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Comparison.

INTRODUCTION

The curiosity of natural convection in enclosures filled with air having cold vertical walls and adiabatic horizontal walls has
been theme of research over the past years. The reason of considering this geometry is, it has application in various fields such
as building and thermal insulation systems 7], solar engineering applications 9!, geophysical fluid mechanics, etc...

The study of numerically the natural convection around tilted square cylinders in the range of (0° < 6 < 45°) inside an
enclosure having horizontal adiabatic wall and cold vertical wall is studied. The investigated of the two dimensional natural
convective flow and heat transfer around a heated cavity kept in a square enclosure in the range of 103< Ra <106 11912, Qosthuizen
131 has studied numerically the natural convective air flow in an enclosure with a horizontal lower wall, vertical side-walls and a
straight inclined top wall. Sun * have investigated laminar natural convection heat transfer from a horizontal triangular cylinder
to its concentric cylindrical enclosure. Fan % studied the effect of Prandtl number on the heat transfer in a horizontal cylindrical
enclosure with a coaxial triangular cylinder inside it. Hussain and Hussein ¢ investigated numerically the natural convection in a
uniformly heated circular cylinder at different locations inside a square enclosure.

In the present work, the effect of size of a square and triangle bar in the square enclosure on the flow and heat transfer rate
is compared for both the square and triangle sources according to the aspect ratio.
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INVESTIGATION OF RESEARCH

The work is done systematically in a sequential manner to fulfill the research objective. Based on the objective of this study,
literature survey was done. Available modeling techniques have been used for this purpose. The applied modeling techniques
were of two types, mathematical and 2D modeling. The obtained results were keenly analyzed. Depending on the analysis output,
results were elaborated and the final conclusion is provided (Figure 1).

Literature Survey
Mathe matical
Modelling
Solution

Gambit & Ansys Goveming Equations Continuity

Result& Momentum

Energy
Scope of Work

Figure 1. Work Plan Sequence.

MODELLING AND SIMULATION

2D Modelling

Problem Definition

Figures 8 and 9 shows the geometry in which natural convective heat transfer is studied in the present work. Natural
convection is the phenomenon where the movement of the fluid is characterised by the density changes. Here the natural
convection is modelled with a heat source of square and triangle bar is placed inside an enclosure. Air is present between each of
the heat source and the enclosure. Given the conditions of the different enclosure walls, the heat transfer is modelled. The aim is
to study the best method that ensures the best heat transfer rate. The procedure is to be carried out with a different shape of the
heat source and the heat transfer rate is studied. The problem is carried out in two-dimensional form.

Initially, the heat tranfer was studied for heated square bar domain and heated triangle bar domain by applying hot and
cold sources (Figures 2 and 3). Then the respective surface meshes of fluid around these bars were checked (Figures 4 and 5).
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Figure 2. Computational Heated Square
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Figure 3. Computational Heated Triangle bar domain.

Boundary Condition for the Square Enclosure

The heat transfer was studied for the square enclosure by using different walls types, boundaries and conditions, which are
represented in the following Table 1.
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Figure 4. Surface mesh of fluid around Square bar.

Figure 5. Surface mesh of fluid around Square bar.
Table 1. Boundary Condition for the Square Enclosure.

For the Square Enclosure

Boundaries Wall Type Condition

Left side wall (T ) Cold 323.16 K

Right side wall (T) Cold 323.16 K
Top wall Adiabatic Q=0
Bottom wall Adiabatic Q=0

SIMULATION FOR HEATED SQUARE BAR

A details simulation study was conducted for the square bar containing various lengths (L) and aspect ratios (A). These
different length parameters and associated aspect ratios that were used for the square bar is shown individually as follows:

1. For the square bar enclosure of length L = 20 mm and Aspect ratio (A) = 0.2:

The simulation with length L= 20 mm and Aspect ratio (A) of 0.2 was studied and the results is provided in Figures 6 and
7, where Figure 6 shows the contours of stream function and Figure 7 shows velocity of fluid flow around square bar following
the condition of A 0.2 and L 20 mm.

Conlours of Stream Funclion (kg/s)
ANSYS Flusat 14.5 (29, 9p, pbns. 1ke)

Figure 6. Contours of stream function aroun Square bar for A=0.2 and L= 20mm
2. For the square bar enclosure of length L = 20 mm and Aspect ratio (A) = 0:

The simulation study with length L= 20 mm and Aspect ratio (A) of 0.3 and the observed results is shown in Figures 8 and 9,
where Figure 8 depicts the contours of stream function and Figure 9 represents velocity of fluid flow around square bar maintain-
ing a value of A0.2and L 20 mm.

