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ABSTRACT: In this paper, propose a protocol for secure mining of association rules in horizontally distributed databases. 
Now a day the current leading protocol is Kantarcioglu and Clifton. This protocol is based on the Fast Distributed Mining 
(FDM) algorithm which is an unsecured distributed version of the Apriori algorithm. The main ingredients in this protocol 
are two novel secure multi-party algorithms 1. That computes the union of private subsets that each of the interacting 
players hold, and 2. Tests the inclusion of an element held by one player in a subset held by another. In this protocol offers 
enhanced privacy with respect to the other one. Differences in this protocol, it is simpler and is significantly more efficient 
in terms of communication rounds, communication cost and computational cost ISSN: 2320-0790  
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I. INTRODUCTION 
 
 We are study here the problem of secure mining of association rules in horizontally partitioned databases. In that 
there are several places, several parties and several player that hold homogeneous databases, i.e., databases that share the 
same schema but hold information on different entities. The goal is to minimizing the information disclosed about the 
private databases held by those players. The information that we would like to protect in this context is not only individual 
transactions in the different databases, but also more global information such as what association rules are supported locally 
in each of those databases. In our problem, the inputs are the partial databases, and the required output is the list of 
association rules that hold in the unified database with support and confidence no smaller than the given thresholds s and c, 
respectively. As the above mentioned generic solutions rely upon a description of the function f as a Boolean circuit, they 
can be applied only to small inputs and functions which are realizable by simple circuits. In more complex settings, such as 
ours, other methods are required for carrying out this computation.  
 

II RELATED WORK 
 
Previous work in privacy preserving data mining has considered two related settings. One, in which the data owner and the 
data miner are two different entities, and another, in which the data is distributed among several parties who aim to jointly 
perform data mining on the unified corpus of data that they hold. 
 
 In the first setting, the goal is to protect the data records from the data miner. Hence, the data owner aims at 
anonymizing the data prior to its release. The main approach in this context is to apply data perturbation .The idea is that 
the perturbed data can be used to infer general trends in the data, without revealing original record information. 
 
 In the second setting, the goal is to perform data mining while protecting the data records of each of the data 
owners from the other data owners. This is a problem of secure multiparty computation. The usual approach here is 
cryptographic rather than probabilistic. Lindell and Pinkas showed how to securely build an ID3 decision tree when the 
training set is distributed horizontally. Lin et al. [21] discussed secure clustering using the EM algorithm over horizontally 
distributed data. The problem of distributed association rule mining was studied in [19], [31], [33] in the vertical setting, 
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where each party holds a different set of attributes, and in [18] in the horizontal setting. Also the work of [26] considered 
this problem in the horizontal setting, but they considered large-scale systems in which, on top of the parties that hold the 
data records (resources) there are also managers  
 

III FAST DISTRIBUTED MINING ALGORITHM 
 

The protocol, as well as ours, is based on the Fast Distributed Mining (FDM) algorithm. Which is an unsecured distributed 
version of the Apriori 
Algorithm. Its main idea is that any s-frequent itemset must be also locally s-frequent in at least one of the sites. Hence, in 
order to find all globally s-frequent itemsets, each player reveals his locally s-frequent itemsets and then the players check 
each of them to see if they are s-frequent also globally. 
 
The FDM algorithm proceeds as follows: 
 
 
(1) Initialization: It is assumed that the players have already jointly calculated Fk−1 s. The goal is to proceed and 
Calculate Fks . 
 
(2) Candidate Sets Generation: Each player Pm computes 
the set of all (k − 1)-itemsets that are locally frequent in 
his site and also globally frequent; namely, Pm computes 
the set Fk−1,ms∩ Fk−1s . He then applies on that set the 
Apriori algorithm in order to generate the set Bk, ms of candidate k-itemsets. 
 
(3) Local Pruning: For each X ∈ Bk,ms , Pm computes 
suppm(X). He then retains only those itemsets that are 
locally s-frequent. We denote this collection of itemsetsby Ck,ms . 
 
(4) Unifying the candidate itemsets: Each player broadcasts 
his Ck,ms and then all players compute Ck∪ s := Mm=1 Ck,ms . 
(5) Computing local supports. All players compute the local supports of all itemsets in Ck s . 
 
(6) Broadcast Mining Results: Each player broadcasts the 
local supports that he computed. From that, everyone can 
compute the global support of every itemset in Cks . Finally,Fk 
s is the subset of Cks that consists of all globally sfrequent 
k-itemsets.In the first iteration, when k = 1, the set C1,m 
s that the mthplayer computes (Steps 2-3) is just F1,ms , namely, the set of single items that are s-frequent in Dm. The 
complete FDM 
algorithm starts by finding all single items that are globally 
s-frequent. It then proceeds to find all 2-itemsets that are 
globally s-frequent, and so forth, until it finds the longest 
globally s-frequent itemsets. If the length of such itemsets is 
K, then in the (K +1)th iteration of the FDM it will find no 
(K + 1)-itemsets that are globally s-frequent, in which case 
it terminates. 
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A running example 
 
Let D be a database of N = 18 itemsets over a set of L = 5 
Items, A = {1, 2, 3, 4, 5}. It is partitioned between M = 3 
Players and the corresponding partial databases are: 
D1 = {12, 12345, 124, 1245, 14, 145, 235, 24, 24} 
D2 = {1234, 134, 23, 234, 2345} 
D3 = {1234, 124, 134, 23}. 
For example, D1 includes N1 = 9 transactions, the third of 
Which (in lexicographic order) consists of 3 items — 1, 2 and 4. 
Setting s = 1/3, an itemset is s-frequent in D if it is 
supported by at least 6 = sN of its transactions. In this case, 
F1s = {1, 2, 3, 4} 
F2s = {12, 14, 23, 24, 34} 
F3s = {124} 
F4s = F5s = �, and Fs = F1s∪F2s∪F3s.  
 For example, the itemset 34 is indeed 
Globally s-frequent since it is contained in 7 transactions of 
D. However, it is locally s-frequent only in D2 and D3. 
 
