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ABSTRACT—When multiple synchronized servers 

send data to the same receiver in parallel Transport 

Control Protocol (TCP) incast congestion happens in 

high-bandwidth and low-latency networks.In data-center 

applications such as MapReduce and Search, this many-

to-one traffic pattern is frequent. Hence TCP incast 

congestion may severely degrade their performances, 

e.g., by increasing response time. In this paper, we study 

TCP incast in detail by focusing on the relationships 

between TCP throughput, round-trip time (RTT), and 

receive window. Unlike previous approaches, which 

mitigate the impact of TCP incast congestion by using a 

fine-grained timeout value, ouridea is to design an Incast 

congestion Control for TCP (ICTCP) scheme on the 

receiver side. In particular, our method adjusts the TCP 

receive window proactively before packet loss occurs. 

The implementation and experiments shows that  almost 

zero timeouts and high goodput for TCP incast is 

achieved. 

 

 

KEYWORDS—Data-Center Networks, Incast 

Congestion, Synchronized Servers , TCP. 
 

I. INTRODUCTION 

ransport Control Protocol (TCP) is widely used on 

the Internet and generally works well. However, recent 

studies [1], [2] have shown that TCP does not work well 

for many-to-one traffic patterns on high-bandwidth, low-

latency networks. Congestion occurs when many 

synchronized servers under the same Gigabit Ethernet 

switch simultaneously send data to one receiver in 

parallel. Only after all connections have finished the data 

transmission can the next round be issued. Thus, these 

connections are also called barrier-synchronized. The 

final performance is determined by the slowest TCP 

connection,which may suffer from timeout due to packet 

loss. The performance collapse of these many-to-one 

TCP connections is called TCP incast congestion.  

     The traffic and network conditions in data-center 

networks create the three preconditions for incast 

congestion as summarized in [2]. First, data-center 

networks are well structured and layered to achieve high 

bandwidth and low latency, and the buffer size of top-of-

rack (ToR) Ethernet switches is usually small. Second, a 

recent measurement study showed that a barrier-

synchronized many-to-one traffic pattern is common in 

data-center networks [3], mainly caused by MapReduce 

[4] and similar applications in data centers. Third, the 

transmission data volume for such traffic patterns is 

usually small, e.g.,ranging from several hundred 

kilobytes to several megabytes in total.  

     The root cause of TCP incast collapse is that the 

highly bursty traffic of multiple TCP connections 

overflows the Ethernet switch buffer in a short period of 

time, causing intense packet loss and thus TCP 

retransmission and timeouts. Previous solutions focused 

on either reducing the wait time for packet loss recovery 

with faster retransmissions [2], or controlling switch 

buffer occupation to avoid overflow by using ECN and 

modified TCP on both the sender and receiver sides [5].  

     This paper focuses on avoiding packet loss before 

incast congestion, which is more appealing than recovery 

after loss. Of course, recovery schemes can be 

complementary to congestion avoidance. The smaller the 

change we make to the existing system, the better. To 

this end, a solution that modifies only the TCP receiver is 

preferred over solutions that require switch and router 

support (such as ECN) and modifications on both the 

TCP sender and receiver sides.  

T 



Network Congestion Control Over TCP Using BW Estimation Technique 
 

 

Copyright to IJIRSET                                                www.ijirset.com                                                                            977 

                     M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 

 
  

     The idea is to perform incast congestion avoidance at 

the receiver side by preventing incast congestion. The 

receiver side is a natural choice since it knows the 

throughput of all TCP connections and the available 

bandwidth. The receiver side can adjust the receive 

window size of each TCP connection, so the aggregate 

burstiness of all the synchronized senders are kept under 

control. We call our design Incast congestion Control for 

TCP (ICTCP). 

     However, adequately controlling the receive window 

is challenging: The receive window should be small 

enough to avoid incast congestion, but also large enough 

for good performance and other nonincast cases. A well-

performing throttling rate for 

one incast scenario may not be a good fit for other 

scenarios due to the dynamics of the number of 

connections, traffic volume,network conditions, etc. 