3. For the square bar enclosure of length L = 20 mm and Aspect ratio (A) = 0.4:

In continuation, similar simulation study was conducted with length L= 20 mm and Aspect ratio (A) = 0.4. The results are
shown in Figures 10 and 11, where Figure 10 shows the contours of stream function and Figure 11 shows velocity of fluid flow
around square bar of A 0.4 and L 20 mm.
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Figure 7. Velocity of fluid flow around square bar for A=0.2 and L=20mm.
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Figure 8. Contours of stream function aroundSquare bar for A=0.3 and L= 20mm.
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Figure 9. Velocity of fluid flow around square bar for A=0.3 and L=20mm.
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Contours of Stream Function (kg/s)

Figure 10. Contours of stream function around Square bar for A=0.4 and L= 20mm.
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Figure 11. Velocity of fluid flow around square bar for A=0.4 and L=20mm.
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4. For the square bar enclosure of length L = 40 mm and Aspect ratio (A) = 0.2:

Another parameter considered for the simulation was length L= 40 mm and Aspect ratio (A) = 0.2 and the results are shown
in Figures 12 and 13, where Figure 12 shows the contours of stream function and Figure 13 shows velocity of fluid flow around
square bar of A 0.2 and L 40 mm.

Conlours of Stream Function (kg/s)
ANSYS Fluent 14.5 (24, dp, pbns, ske)

Figure 12. Contours of stream function around Square bar for A=0.2 and L= 40mm.

Velocky Vactors Colored By Static Temperature (Xy

ANSYS Fiuent 14.5 (24, dp. pbns. ske)

Figure 13. Velocity of fluid flow around square bar for A=0.2 and L=40mm.

5. For the square bar enclosure of length L = 40 mm and Aspect ratio (A) = 0.3:

The simulation with length L= 40 mm and Aspect ratio (A) = 0.3 was conducted whereas the secured results is shown in
Figures 14 and 15, where Figure 14 shows the contours of stream function and Figure 15 shows velocity of fluid flow around

square bar.

Conlours of Stream Funclion tkg's)

ANSYS Fiuen! 14.5 (24, dp. pbns. ske)

Figure 14. Contours of stream function around Square bar for A=0.3 and L= 40mm

Velocity Vectors Colored By Static Temperature ()

ANSYS Fluent 14.5 (29, dp. pons. sice)

Figure 15. Velocity of fluid flow around square bar for A=0.3 and L=40mm.

6. For the square bar enclosure of length L = 40 mm and Aspect ratio (A) = 0:

The simulation with length L= 40 mm and Aspect ratio (A) = 0.4 was conducted whereas the secured results were shown
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in Figures 16 and 17, where Figure 16 shows the contours of stream function and Figure 17 shows velocity of fluid flow around
square bar of A 0.4 and L 40 mm.

Contours of Stream Function (ig/s)
ANSYS Fiuent 145 (2d. 6p. pbns. ske)

Figure 16. Contours of stream function around Square bar for A=0.4 and L= 40mm.

Velacity Veelors Colored By Stalic Temperature (x)

ANSYS Fluent 14.5 (2, dp. pbns, ske)

Figure 17. Velocity of fluid flow around square bar for A=0.4 and L=40mm.
7. For the square bar enclosure of length L = 80 mm and Aspect ratio (A) = 0.2:

The simulation with length L= 80 mm and Aspect ratio (A) = 0.2 were conducted whereas the secured results were shown
in Figures 18 and 19, where Figure 18 shows the contours of stream function and Figure 19 shows velocity of fluid flow around
square bar of A 0.2 and L 80 mm.

Conlours of Siream Funelion (kg/s)

ix

ANSYS Fluent 14.5 (24, dp. pbns, ske)

Figure 18. Contours of stream function around Square bar for A=0.2 and L= 80mm.

E L
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ANSYS Fiuent 14.5 (29, 0p. pbrs, ske)

Figure 19. Velocity of fluid flow around square bar for A=0.2 and L=80mm.
8. For the square bar enclosure of length L = 80 mm and Aspect ratio (A) = 0.3:

The simulation with length L= 80 mm and Aspect ratio (A) = 0.3 were conducted and the secured results shown in Figures
20 and 21, where Figure 20 shows the contours of stream function and Figure 21 shows velocity of fluid flow around square bar
of A0.3and L 80 mm.
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Contours of Stream Function (kg/s)
ANSYS Fluent 14.5 (24, 9p. pbs, ske)

Figure 20. Contours of stream function around Square bar for A=0.3 and L= 80mm.

