
Volume 1, No. 2, September 2010

�Journal of Global Research in Computer ScienceJournal of Global Research in Computer ScienceJournal of Global Research in Computer ScienceJournal of Global Research in Computer Science

RESEARCH PAPER

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 28

Novel Scheduling Algorithm for Uni-Processor Operating System

Saudagar Barade
*1

and

Nikhil Khande

2

*1CSIS, BITS,Pilani/ Pilani, Rajasthan, India

h2009@bits-pilani.ac.in1
2CSE, IITK/IIT,Kanpur/Kanpur, Uttar Pradesh, India

niksk@iitk.ac.in 2

Abstract: One of the fundamental function of an operating system is scheduling. There are 2 types of uni-processor operating system in

general.Those are uni-programming and multi-programming. Uni-programming operating system execute only single job at a time while multi-

programming operating system is capable of executing multiple jobs concurrently. Resource utilization is the basic aim of multi-programming

operating system. There are many scheduling algorithms available for multi-programming operating system. But our work focuses on design

and development aspect of new and novel scheduling algorithm for multi-programming operating system in the view of optimisation. We

developed a tool which gives output in the form of experimental results with respect to some standard scheduling algorithms e.g. First come first

serve, shortest job first, round robin etc.

Keywords: Operating system; uni-processor; scheduling; Resource utilization; uni-programming; multi-programming

INTRODUCTION

Scheduling is the heart of any computer system since it contain
decision of giving resources between possible processes.
Sharing of computer resources between multiple processes is
also called as scheduling.

The CPU is one of the primary computer resources, so its

scheduling is essential to an operating system’s design[1].

Efficient resource utilization is achieved by sharing system

resources amongst multiple users and system

processes[2].Optimum resource sharing depends on the

efficient scheduling of competing users and system processes

for the processor, which renders process scheduling an

important aspect of a multiprogramming operating system. As

the processor is the most important resource, process

scheduling, which is called CPU scheduling, becomes all the

more important in achieving the above mentioned

objectives[1].

Part of the reason for using multiprogramming is that the

operating system itself is implemented as one or more

processes, so there must be a way for the operating system and

application processes to share the CPU. Another main reason

is the need for processes to perform I/O operations in the

normal course of computation. Since I/O operations ordinarily

require orders of magnitude more time to complete than do

CPU instructions, multiprograming systems allocate the CPU

to another process whenever a process invokes an I/O

operation[3].

 Goals for Scheduling

• Utilization/Efficiency: keep the CPU busy 100% of

the time with useful work

• Throughput: maximize the number of jobs processed

per hour.

• Turnaround time: from the time of submission to the

time of completion, minimize the time batch users

must wait for output

• Waiting time: Sum of times spent in ready queue -

Minimize this

• Response Time: time from submission till the first

response is produced, minimize response time for

interactive users

• Fairness: make sure each process gets a fair share of

the CPU

SHEDULING ALGORITHMMS

We will start with five commonly used scheduling algorithms
[1,2,4,5]

1.First Come First Served Scheduling Algorithm (FCFS)

FCFS is the simplest scheduling algorithm. For this algorithm

the ready queue is maintained as a FIFO queue. PCB (Process

Control Block) of a process submitted to the system is linked to

the tail of the queue. The algorithm dispatches processes from

the head of the ready queue for execution by the CPU. When a

process has completed its task it terminates and is deleted from

the system. The next process is then dispatched from the head

of the ready queue.

2.Shortest Job First Scheduling Algorithm (SJF)
For this algorithm the ready queue is maintained in order of
CPU burst length, with the shortest burst length at the head of
the queue. A PCB of a process submitted to the system is
linked to the queue in accordance with its CPU burst length.
The algorithm dispatches processes from the head of the ready
queue for execution by the CPU. When a process has
completed its task it terminates and is deleted from the system.
The next process is then dispatched from the head of the ready
queue.