This paper addresses the above challenges with a 

systematically designed ICTCP. We first perform 

congestion avoidance at the system level. We then use 

the per-flow state to finely tune the receive window of 

each connection on the receiver side. The technical 

novelties of this work are as follows: 

 1) To perform congestion control on the receiver side, 

we use the available bandwidth on the network interface 

as a quota to coordinate the receive window increase of 

all incoming connections. 

2) Our per-flow congestion control is performed 

independently of the slotted time of the round-trip time 

(RTT) of each connection, which is also the control 

latency in its feedback loop. 

3) Our receive window adjustment is based on the ratio 

of the difference between the measured and expected 

throughput over the expected. This allows us to estimate 

the throughput requirements from the sender side and 

adapt the receiver window accordingly. 

We also find that live RTT is necessary for throughput 

estimation as we have observed that TCP RTT in a high-

bandwidth low-latency network increases with 

throughput, even if link capacity is not reached  We have 

developed and implemented ICTCP as a Windows 

Network Driver Interface Specification (NDIS) filter 

driver. 

Our implementation naturally supports virtual 

machines that are now widely used in data centers. In our 

implementation, ICTCP as a driver is located in 

hypervisors below virtual machines. This choice removes 

the difficulty of obtaining the real available bandwidth 

after virtual interfaces’ multiplexing. It 

also provides a common waist for various TCP stacks in 

virtual machines. We have built a testbed with 47 Dell 

servers and a 48-port Gigabit Ethernet switch. 

Experiments in our testbed demonstrated the 

effectiveness of our scheme. 

The rest of this paper is organized as follows. Section 

II discusses research background. Section III describes 

the design rationale of ICTCP. Section IV presents the 

ICTCP algorithms. Section VI shows the implementation 

of ICTCP as a Windows driver. Section VII presents 

experimental results. Section VIII discusses the 

extension of ICTCP. Section IX presents related work. 

Finally, Section X concludes the paper. 

 

II. BACKGROUND AND MOTIVATION 

 

     TCP incast has been identified and described by 

Nagle et al. [6] in distributed storage clusters. In 

distributed file systems, the files are deliberately stored 

in multiple servers. However, TCP incast congestion 

occurs when multiple blocks of a file are fetched from 

multiple servers at the same time. 

     Several application-specific solutions have been 

proposed in the context of parallel file systems. With 

recent progress in data-center networking, TCP incast 

problems in data-center networks have become a 

practical issue. Since there are various data-center 

applications, a transport-layer solution can obviate the 

need for applications to build their own solutions and is 

therefore preferred. 

In this section, we first briefly introduce the TCP incast 

problem, then illustrate our observations for TCP 

characteristics on high-bandwidth, low-latency networks. 

Next, we explore the root cause of packet loss in incast 

congestion, and finally, after observing that the TCP 

receive window is the right controller to avoid 

congestion, we seek a general TCP receive window 

adjustment algorithm. 

 

A. TCP Incast Congestion 

     In Fig. 1, we show a typical data-center network 

structure. There are three layers of switches/routers: the 

ToR switch, the Aggregate switch, and the Aggregate 

router. We also show a detailed case for a ToR connected 

to dozens of servers. In a typical setup, the number of 

servers under the same ToR ranges from 44 to 48, and 

the ToR switch is a 48-port Gigabit switch with one or 

multiple 10-Gb uplinks. 

     Incast congestion happens when multiple sending 

servers under the same ToR switch send data to one 
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Fig. 1. Data-center network and a detailed illustration 

of a ToR switch connected to multiple rack-mounted 

servers. 

 

 
 

Fig. 2. Scenario of incast congestion in data-center 

networks, where multiple (n ) TCP senders transmit data 

to the same receiver under the same ToR switch. 