Velocly Vecors Colored By Static Temperature (x)

ANSYS Fluert 14.5 (24, dp, pbrs, ske)

Figure 21. Velocity of fluid flow around square bar for A=0.3 and L=80mm.

9. For the square bar enclosure of length L = 80mm and Aspect ratio (A) = 0.4:

The simulation with length L= 80 mm and Aspect ratio (A) = 0.4 were conduct6ed and the secured results were shown in
Figures 22 and 23, where Figure 22 shows the contours of stream function and Figure 23 shows velocity of fluid flow around
square bar of A 0.4 and L 80 mm.

i_.x

Contours of Streom Function (kg/s)
ANSYS Fluent 14.5 (2d, dp, pbns, ske)

Figure 22. Contours of stream function around Square bar for A=0.4 and L= 80mm.

Welocity Vectors Colored By Static Temperature (X

ANSYS Fluent 145 (2. ap. pons. ske) ‘

Figure 23. Velocity of fluid flow around square bar for A=0.4 and L=80mm.

SIMULATION FOR HEATED TRIANGLE BAR

The simulations for a heated triangle bar was studied with various lengths and aspect ratios. The results that were obtained,
were shown individually as follows:

1. For the triangle bar enclosure of length L = 20 mm and Aspect ratio (A) = 0.2:
The simulation of heated triangle bar of length L = 20 mm and Aspect ratio (A) = 0.2 were conducted and the secured results
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were shown in Figures 23 and 24. Figure 23 shows the contours of stream function and Figure 24 shows the velocity of fluid

around the triangle bar.

I
i

‘Contours of Seream Function (k')

ANSYS Fluert 15.0 (2d. cp. poms, cke)

Figure 24. Contours of stream function around Triangle bar for A=0.2 and L= 20mm.
2. For the triangle bar enclosure of length L = 20 mm and Aspect ratio (A) = 0.3:

The simulation of heated triangle bar of length L = 20 mm and Aspect ratio (A) = 0.3 were conducted and the secured results
were shown in Figures 25-27. Figure 26 shows the contours of stream function and Figure 27 shows the velocity of fluid around
the triangle bar.

“elocy Veciors Colored By Stalic Tempersture (k)
ANSYS Flset 15.0 (24, dp, pone, she)

Figure 25. Velocity of fluid flow around Triangle bar for A=0.2 and L=20mm.
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ANSYS Fluent 15.0 (24, dp, pbins, ske)

Figure 26. Contours of stream function around Triangle bar for A=0.3 and L= 20mm.

Velotty Veclors Colored By Static Temperature ()

ANSYS Fluent 15.0 (20. ¢p. pons. ske) ‘

Figure 27. Velocity of fluid flow around Triangle bar for A=0.3 and L=20mm.

3. For the triangle bar enclosure of length L = 20 mm and Aspect ratio (A) = 0.4:

The simulation of heated triangle bar of length L = 20 mm and Aspect ratio (A) = 0.4 were studied and the secured results
were shown in Figures 28 and 29. Figure 28 shows the contours of stream function and Figure 29 shows the velocity of fluid
around the triangle bar.
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Contours of Stream Funclion (kg/s)
ANSYS Fiuent 15.0 (2d, dp. pbs. ske)

Figure 28. Contours of stream function around Triangle bar for A=0.4 and L= 20mm.

‘Velocity Vectors Colered By Stalis Temperature (0

ANSYS Fiuenit 15.0 (2d. dp. pbins. ske)

Figure 29. Velocity of fluid flow around Triangle bar for A=0.4 and L=20mm.

4. For the triangle bar enclosure of length L = 40 mm and Aspect ratio (A) = 0.2:

The simulation of heated triangle bar of length L = 40 mm and Aspect ratio (A) = 0.2 were conducted and the secured results
were shown in Figures 30 and 31. Figure 30 shows the contours of stream function and Figure 31 shows the velocity of fluid

around the triangle bar.

‘Contours of Stresem Furtion (kg/s)

ANSYS Flusnt 15.0 (24, dp. pbns. ske)

Figure 30. Contours of stream function around Triangle bar for A=0.2 and L= 40mm.

