
Journal of Global Research in Computer Sciences

GRCS| Volume 15| Issue 1| March, 2024 12

On a Proof of Inequality of the Classes of Decision Problems P

and NP

Angelo Raffaele Meo*

Department of Control and Computer Engineering, Politecnico di Torino, Turin, Italy

Review Article

Received: 13-Apr-2024,

Manuscript No. GRCS-24-132206;

Editor assigned: 15-Apr--2024,

Pre QC No. GRCS-24-132206 (PQ);

Reviewed: 29-Apr-2024,

QC No. GRCS-24-132206;

Revised: 06-May-2024,

Manuscript No. GRCS-24-

132206(R); Published: 13-May-

2024, DOI: 10.4172/2229-

371X.15.1.003

*For Correspondence:

Angelo Raffaele Meo, Department

of Control and Computer

Engineering, Politecnico di Torino,

Turin, Italy

E-mail: angelo.meo@polito.it

Citation: Meo AR. On a Proof of

Inequality of the Classes of

Decision Problems P and NP. J Glob

Res Comput Sci. 2024;15:003

Copyright: © 2024 Meo AR. This is

an open-access article distributed

under the terms of the Creative

Commons Attribution License,

which permits unrestricted use,

distribution, and reproduction in

any medium, provided the original

author and source are credited.

 ABSTRACT

This paper is a new version of three papers presented to the academy of

sciences of Turin in 2016 and to the Journal of Computer Science in 2020 and

2022 [1-3]. According to the Journal of Computer Science, more than 6000

readers have “viewed” the two papers published by that journal and more than

1700 readers have downloaded them.

The theorems presented in those papers were based on the equivalence of a

deterministic turing machine M processing some input x belonging to {0,𝟏}n with

an n-input Boolean circuit Cn, and on the hypothesis that the number of gates,

or AND, OR, NOT operators, appearing in circuit Cn, is polynomial in the running

time of the corresponding turing machine.

According to some readers that hypothesis of the equivalence “turing machine

-boolean circuit” is questionable. The purpose of this paper is to present a new

proof of the inequality of P and NP which is not based on this equivalence.

Besides, this new paper contains the answers to the questions asked by some

readers and the proofs of some theorems which had been omitted for the sake

of brevity.

The analysis discussed in this paper and in its previous versions is based on a

well-known NP-complete problem which is called “satisfiability problem” or

“SAT”. From SAT a new NP-complete problem, called “Core function”, derives;

this problem is described by a boolean function of the number of the clauses

of SAT. In this paper a proof is presented according which the number of

boolean operations of the minimal implementation of core function increases

with n exponentially. Since the synthesis of core function is an NP-complete

problem, this result can be considered as the proof of the theorem which states

that the class P of all the decision problems which can be solved in polynomial

time does not coincide with the class NP of the problems for which an answer

can be verified in polynomial time.

Keywords: Computer science; Polynomial; Decision; Synthesis; Core

function; Theorems; Circuit; Operators

Journal of Global Research in Computer Sciences

GRCS| Volume 15| Issue 1| March, 2024 13

INTRODUCTION

Definitions

A brief description of the definitions and properties well known among the scientists of modern computational

complexity theory is presented in this section. P denotes the class of all the decision problems which can be solved

in polynomial time. NP denotes the class of all the decision problems f satisfying the property that the function check

(f) analysing a witness of the decision problem is polynomial time decidable. “P=NP?”, or, in other terms, “Is P a

proper subset of NP?”, is one of the most important open questions in modern computational complexity theory. A

decision problem C in NP is NP-complete if it is in NP and if every other problem L in NP is reducible to it, in the sense

that there is a polynomial time algorithm which transforms instances of L into instances of C producing the same

output values.