3.Shortest Remaining Time First Scheduling Algorithm
(SRTF)
For this algorithm the ready queue is maintained in order of
CPU burst length, with the shortest burst length at the head of
the queue. A PCB of a process submitted to the system has its
CPU burst length compared with the remaining time of the
PCB being executed. If the new process requires less time than
that remaining of the active’ process then preemption occurs
and it becomes the new PCB’s turn for execution, otherwise it

Saudagar Barade et al, Journal of Global Research in Computer Science, 1 (2), September 2010, 28-30

© JGRCS 2010, All Rights Reserved 29

is linked to the queue in accordance with its CPU burst length.
The algorithm dispatches processes from the head of the ready
queue for execution by the CPU. When a process has
completed its task it terminates and is deleted from the system.
The next process is then dispatched from the head of the ready
queue.

4.Round Robin Scheduling Algorithm (RR)
For this algorithm the ready queue is maintained as a FIFO
queue. A PCB of a process submitted to the system is linked to
the tail of the queue. The algorithm dispatches processes from
the head of the ready queue for execution by the CPU.
Processes being executed are preempted on expiry of a time
quantum, which is a systemdefined variable. A preempted
process’s PCB is linked to the tail of the ready queue. When a
process has completed its task, i.e. before the expiry of the time
quantum, it terminates and is deleted from the system. The next
process is then dispatched from the head of the ready queue.

5.Highest Response Ratio Next(HRRN)
For this algorithm the ready queue is maintained in the order of
response ratio. A PCB of a process submitted to the system is
linked to the last PCB in the queue and once particular running
process executes completely the processes currently present in
ready queue are scheduled based on the response ratio which is
given as (burst time+ waiting time) / burst time.

PROPOSED SCHEDULING ALGORITHM

RR have problem of high avg. WT(Waiting Time), SRTF gives
starvation to longer jobs and though HHRN(Highest Response
Ratio Next) is useful in avoiding problem of RR and SRTF, it
fails in terms of responsiveness due to its non pre-emptive
mode.
So we proposed this algorithm which will try to minimize avg.
WT and starvation to longer jobs . And also increases the
responsiveness due to its pre-emptive nature.
For 1st job time given(TG) is 2*TQ.It will be useful since
many processes may come in that time, which is useful for
making effective decision ahead as we have many processes to
choose from.

Let,

TQ(time quantum)=2;

NTQ(new)=2*TQ;

NBT(new burst time)= |_3*Avg.BT_|;

Initially,VNTQ(varying)=NTQ;

VNTQ (increased or decreased by 1 accordingly) used to give
appropriate time as per process’s WT req.

T=Threshold=3*TQ; //to compare WT(waiting time)
TT=total time;
PC=process completes;
P=pre-emption;
RQ=ready queue

When process completes, rearrange RQ as per incremental
order of remaining BT.
When process pre-empts then put it to last position in RQ and
no changes in other process’s order.

Algorithm in form of Pseudo code:

 if(P && WT<NBT)

 {
 No change in TG ; //TG=TQ
 ++VNTQ;
 }

 else //to avoid starvation , try to give maximum

 //time to that process
 {
 TG=max(--VNTQ,TQ);
 }

 if(PC && TT<NBT)
 {
 TG=max(--VNTQ,TQ); //there is no

 // starvation yet so try to
 // give less time

 VNTQ=NTQ;
 }
 else
 {
 if(WT< T)
 TG=min(max(--VNTQ,TQ),TQ);

 else
 TG=NTQ; //means process waiting from
 // long time so give NTQ to him
 }

Take an example in which we have some processes with arrival
time (AT) and burst time (BT).We have to form a schedule
which will try to minimize avg.WT(waiting time) and also try
to avoid starvation to longer jobs.

