47 Dell servers (at most 46

senders and one receiver) connected to one Quanta

LB4G 48-port Gigabit switch. The multiple TCP

connections are barrier-synchronized in our experiments.

We first establish multiple TCP connections between all

senders and the receiver,

Fig. 3. Total goodput of multiple barrier-synchronized

TCP connections versus the number of senders, where the

data traffic volume per sender is a fixed amount.

simultaneously, as shown respectively. Then, the

receiver sends out a (very small) request packet to ask

each sender to transmit data, respectively, i.e., multiple

requests packets are sent using multiple threads. The

TCP connections are issued round by round, and one

round ends when all connections on that round have

finished their data transfer to the receiver.

 We observe similar goodput trends for three different

traffic amounts per server, but with slightly different

transition points. Note that in our setup, each connection

has the same traffic amount with the number of senders

increasing, which is used in [1]. Reference [2] uses

another setup, in which the total traffic amount of all

senders is a fixed one, so that the data volume per server

per round decreases when the number of senders

increases. Here, we just illustrate the incast congestion

problem and later will show the results for both setups in

Section VII.

 TCP throughput is severely degraded by incast

congestion since one or more TCP connections can

experience timeouts caused by packet drops. TCP

variants sometimes improve performance, but cannot

prevent incast congestion collapse since most of the

timeouts are caused by full window losses [1] due to

Ethernet switch buffer overflow. The TCP incast

scenario is common for data-center applications. For

example, for search indexing we need to count the

frequency of a specific word in multiple documents.

Fig. 4. Incast goodput of capped and fixed receive window

(rw) with and without background TCP connection. The

value of rw is with MSS, and the background TCP

connection is not capped by the receive window.

V. ANALYSIS

 In this section, we present a simplified flow model for

ICTCP in a steady state. In the steady-state control loop,

we assume that ICTCP has successfully optimized the

receive window of all TCP flows.We are interested in

Network Congestion Control Over TCP Using BW Estimation Technique

Copyright to IJIRSET www.ijirset.com 979

 M.R. Thansekhar and N. Balaji (Eds.): ICIET’14

how much buffer space ICTCP needs in the steady state.

We use it to judge whether the buffer space requirement

of ICTCP is reasonable for existing low-end Ethernet

switch buffer space in practice.

We assume that there are infinitely long-lived TCP

flows under the control of ICTCP. All flows go to the

same destination server as shown in Fig. 2. The receive

window size of these flows is assumed to be 𝜔i,

i=1,…,n. The RTT of the flows is denoted as ri,

i=1,…..,n. The link capacity is denoted as 𝐶, and packet

size is denoted as 𝛿.

We assume the base RTT for those flows is the same,

and denoted by . Like the RTT shown in Fig. 5, the base

RTT is the least RTT experienced for a connection when

there is no queue at the switch. As the queue builds up at

the output port of the switch, the RTT of all flows keeps

growing. Correspondingly, the base BDP (BDP without

queuing) is , where is the bottleneck link capacity.

For connection i, its base BDP is denoted as . In the

steady state, we assume that all the connections have

occupied the base BDP, i.e.,

 𝑏𝑑𝑝𝑛
𝑖=1 𝑖=R.C

Therefore, in the steady state, the number of data

packets for connection in the switch buffer is bounded

by,

Qi ≤ 𝜔𝑖 − 𝑏𝑑𝑝𝑖/𝛿

To meet the condition where there are no packet drops

for any connection, we have the buffer size as

Q ≥ 𝑞𝑖𝛿𝑖𝑛
𝑖=1

 We consider the worst case where a synchronization of

all connections happens. In this case, the packets on the

flight are all data packets, and there are no ACK packets

in the backward direction. For the worst case under this

assumption, all those data packets are in the forward

direction, in transmission, or waiting in the queue. To

ensure there is no packet loss, the queue size should be

large enough to store packets on the flight for all

connections.Hence, in the worst case, if all connections

have the same receive window , we have

Q ≥ n𝜔𝛿 − 𝑅.𝐶.

The synchronization of all connections is likely in an

incast scenario, as the senders are transmitting data to the

receiver almost at the same time. Note that the

synchronization assumption greatly simplifies the receive

window adjustment of ICTCP. In practice, packets arrive

at the receiver in order, making the connections with

earlier packet arrivals have a larger receive window.

We calculate the buffer size requirement to avoid

incast buffer overflow from the above equation using an

example of a 48-port Ethernet switch. The link capacity

C is 1 Gb/s, and the base RTT R is 100µs, so the BDP

R.C=12500B. The default packet length MSS on

Ethernet is 1500 B. The minimal receive window is by

default 2MSS. When considering a 48-port Gigabit

Ethernet switch, to avoid packet loss in a synchronized

incast scenario with a maximum of 47 senders, the buffer

space should be larger than 47*2*1500-12500=128.5 kB.