 

 receiver server simultaneously, as shown in Fig. 2. The 

amount of data transmitted by each connection is 

relatively small, e.g, 64 kB. In Fig. 3, we show the 

goodput achieved on multiple connections versus the 

number of sending servers. Note that we use the term 

goodput as it is effective throughput obtained and 

observed at the application layer. The results are 

measured on a testbed with 47 Dell servers (at most 46 

senders and one receiver) connected to one Quanta 

LB4G 48-port Gigabit switch. The multiple TCP 

connections are barrier-synchronized in our experiments. 

We first establish multiple TCP connections between all 

senders and the receiver,  

 

 
 

Fig. 3. Total goodput of multiple barrier-synchronized 

TCP connections versus the number of senders, where the 

data traffic volume per sender is a fixed amount. 

 

simultaneously, as shown respectively. Then, the 

receiver sends out a (very small) request packet to ask 

each sender to transmit data, respectively, i.e., multiple 

requests packets are sent using multiple threads. The 

TCP connections are issued round by round, and one 

round ends when all connections on that round have 

finished their data transfer to the receiver. 

     We observe similar goodput trends for three different 

traffic amounts per server, but with slightly different 

transition points. Note that in our setup, each connection 

has the same traffic amount with the number of senders 

increasing, which is used in [1]. Reference [2] uses 

another setup, in which the total traffic amount of all 

senders is a fixed one, so that the data volume per server 

per round decreases when the number of senders 

increases. Here, we just illustrate the incast congestion 

problem and later will show the results for both setups in 

Section VII. 

     TCP throughput is severely degraded by incast 

congestion since one or more TCP connections can 

experience timeouts caused by packet drops. TCP 

variants sometimes improve performance, but cannot 

prevent incast congestion collapse since most of the 

timeouts are caused by full window losses [1] due to 

Ethernet switch buffer overflow. The TCP incast 

scenario is common for data-center applications. For 

example, for search indexing we need to count the 

frequency of a specific word in multiple documents.  

 

 

 
Fig. 4. Incast goodput of capped and fixed receive window 

(rw) with and without background TCP connection. The 

value of rw is with MSS, and the background TCP 

connection is not capped by the receive window. 
 

V. ANALYSIS 

 

    In this section, we present a simplified flow model for 

ICTCP in a steady state. In the steady-state control loop, 

we assume that ICTCP has successfully optimized the 

receive window of all TCP flows.We are interested in 
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how much buffer space ICTCP needs in the steady state. 

We use it to judge whether the buffer space requirement 

of ICTCP is reasonable for existing low-end Ethernet 

switch buffer space in practice. 

We assume that there are infinitely long-lived TCP 

flows under the control of ICTCP. All flows go to the 

same destination server as shown in Fig. 2. The receive 

window size of these flows is assumed to be 𝜔i, 

i=1,…,n. The RTT of the flows is denoted as ri, 

i=1,…..,n. The link capacity is denoted as 𝐶, and packet 

size is denoted as 𝛿. 

We assume the base RTT for those flows is the same, 

and denoted by . Like the RTT shown in Fig. 5, the base 

RTT is the least RTT experienced for a connection when 

there is no queue at the switch. As the queue builds up at 

the output port of the switch, the RTT of all flows keeps 

growing. Correspondingly, the base BDP (BDP without 

queuing) is , where is the bottleneck link capacity. 

For connection i, its base BDP is denoted as . In the 

steady state, we assume that all the connections have 

occupied the base BDP, i.e., 

 

 𝑏𝑑𝑝𝑛
𝑖=1 𝑖=R.C 

 

Therefore, in the steady state, the number of data 

packets for connection in the switch buffer is bounded 

by, 

Qi ≤ 𝜔𝑖 − 𝑏𝑑𝑝𝑖/𝛿 

 

To meet the condition where there are no packet drops 

for any connection, we have the buffer size as 

 

Q ≥  𝑞𝑖𝛿𝑖𝑛
𝑖=1  

 

 We consider the worst case where a synchronization of 

all connections happens. In this case, the packets on the 

flight are all data packets, and there are no ACK packets 

in the backward direction. For the worst case under this 

assumption, all those data packets are in the forward 

direction, in transmission, or waiting in the queue. To 

ensure there is no packet loss, the queue size should be 

large enough to store packets on the flight for all 

connections.Hence, in the worst case, if all connections 

have the same receive window , we have 

 

Q ≥ n𝜔𝛿 − 𝑅.𝐶. 
 