In the first round of the FDM algorithm, the three players 
Compute the sets C1,ms of all 1-itemsets that are locally 
Frequent at their partial databases:C1^1s = {1, 2, 4, 5} , 
C1^2s = {1, 2, 3, 4} , C1^3s = {1, 2, 3, 4} . 
Hence, C1^s = {1, 2, 3, 4, 5}. Consequently, all 1-itemsets 
Have to be checked for being globally frequent; that check 
Reveals that the subset of globally s-frequent 1-itemsets is 
F1^s = {1, 2, 3, 4}.In the second round, the candidate itemsets are: 
C2^1,s = {12, 14, 24}  C2^2s = {13, 14, 23, 24, 34} 
C2 ^3,s = {12, 13, 14, 23, 24, 34} . 
(Note that 15, 25, 45 are locally s-frequent at D1 but they 
are not included in C2^1s since 5 was already found to be 
globally infrequent.) Hence, C2^s = {12, 13, 14, 23, 24, 34}. 
Then, after veryfing global frequency, we are left with  
F2^s ={12, 14, 23, 24, 34}.In the third round, the candidate itemsets are:C3^1s = {124} , C3^2s = {234} , C3^3s = {124} . 
So, C3^s = {124, 234} and, then, F3^s = {124}. There are no more frequent itemsets. 
 

IV .OVERVIEW AND ORGANIZATION OF THE PAPER 
 
The FDM algorithm violates privacy in two stages: In Step 4, where the players broadcast the itemsets that are locally 
frequent in their private databases, and in Step 6, where they broadcast the sizes of the local supports of candidate itemsets. 
Our improvement is with regard to the secure implementation of Step 4, which is the more costly stage of the protocol, and 
the one in which the protocol of leaks excess information. In Section 2 we describe secure implementation of Step 4.We 
then describe our alternative implementation and proceed to analyze the two implementations in terms of privacy and 
efficiency and compare them. We show that our protocol offers 
better privacy and that it is simpler and is significantly more efficient in terms of communication rounds, communication 
cost and computational cost. In Sections 3 and 4 we discuss the implementation of the two remaining steps of the 
distributed protocol: The identification of those candidate itemsets that are globally s frequent, and then the derivation of all 
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(s, c)-association rules. In Section 5 we describe shortly an alternative protocol, that was already considered which offers 
full security at enhanced costs. Section 6 describes our experimental evaluation which illustrates the significant advantages 
of our protocol in terms of communication and computational costs .Section 7 includes a review of related work. We 
conclude the paper in Section 8. 
 

V. DISTRIBUTED DATABASE 
 
 A distributed database is database in which storage devices are not all attached to a common processing unit such 
as the CPU, controlled by a distributed database management system (together sometimes called a distributed database 
system). It may be stored in multiple computers, located in the same physical location; or may be dispersed over a network 
of interconnected computers. Unlike parallel systems, in which the processors are tightly coupled and constitute a single 
database system, a distributed database system consists of loosely-coupled sites that share no physical components. System 
administrators can distribute collections of data (e.g. in a database) across multiple physical locations.  
 
 Two processes ensure that the distributed databases remain up-to-date and current: replication and duplication.  
1. Replication involves using specialized software that looks for changes in the distributive database. Once the changes 
have been identified, the replication process makes all the databases look the same. The replication process can be complex 
and time- consuming depending on the size and number of the distributed database. This process also requires lot of time 
and computer resources.  
2. Duplication, on the other hand, has less complexity. It basically identifies one database as a master and then duplicates 
that database. The duplication process is normally done at a set time after hours. This is to ensure that each distributed 
location has the same data. In the duplication process, users may change only the master database. This ensures that local 
data will not be overwritten. Both replication and duplication can keep the data current in all distributive locations .  
 

VI. ASSOCIATION RULE 
 
 In Data mining, association rule is a popular and well researched method for discovering interesting relations 
between variables in large databases. Piatetsky-shapiro describes analyzing & presenting strong rules discovered in 
databases using different measures of interestingness. Based on the concept of strong rules, Agrawal et al introduced 
association rules for discovering regularities between products in large scale transaction data recorded by point-of-sale 
(POS) systems in supermarkets For example, the rule Found in the sales data of a supermarket would indicate that if a 
customer buys onions and potatoes together, he or she is likely to also buy beef. Such information can be used as the basis 
for decisions about marketing activities such as, e.g., promotional pricing or product placements. In addition to the above 
example from market basket analysis 
 

VII CONCLUSION 
 
We proposed a protocol for secure mining of association rules in horizontally distributed databases that improves 
significantly upon the current leading protocol [18] in terms of privacy and efficiency. One of the main ingredients in our 
proposed protocol is a novel secure multi-party protocol for computing the union (or intersection) of private subsets that 
each of the interacting players hold. Another ingredient is a protocol that tests the inclusion of an element held by one 
player in a subset held by another. Those protocols exploit the fact that the underlying problem is of interest only when the 
number of players is greater than two. 
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