Preparing for the worst case, incast congestion may

happen at all ports simultaneously, then the total buffer

space required is

128.5*48 ≈6 MB.

We then consider the case of low-end ToR switches,

which are also called switches with a shallow buffer in

[5]. The switch in our testbed is a Quanta LB4G 48-port

Gigabit Ethernet switch, which has a small buffer of

about 4 MB. Correspondingly, by a reverse calculation,

if the buffer size is 4 MB and the minimal receive

window is 2MSS, then at most 32 senders can be

supported. Fortunately, existing commodity switches use

dynamic buffer management to allocate a buffer pool

shared by all ports. That is to say, if the number of

servers is larger than 32, incast congestion may happen

with some probability, which is determined by the usage

of the shared buffer pool.

III. EXPERIMENTAL RESULTS

We deployed a testbed with 47 servers and one Quanta

LB4G 48-port Gigabit Ethernet switch. The topology of

our testbed was the same as the one shown on the right

side of Fig. 1, where 47 servers each connect to the 48-

port Gigabit Ethernet switch with a Gigabit Ethernet

interface. Each server has two 2.2-GB Intel Xeon CPUs

E5520 (four cores), 32 GB RAM, a 1-TB hard disk, and

one Broadcom BCM5709C NetXtreme II Gigabit

Ethernet NIC.

TheOS on each server isWindows Server 2008 R2

Enterprise 64-bit version. The CPU, memory, and hard

disk were never a bottleneck in any of our experiments.

We use iperf to construct the incast scenario

wheremultiple sending servers generate TCP traffic to a

receiving server under the same switch. The servers in

our testbed have their own background TCP connections

for various services, but the background traffic amount is

very small compared to our generated traffic. The testbed

is in an enterprise network with normal background

broadcast traffic. All comparisons are between a full

Network Congestion Control Over TCP Using BW Estimation Technique

Copyright to IJIRSET www.ijirset.com 980

 M.R. Thansekhar and N. Balaji (Eds.): ICIET’14

implementation of ICTCP described in Section VI and a

state-of-the-art TCP New Reno with SACK

implementation on a Windows server. The default

timeout value of TCP on aWindows server is 300 ms.

Note that all the TCP stacks were the same in our

experiments, and ICTCP was implemented on a filter

driver at the receiver side.

A. Fixed Traffic Volume per Server With the Number of

Senders Increasing

The first incast scenario we considered was one in

which a number of senders generate the same amount of

TCP traffic to a specific receiver under the same switch.

Similar to the setup in [1] and [14], we fix the traffic

amount generated per sending server.

The TCP connections are barrier-synchronized per

round, i.e., one round finishes only after all TCP

connections in it have finished, and then the next round

starts. The goodput shown is the average value of 100

experimental rounds. We observe the incast

Fig. 8. Total goodput of multiple barrier-synchronized

ICTCP/TCP connections versus the number of senders, where

the data traffic volume per sender is a fixed amount.

congestion: With the number of sending servers

increasing, the goodput per round actually drops due to

TCP timeout on some connections. The smallest number

of sending servers to trigger incast congestion varies

with the traffic amount generated per server: With a

larger amount of data, a smaller number of sending

servers is required to trigger incast congestion.

 1) ICTCP With Minimal Receive Window at 2MSS:

Under the same setup, the performance of ICTCP is

shown in Fig. 8. We observe that ICTCP achieves

smooth and increasing goodput with the number of

sending servers increasing. A larger data amount per

sending server results in a slightly higher goodput. The

averaged goodput of ICTCP shows that incast congestion

is effectively throttled. The goodput of ICTCP, with a

varying number of sending servers and traffic amount

per sending servers, shows that our algorithm adapts well

to different traffic requirements. We observe that the

goodput of TCP before incast congestion is actually

higher than that of ICTCP.

 For example,TCP achieves 879 Mb/ps while ICTCP

achieves 607 Mb/s with four sending servers at 256 kB

per server. There are two reasons: 1) During the

connection initiation phase (slow start), ICTCP increases

the receive window slowly than TCP increases the

congestion window. Actually, ICTCP doubles the

receive window at least every two RTTs, while TCP

doubles its congestion window every RTT. Otherwise,

ICTCP increases the receive window by 1 MSS when the

available bandwidth is low. 2) The traffic amount per

sending server is very small, and thus the time taken in

the “slow-start” dominates the transmission time if incast

congestion does not occur. Note that the low throughput

of ICTCP during the initiation phase does not affect its

throughput during the stable phase in a larger

Fig. 9. Ratio of experimental rounds that suffer at least

one timeout.

timescale, e.g., hundreds of milliseconds, which will be

evaluated in Section VII-D.