The synchronization of all connections is likely in an 

incast scenario, as the senders are transmitting data to the 

receiver almost at the same time. Note that the 

synchronization assumption greatly simplifies the receive 

window adjustment of ICTCP. In practice, packets arrive 

at the receiver in order, making the connections with 

earlier packet arrivals have a larger receive window. 

We calculate the buffer size requirement to avoid 

incast buffer overflow from the above equation using an 

example of a 48-port Ethernet switch. The link capacity 

C is 1 Gb/s, and the base RTT R is 100µs, so the BDP 

R.C=12500B. The default packet length MSS on 

Ethernet is 1500 B. The minimal receive window is by 

default 2MSS. When considering a 48-port Gigabit 

Ethernet switch, to avoid packet loss in a synchronized 

incast scenario with a maximum of 47 senders, the buffer 

space should be larger than 47*2*1500-12500=128.5 kB. 

Preparing for the worst case, incast congestion may 

happen at all ports simultaneously, then the total buffer 

space required is 

128.5*48 ≈6 MB. 

We then consider the case of low-end ToR switches, 

which are also called switches with a shallow buffer in 

[5]. The switch in our testbed is a Quanta LB4G 48-port 

Gigabit Ethernet switch, which has a small buffer of 

about 4 MB. Correspondingly, by a reverse calculation, 

if the buffer size is 4 MB and the minimal receive 

window is 2MSS, then at most 32 senders can be 

supported. Fortunately, existing commodity switches use 

dynamic buffer management to allocate a buffer pool 

shared by all ports. That is to say, if the number of 

servers is larger than 32, incast congestion may happen 

with some probability, which is determined by the usage 

of the shared buffer pool. 

 

III. EXPERIMENTAL RESULTS 

 

We deployed a testbed with 47 servers and one Quanta 

LB4G 48-port Gigabit Ethernet switch. The topology of 

our testbed was the same as the one shown on the right 

side of Fig. 1, where 47 servers each connect to the 48-

port Gigabit Ethernet switch with a Gigabit Ethernet 

interface. Each server has two 2.2-GB Intel Xeon CPUs 

E5520 (four cores), 32 GB RAM, a 1-TB hard disk, and 

one Broadcom BCM5709C NetXtreme II Gigabit 

Ethernet NIC. 

TheOS on each server isWindows Server 2008 R2 

Enterprise 64-bit version. The CPU, memory, and hard 

disk were never a bottleneck in any of our experiments. 

We use iperf to construct the incast scenario 

wheremultiple sending servers generate TCP traffic to a 

receiving server under the same switch. The servers in 

our testbed have their own background TCP connections 

for various services, but the background traffic amount is 

very small compared to our generated traffic. The testbed 

is in an enterprise network with normal background 

broadcast traffic. All comparisons are between a full 
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implementation of ICTCP described in Section VI and a 

state-of-the-art TCP New Reno with SACK 

implementation on a Windows server. The default 

timeout value of TCP on aWindows server is 300 ms. 

Note that all the TCP stacks were the same in our 

experiments, and ICTCP was implemented on a filter 

driver at the receiver side. 

 

A. Fixed Traffic Volume per Server With the Number of 

Senders Increasing 

The first incast scenario we considered was one in 

which a number of senders generate the same amount of 

TCP traffic to a specific receiver under the same switch. 

Similar to the setup in [1] and [14], we fix the traffic 

amount generated per sending server. 