Example

Process AT BT
 1 0 4
 2 1 5
 3 2 2
 4 3 3
 5 4 6
 6 5 1

ANALYSIS OF ALGORITHM BASED ON SOME SCHEDULING

FACTORS
There are many factors like waiting time,turn around
time(TAT) etc on which we can check the performance of the
scheduling algorithm.
To test the performance we will use two parameters such as
avg. WT, avg. TAT
Average WT is mentioned in queueing theory as follows:
Queueing theory is the mathematical study of waiting lines, or
queues. The theory enables mathematical analysis of several
related processes, including arriving at the (back of the) queue,
waiting in the queue (essentially a storage process), and being
served at the front of the queue. The theory permits the
derivation and calculation of several performance measures
including the average waiting time in the queue or the system,
the expected number waiting or receiving service, and the
probability of encountering the system in certain states, such as
empty, full, having an available server or having to wait a
certain time to be served[7].
Average TAT is nothing but the total time between submission
of a process and its completion[6].

Saudagar Barade et al, Journal of Global Research in Computer Science, 1 (2), September 2010, 28-30

© JGRCS 2010, All Rights Reserved 30

GANTT CHART FOR ROUND ROBIN ALGORITHM

A Gantt chart is a type of bar chart that illustrates a project
schedule. Gantt charts illustrate the start and finish dates of the
terminal elements and summary elements of a project. Terminal
elements and summary elements comprise the work breakdown
structure of the project [8].

Figure 1:Gantt chart

Process AT BT CT TAT WT
 1 0 4 8 8 4
 2 1 5 19 18 13
 3 2 2 6 4 2
 4 3 3 16 13 10
 5 4 6 21 17 11
 6 5 1 15 10 9
 ------- -------
 TOTAL 70 49

Average TAT for RR =70/6
 =11.67

Average WT for RR =49/6
 =8.16

Average TAT is nothing but sum of the all TAT of all the
processes divided by number of processes.

Average WT is nothing but sum of the all WT of all the
processes divided by number of processes.

These are some statistics based on avg. WT

FCFS : 7.12
SJF : 4.50
SRTF : 4.50 //prefers shorter jobs so starvation

 //to longer jobs
RR : 8.16
HRRN : 4.50 //sometimes give pref. to longer jobs
 //but have less responsiveness to some
 //jobs due to its NP mode

Proposed: 5.00 //give pref. to longer jobs
 //and also have high responsiveness to

 //jobs due to its NP mode

Figure 1 shows the Gantt chart for the round robin schedule.

Gantt chart is useful to show the process with its completion

time and very useful tool to decide how many time one

particular process is pre-empted. FIGURE 2 shows some of

the experimental results obtained from the tool, which we

created, based on the proposed novel algorithm.

Figure 2.: Experimental Results

CONCLUSION

Our proposed novel scheduling algorithm (FCFS+RR) for uni-

processor system gives good responsiveness and minimizes

starvation for longer jobs, it also minimizes average waiting

time of all processes. Our next focus of research is new load

balancing algorithm for distributed computing system.

REFERENCES

[1] Hybrid Scheduling and Dual Queue Scheduling Syed

Nasir Shah,Ahmad Mahmood,Alan Oxley 2009-IEEE
978-1-4244-4520-2/09 Conference

[2] Operating System concepts 7th Edition,By
Galvin,Silberschatz,Gange John Wiley & Sons, 2005

[3] http://www1bpt.bridgeport.edu/sed/projects/cs503/Spring
_2001/kode/os/scheduling.htm

[4] Milan Milenkovic, "Operting System Concepts and
Design", Second Edition McGraw Hill International, 1992

[5] Leland L. Beck, "System Software", 3rd Ed., Addison
Wesley, 1997

[6] http://en.wikipedia.org/wiki/Turnaround

[7] http://en.wikipedia.org/wiki/Queueing_theory

[8] http://en.wikipedia.org/wiki/Gantt_chart

AUTHOR

Saudagar Barade is student of Master of Engineering

in Software Systems at BITS,Pilani,India.His research interest

lies in the field of Operating System, Distributed computing

and Software Engineering.

Nikhil Khande is student of Master of Technology in

Computer Science at IIT,Kanpur,India.His research interest

lies in field of Operating System, Computer Networks and

Theory of Computation.