To evaluate the effectiveness of ICTCP in avoiding

timeouts, we use the ratio of the number of experimental

rounds experiencing at least one timeout4 over the total

number of rounds. The ratio of rounds with at least one

timeout is shown in Fig. 9. We observe that TCP suffers

at least one timeout when incast congestion occurs, while

the highest ratio for ICTCP experiencing timeout is 6%.

Note that the results in Fig. 9 show that ICTCP is better

than DCTCP[5], as DCTCP quickly downgrades to the

same as TCP when the number of sending servers is over

35 for the static buffer. The reason that ICTCP

effectively reduces the probability of timeouts is that

ICTCP avoids congestion and increases the receive

window only if there is enough available bandwidth on

the receiving server. DCTCP relies on ECN to detect

congestion, so a larger (dynamic) buffer is required to

Network Congestion Control Over TCP Using BW Estimation Technique

Copyright to IJIRSET www.ijirset.com 981

 M.R. Thansekhar and N. Balaji (Eds.): ICIET’14

avoid buffer overflow during control latency, i.e., the

time before control takes effect.

2) ICTCP With Minimal Receive Window at 1MSS:

ICTCP has a possibility (although very small) to timeout

since we use a 2MSS minimal receive window. In

principle, with the number of connections becoming

larger, the receive window for each connection should

become smaller proportionately. This is because the total

BDP including the buffer size is actually shared by those

connections, and the minimal receive window of those

connections determines whether such sharing may cause

buffer overflow when the total BDP is not enough to

support those connections.

The performance of ICTCPwith aminimal

receivewindow at 1MSS is shown in Fig. 10. We observe

that timeout probability is 0, while the averaged

throughput is lower than those with a 2MSS minimal

receive window. For example, for 40 sending serverswith

64 kB per server, the goodput is

Fig. 10. ICTCP goodput and ratio of experimental rounds

suffer at least one timeout with a minimal receive window

of 1MSS.

741 Mb/s for 2MSS as shown in Fig. 8, while it is 564

Mb/s for 1MSS as shown in Fig. 10. Therefore, the

minimal receive window is a tradeoff between a higher

average incast goodput and a lower timeout probability.

Note that the goodput here only lasts for a very short

time, 40*64k*8/564 Mb/s ms. For a larger data size

request and a longer connection duration, ICTCP

actually achieves a goodput that is close to link capacity,

which is shown in detail in Section VII-D.

Fig. 11. Goodput of ICTCP (with a minimal receive window

of 2MSS) and TCP in the case that the total data amount

from all sending servers is a fixed value.

IV. DISCUSSIONS

In this section, we discuss three issues related to the

further extension of ICTCP. The first issue regards the

scalability of ICTCP, in particular, how to handle incast

congestion with an extremely large number of

connections. Reference [5] shows that the number of

concurrent connections to a receiver of 50 ms duration is

less than 100 for the 90th percentile in a real data center.

ICTCP can easily handle a case of 100 concurrent

connections with 1MSS as the minimum receive

window.

In principle, if the number of concurrent connections

becomes extremely large, then we require a much

smaller minimal receive window to prevent buffer

overflow. However, directly using a receive window less

than 1 MSS may degrade performance greatly. We

propose an alternative solution: switching the receive

window between several values to effectively achieve a

smaller receive window averaged for multiple RTTs. For

example, a 1MSS window for one RTT and a 0 window

for another RTT could achieve a 0.5MSS window on

average for 2RTT. Note that it still needs coordination

between multiplexed flows at the receiver side to prevent

concurrent connections overflow buffers.

The second issue we consider is how to extend ICTCP

to handle congestion in general cases where the sender

and the receiver are not under the same switch and the

bottleneck link is not the last hop to the receiver. ECN

can be leveraged to obtain such congestion information.

However, it differs from the original ECN, which only

echoes the congestion signal on the receiver side,

because ICTCP can throttle the receive window

considering the aggregation of multiple connections. The

third issue is whether ICTCP will work for future

highbandwidth low-latency networks. A big challenge

for ICTCP is that the bandwidth may reach 100 Gb/s,

Network Congestion Control Over TCP Using BW Estimation Technique

Copyright to IJIRSET www.ijirset.com 982

 M.R. Thansekhar and N. Balaji (Eds.): ICIET’14

while the RTT may not decrease by much. In this case,

the BDP is enlarged, and the receive window on incast

connections also becomes larger. While in ICTCP, a

1MSS reduction is used for window adjustment,

requiring a longer time to converge if the window size is

larger. To make ICTCP work for a 100-Gb/s or even

higher bandwidth network, we consider the following

solutions:1) the switch buffer should be enlarged

correspondingly;2) the MSS should be enlarged so that

the window size with regard to the MSS number does not

enlarge greatly. This is reasonable as a 9-kB MSS is

available for Gigabit Ethernet.