The TCP connections are barrier-synchronized per 

round, i.e., one round finishes only after all TCP 

connections in it have finished, and then the next round 

starts. The goodput shown is the average value of 100 

experimental rounds. We observe the incast 

 
 

Fig. 8. Total goodput of multiple barrier-synchronized 

ICTCP/TCP connections versus the number of senders, where 

the data traffic volume per sender is a fixed amount. 
 

congestion: With the number of sending servers 

increasing, the goodput per round actually drops due to 

TCP timeout on some connections. The smallest number 

of sending servers to trigger incast congestion varies 

with the traffic amount generated per server: With a 

larger amount of data, a smaller number of sending 

servers is required to trigger incast congestion. 

 

    1) ICTCP With Minimal Receive Window at 2MSS: 

Under the same setup, the performance of ICTCP is 

shown in Fig. 8. We observe that ICTCP achieves 

smooth and increasing goodput with the number of 

sending servers increasing. A larger data amount per 

sending server results in a slightly higher goodput. The 

averaged goodput of ICTCP shows that incast congestion 

is effectively throttled. The goodput of ICTCP, with a 

varying number of sending servers and traffic amount 

per sending servers, shows that our algorithm adapts well 

to different traffic requirements. We observe that the 

goodput of TCP before incast congestion is actually 

higher than that of ICTCP. 

    For example,TCP achieves 879 Mb/ps while ICTCP 

achieves 607 Mb/s with four sending servers at 256 kB 

per server. There are two reasons: 1) During the 

connection initiation phase (slow start), ICTCP increases 

the receive window slowly than TCP increases the 

congestion window. Actually, ICTCP doubles the 

receive window at least every two RTTs, while TCP 

doubles its congestion window every RTT. Otherwise, 

ICTCP increases the receive window by 1 MSS when the 

available bandwidth is low. 2) The traffic amount per 

sending server is very small, and thus the time taken in 

the “slow-start” dominates the transmission time if incast 

congestion does not occur. Note that the low throughput 

of ICTCP during the initiation phase does not affect its 

throughput during the stable phase in a larger 

 
Fig. 9. Ratio of experimental rounds that suffer at least 

one timeout. 

 

timescale, e.g., hundreds of milliseconds, which will be 

evaluated in Section VII-D. 

To evaluate the effectiveness of ICTCP in avoiding 

timeouts, we use the ratio of the number of experimental 

rounds experiencing at least one timeout4 over the total 

number of rounds. The ratio of rounds with at least one 

timeout is shown in Fig. 9. We observe that TCP suffers 

at least one timeout when incast congestion occurs, while 

the highest ratio for ICTCP experiencing timeout is 6%. 

Note that the results in Fig. 9 show that ICTCP is better 

than DCTCP[5], as DCTCP quickly downgrades to the 

same as TCP when the number of sending servers is over 

35 for the static buffer. The reason that ICTCP 

effectively reduces the probability of timeouts is that 

ICTCP avoids congestion and increases the receive 

window only if there is enough available bandwidth on 

the receiving server. DCTCP relies on ECN to detect 

congestion, so a larger (dynamic) buffer is required to 
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avoid buffer overflow during control latency, i.e., the 

time before control takes effect. 

 

2) ICTCP With Minimal Receive Window at 1MSS: 

ICTCP has a possibility (although very small) to timeout 

since we use a 2MSS minimal receive window. In 

principle, with the number of connections becoming 

larger, the receive window for each connection should 

become smaller proportionately. This is because the total 

BDP including the buffer size is actually shared by those 

connections, and the minimal receive window of those 

connections determines whether such sharing may cause 

buffer overflow when the total BDP is not enough to 

support those connections. 

The performance of ICTCPwith aminimal 

receivewindow at 1MSS is shown in Fig. 10. We observe 

that timeout probability is 0, while the averaged 

throughput is lower than those with a 2MSS minimal 

receive window. For example, for 40 sending serverswith 

64 kB per server, the goodput is 

 
 

Fig. 10. ICTCP goodput and ratio of experimental rounds 

suffer at least one timeout with a minimal receive window 

of 1MSS. 
 