Valocty Vectors Cokred By Static Temparature ()
ANSYS Fluent 15,0 (24, 09, pbas. ske)

Figure 31. Velocity of fluid flow around Triangle bar for A=0.2 and L=40mm.

5. For the triangle bar enclosure of length L = 40 mm and Aspect ratio (A) = 0.3:

The simulation of heated triangle bar of length L = 20 mm and Aspect ratio (A) = 0.2 were conducted and the secured results
were shown in Figures 32 and 33. Figure 32 shows the contours of stream function and Figure 33 shows the velocity of fluid
around the triangle bar.
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‘Confours of Stream Function (kg/s)
ANSYS Flusrt 15.0 (24, dp, pon, ske)

Figure 32. Contours of stream function around Triangle bar for A=0.3 and L= 40mm.

Welochy Vectors Colored By Static Temperature )

ANSYS Fluent 15.0 (24, dp, poas. ska)

Figure 33. Velocity of fluid flow around Triangle bar for A=0.3 and L=40mm

6. For the triangle bar enclosure of length L = 40 mm and Aspect ratio (A) = 0.4:

The simulation of heated triangle bar of length L = 40 mm and Aspect ratio (A) = 0.4 were conducted and the secured results
were shown in Figures 34 and 35. Figure 34 shows the contours of stream function and Figure 35 shows the velocity of fluid
around the triangle bar.

Contours of Siream Funciien (kg/s)

ANSYS Fiuent 15.0 24, dp. pons, ske)

Figure 34. Contours of stream function around Triangle bar for A=0.4 and L= 40mm.

Velsezy Vectars Colored By Statie Temparatire ()
AHSYS Fluerd 15,20, dp, pons, the)

Figure 35. Velocity of fluid flow around Triangle bar for A=0.4 and L=40mm.
7. For the triangle bar enclosure of length L = 80 mm and Aspect ratio (A) = 0.2:

The simulation of heated triangle bar of length L = 80 mm and Aspect ratio (A) = 0.2 were conducted and the secured results
were shown in Figures 36 and 37. Figure 36 shows the contours of stream function and Figure 37 shows the velocity of fluid
around the triangle bar.

RRIJET | Volume 4 | Issue 3 | July-September, 2015 27



ISSN:2319-9873

‘Gonlours of Strwam Funcion (kg%)
ANSYS Fluent 15.0 (24, dp. pbins, ske)

Figure 36. Contours of stream function around Triangle bar for A=0.2 and L= 80mm.

Velachy Veclors Colored By Staikc Temperature (k)
AANSYS Fluent 15.0 (2d. dp. pbns, ske)

Figure 37. Velocity of fluid flow around Triangle bar for A=0.2 and L=80mm.

8. For the triangle bar enclosure of length L = 80 mm and Aspect ratio (A) = 0.3:

The simulation of heated triangle bar of length L = 80 mm and Aspect ratio (A) = 0.3 were conducted and the secured results
were shown in Figures 38 and 39. Figure 38 shows the contours of stream function and Figure 39 shows the velocity of fluid
around the triangle bar.

Contours of Stream Function (kg/s)

ANSYS Fluen 15,0 (26, dp. pbas, ske)

Figure 38. Contours of stream function around Triangle bar for A=0.3 and L= 80mm.

Welocity Vectors Colored By Static Temperature (k)
ANSYS Fluent 16,0 (20, op. pons, ske)

Figure 39. Velocity of fluid flow around Triangle bar for A=0.3 and L=80mm.
9. For the triangle bar enclosure of length L = 80 mm and Aspect ratio (A) = 0.4:

The simulation of heated triangle bar of length L = 80 mm and Aspect ratio (A) = 0.4 were conducted and the secured results
were shown in Figures 40 and 41. Figure 40 shows the contours of stream function and Figure 41 shows the velocity of fluid
around the triangle bar.
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Conlours of Stream Function (kg/s)
ANSYS Flueel 18,0 (20, &p. pons. ske)

Figure 40. Contours of stream function around Triangle bar for A=0.4 and L= 80mm.
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Figure 41. Velocity of fluid flow around Triangle bar for A=0.4 and L=80m

RESULT AND DISCUSSION

From the above work, the results that were obtained is shown in Tables 2 and 3. The obtained results for a square bar of
varying lengths and aspect ratios are represeted in an understandable manner. From the above results obtained, variations in
Nusselt no. and enclosure left wall were estimated.