V. CONCLUSION

In this paper, I have presented the design,

implementation, and evaluation of ICTCP to improve

TCP performance for TCP incast in data-center

networks. In contrast to previous approaches that used a

fine-tuned timer for faster retransmission, it focus on a

receiver-based congestion control algorithm to prevent

packet loss. ICTCP adaptively adjusts the TCP receive

window based on the ratio of the difference of achieved

and expected per-connection throughputs over expected

throughput, as well as the last-hop available bandwidth

to the receiver. Here, a lightweight and high-performance

Window NDIS filter driver to implement ICTCP is

developed. Compared to directly implementing ICTCP

as part of the TCP stack, our driver implementation can

directly support virtual machines, which are becoming

prevalent in data centers. A testbed is build with Multiple

servers along with a 48-port Ethernet Gigabitswitch. The

experimental results exhibit that ICTCP is effective in

avoiding congestion by achieving almost zero timeouts

for TCP incast, and it provides high performance and

fairness among competing flows.

REFERENCES
[1] A. Phanishayee, E. Krevat, V. Vasudevan, D. Andersen, G. Ganger,
G. Gibson, and S. Seshan, “Measurement and analysis of TCP

throughput collapse in cluster-based storage systems,” in Proc.

USENIX FAST, 2008, Article no. 12.
[2] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. Andersen,

G. Ganger, G. Gibson, and B. Mueller, “Safe and effective fine-grained

TCP retransmissions for datacenter communication,” in Proc. ACM

SIGCOMM, 2009, pp. 303–314.

[3] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken,

“The nature of data center traffic: Measurements & analysis,” in Proc.
IMC, 2009, pp. 202–208.

[4] J. Dean and S. Ghemawat, “MapReduce: Simplified data

processing on large clusters,” in Proc. OSDI, 2004, p. 10.
[5] M. Alizadeh, A. Greenberg, D.Maltz, J. Padhye, P. Patel,

B.Prabhakar, S. Sengupta, and M. Sridharan, “Data center TCP

(DCTCP),” in Proc. SIGCOMM, 2010, pp. 63–74.
[6] D. Nagle, D. Serenyi, and A. Matthews, “The Panasas ActiveScale

storage cluster: Delivering scalable high bandwidth storage,” in Proc.

SC, 2004, p. 53.

358 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 21, NO. 2,

APRIL 2013

[7] E. Krevat, V. Vasudevan, A. Phanishayee, D. Andersen, G. Ganger,

G.Gibson, and S. Seshan, “On application-level approaches to
avoiding TCP throughput collapse in cluster-based storage systems,”

in Proc. Supercomput., 2007, pp. 1–4.

[8] C. Guo, H.Wu,K.Tan,L. Shi,Y.Zhang, and S. Lu, “DCell:Ascalable
and fault tolerant network structure for data centers,” in Proc. ACM

SIGCOMM, 2008, pp. 75–86.

[9] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” in Proc. ACMSIGCOMM, 2008, pp.

63–74.

[10] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y.
Zhang,and S. Lu, “BCube: A high performance, server-centric

network architecture for modular data centers,” in Proc. ACM

SIGCOMM, 2009, pp. 63–74.
[11] L. Brakmo and L. Peterson, “TCP Vegas: End to end congestion

avoidance on a global internet,” IEEE J. Sel. Areas Commun., vol. 13,

no. 8, pp. 1465–1480, Oct. 1995.

[12] R. Braden, “Requirements for internet hosts—Communication

layers,” RFC1122, Oct. 1989.
[13] V. Jacobson, R. Braden, and D. Borman, “TCP extensions for high

performance,” RFC1323, May 1992.

[14] Y. Chen, R. Griffith, J. Liu, R. Katz, and A. Joseph,
“Understanding TCP incast throughput collapse in datacenter

networks,” in Proc. WREN, 2009, pp. 73–82.

[15] N. Spring,M. Chesire,M. Berryman, and V. Sahasranaman,
“Receiver based management of low bandwidth access links,” in Proc.

IEEE INFOCOM, 2000, vol. 1, pp. 245–254.

[16] P. Mehra, A. Zakhor, and C. Vleeschouwer, “Receiver-driven
bandwidth sharing for TCP,” in Proc. IEEE INFOCOM, 2003, vol. 2,

pp. 1145–1155.

[17] R. Prasad, M. Jain, and C. Dovrolis, “Socket buffer auto-sizing
forhigh-performance data transfers,” J. Grid Comput., vol. 1, no. 4,

pp.361–376, 2003.

[18] H. Wu, Z. Feng, C. Guo, and Y. Zhang, “ICTCP: Incast
congestion control for TCP in data center networks,” in Proc.

CoNEXT, 2010, Articleno. 13.Dr. Zhang was an Associate Editor for

the IEEE TRANSACTIONS ON MOBILE

COMPUTING and a General Co-Chair for ACM MobiCom 2009.