741 Mb/s for 2MSS as shown in Fig. 8, while it is 564 

Mb/s for 1MSS as shown in Fig. 10. Therefore, the 

minimal receive window is a tradeoff between a higher 

average incast goodput and a lower timeout probability. 

Note that the goodput here only lasts for a very short 

time, 40*64k*8/564 Mb/s ms. For a larger data size 

request and a longer connection duration, ICTCP 

actually achieves a goodput that is close to link capacity, 

which is shown in detail in Section VII-D. 

 

 
 
Fig. 11. Goodput of ICTCP (with a minimal receive window 

of 2MSS) and TCP in the case that the total data amount 

from all sending servers is a fixed value. 
 

IV. DISCUSSIONS 

In this section, we discuss three issues related to the 

further extension of ICTCP. The first issue regards the 

scalability of ICTCP, in particular, how to handle incast 

congestion with an extremely large number of 

connections. Reference [5] shows that the number of 

concurrent connections to a receiver of 50 ms duration is 

less than 100 for the 90th percentile in a real data center. 

ICTCP can easily handle a case of 100 concurrent 

connections with 1MSS as the minimum receive 

window. 

In principle, if the number of concurrent connections 

becomes extremely large, then we require a much 

smaller minimal receive window to prevent buffer 

overflow. However, directly using a receive window less 

than 1 MSS may degrade performance greatly. We 

propose an alternative solution: switching the receive 

window between several values to effectively achieve a 

smaller receive window averaged for multiple RTTs. For 

example, a 1MSS window for one RTT and a 0 window 

for another RTT could achieve a 0.5MSS window on 

average for 2RTT. Note that it still needs coordination 

between multiplexed flows at the receiver side to prevent 

concurrent connections overflow buffers. 

The second issue we consider is how to extend ICTCP 

to handle congestion in general cases where the sender 

and the receiver are not under the same switch and the 

bottleneck link is not the last hop to the receiver. ECN 

can be leveraged to obtain such congestion information. 

However, it differs from the original ECN, which only 

echoes the congestion signal on the receiver side, 

because ICTCP can throttle the receive window 

considering the aggregation of multiple connections. The 

third issue is whether ICTCP will work for future 

highbandwidth low-latency networks. A big challenge 

for ICTCP is that the bandwidth may reach 100 Gb/s, 
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while the RTT may not decrease by much. In this case, 

the BDP is enlarged, and the receive window on incast 

connections also becomes larger. While in ICTCP, a 

1MSS reduction is used for window adjustment, 

requiring a longer time to converge if the window size is 

larger. To make ICTCP work for a 100-Gb/s or even 

higher bandwidth network, we consider the following 

solutions:1) the switch buffer should be enlarged 

correspondingly;2) the MSS should be enlarged so that 

the window size with regard to the MSS number does not 

enlarge greatly. This is reasonable as a 9-kB MSS is 

available for Gigabit Ethernet. 

 

V. CONCLUSION 

In this paper, I have presented the design, 

implementation, and evaluation of ICTCP to improve 

TCP performance for TCP incast in data-center 

networks. In contrast to previous approaches that used a 

fine-tuned timer for faster retransmission, it focus on a 

receiver-based congestion control algorithm to prevent 

packet loss. ICTCP adaptively adjusts the TCP receive 

window based on the ratio of the difference of achieved 

and expected per-connection throughputs over expected 

throughput, as well as the last-hop available bandwidth 

to the receiver. Here, a lightweight and high-performance 

Window NDIS filter driver to implement ICTCP is 

developed. Compared to directly implementing ICTCP 

as part of the TCP stack, our driver implementation can 

directly support virtual machines, which are becoming 

prevalent in data centers. A testbed is build with Multiple 

servers along with a 48-port Ethernet Gigabitswitch. The 

experimental results exhibit that ICTCP is effective in 

avoiding congestion by achieving almost zero timeouts 

for TCP incast, and it provides high performance and 

fairness among competing flows. 
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