Table 2. Boundary Condition for the hot sources.

For the hot sources

Boundaries Wall Type Condition
All the four sides of square bar (1) Heated wall 373.16 K
All the three sides of triangle bar (1) Heated wall 373.16 K

Table 3. Result obtained for square bar by varying enclosure lengths and aspect ratio.

Heat Transfer Coefficient

Enclosure Length in mm Aspect Ratio Heat Transfer Q in watts h in W/m?K Nusselt number Nu

0.2 13.38 19.677 1.626

20 0.3 18.079 35.449 2.197
0.4 19.059 56.057 2.316
0.2 24.305 17.872 2.594

40 0.3 29.217 28.644 3.551
0.4 30.442 44.768 3.7
0.2 38.236 14.056 4.647

80 0.3 43.694 32.128 5.31
0.4 43.942 21.539 5.34

Nusselt Number

The Nusselt number (Nu) is the ratio of convective to conductive heat transfer across the boundary. In this context, convec-
tion includes both advection and diffusion. It is calculated for a heat transfer across a boundary within a fluid. The conductive com-
ponent is measured under the same conditions as the heat convection but with a (hypothetically) stagnant (or motionless) fluid.

The variations of Nusselt number and enclosure side wall of square and triangle bars of various lengths were estimated as
shown in following Figures 42-56. The results obtained for a triangle bar with varying lengths and aspect ratios can be shown in
Table 4. For determining the variation of Nusselt number with enclosure of wall was determined for both square and triangular
bars by using various lengths of 20, 40 and 80 mm.

Square Bar
1. For the square bar enclosure of length L=20 mm (Figures 43-45):
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Figure 42. Variation of Nusselt number and Enclosure left wall.
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Figure 43. Variation of Nusselt number and Square bar right wall.
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Figure 44. Variation of Nusselt number and Square bar top wall.
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Figure 45. Variation of Nusselt number and Enclosure left wall.
2. For the square bar enclosure of length L=40 mm (Figures 46-49):
3. For the square bar enclosure of length L=80 mm (Figures 48-50) (Table 4):

Triangle Bar

1. For the triangle bar enclosure of length L=20mm (Figures 51 and 52):
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Figure 47. Variation of Nusselt number and Square bar top wall.
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Figure 49. Variation of Nusselt number and Square bar right wall.

2. For the triangle bar enclosure of length L=40mm (Figure 53 and 54):
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Figure 53. Variation of Nusselt number and Triangle bar right wall.

3. For the triangle bar enclosure of length L=80mm (Figure 55 and 56):

CONCLUSION

Heat transfer and fluid flow due to natural convection in air around heated square cylinders of different sizes inside an
enclosure having adiabatic horizontal and diathermic vertical walls of size 20 mm, 40 mm and 80 mm with respect to aspect ratio
of 0.2, 0.3 and 0.4 are analyzed, and results are exhibited in the dimension form of Stream function and Velocity vector diagram.
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The fluid motion and circulation rate increase with increase in enclosure size. The fluid motion is almost uniform for lower
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for smaller enclosure size and the fluid motion is prominent near the walls and the fluid is almost stagnant in the core region for
higher larger enclosure size. The heat transfer rate is comparatively higher at the upper portions of the vertical enclosure walls
and from the base of the triangle bar. For smaller enclosures, the circulation rate decreases with increase in bar size, but for larger
enclosure, the circulation rate increases with bar size.
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Figure 54. Variation of Nusselt number and Triangle bar bottom wall.
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Figure 55. Variation of Nusselt number and Triangle bar right wall.
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Figure 56. Variation of Nusselt number andTriangle bar bottom wall.

Table 4. Result obtained for triangle bar by varying enclosure lengths and aspect ratio.

Heat Transfer Coefficient

Enclosure Length in mm Aspect Ratio Heat Transfer Q in watts h in W/m?K Nusselt number Nu

0.2 24.652 72.507 1.723

20 0.3 26.108 38.394 1.85
0.4 26.456 51.877 1.905
0.2 37.458 54.776 2.64

40 0.3 40.55 29.816 2.823
0.4 41.933 41.111 3.114
0.2 52.687 38.74 40106

80 0.3 58.379 28.617 4.244
0.4 60.954 22.41 3.668
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It's proved that Nusselt number dependent of temperature and heated source bar can absorb more energy by increasing the

size and can transfer more heat to the diathermic walls for various purposes.
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