The importance of NP-completeness derives from the fact that, if we find a polynomial time algorithm for just one NP-

complete problem, then we can construct polynomial time algorithms for all the problems in NP and, conversely, if

any single NP-complete problem does not have a polynomial time algorithm, then no NP-complete problem has a

polynomial time solution. The analysis discussed in this paper will be based on the following well-known NP- complete

problem which is called “satisfiability problem or SAT”. Given a Boolean expression containing only the names of

variables (some of which may be complemented), the operators AND, OR and NOT, and parentheses, is there an

assignment of TRUE or FALSE values to the variables which makes the entire expression TRUE?

It is well known that the problem remains NP-complete also when all the expressions are written in “conjunctive

normal form” with 3 variables per clause (problem 3SAT). In this case, the analysed expressions will be of the type:

 3SAT(𝑡) =

 (x11OR x12 OR x13) AND

 (x21OR x22 OR x23) AND

 ···························∙

 (xt1OR xt2 OR xt3) ……………………..(1)

where:

𝒕 is the number of clauses or triplets;

each xij is a variable in complemented or uncomplemented form;

each variable may appear multiple times in that expression.

The synthesis of the state of art of question PvsNP can be found [4-5].

LITERATURE REVIEW

The core function

The computation of satisfiability problem described by Equation 1 can be decomposed into two processing layers

called “compatibility layer” and “core layer”.

Compatibility layer: A variable j of triplet i will be defined as “compatible” with variable k of triplet h when, and only

when, either

 the sign Sij of the former variable is equal to the sign Shk of the latter variable,

or

Journal of Global Research in Computer Sciences

GRCS| Volume 15| Issue 1| March, 2024 14

 the name < nij1nij2 … nijm > of the former variable is different from the name < nhk1nhk2 … nhkm >of the

latter variable.

From that definition it follows that two “not compatible” variables have different signs and the same name; therefore,

their AND is identically FALSE.

The compatibility layer is composed of 3 ∙ t ∙ (3 ∙ t − 3)/2 identical operations, one for each pair of variables belonging

to different triplets.

The input variables of one of these operations will be the sign 𝑆𝑖𝑗 and the binary code < nij1nij2 … nijm > of the name

of variable j of triplet i, and the sign shk and the binary code < nhk1nhk2 … nhkm > of the name of variable k of triplet

h. The output variable of this operation c(i, j; h, k) will be TRUE when, and only when, the two input variables are

compatible between themselves.

Therefore, the function implemented by one of the operations of compatibility layer may be written as follows (by

using the symbols ∗, +, and ! for representing AND, OR and NOT operators, respectively):

c(i, j; h, k) = Sij ∗ Shk + ! Sij ∗ ! Shk +

+nij1 ∗ ! nhk1 + ! nij1 ∗ nhk1 +

+nij2 ∗ ! nhk2 + ! nij2 ∗ nhk2 +

····································

+nijm ∗ ! nhkm + ! nijm ∗ nhkm…………………………(2)

Variable c(i, j; h, k) will be called a “compatibility variable” or simply a “compatibility”.

Core layer: The core layer processes only the 9 ∙ t ∙ (t − 1)/2 compatibility variables c(i, j; h, k) and produces the

global result of computation. The Boolean function implemented by the core layer will be called the “core function”

of order t, where t is the number of triplets. It will be denoted with the symbol CF(t) (or CF(n)). (Indeed, the number t

of triplets appearing in Equation 1 plays the role of symbol n used in the standard complexity theory. In the following

analysis, we shall use the symbol t when it is necessary to remember the number of triplets and n in the other cases).

The core function can be determined by proceeding as follows.

Consider one selection of variables appearing in Equation 1, one and only one for each triplet, for all the triplets. Let

 < 1i1 >, < 2i2 >, . . . , < tit >………………………………(3)

With i1, i2, … , it ∈ {1,2,3}

be the indexes <number of triplet, number of the variable in the triplet> of the selected variables. They will be called

“characteristic indexes”. Let Πk be the product of all the compatibility variables relative to the k-th selection (3):

Πk = c(1, i1; 2, i2) ∗ c(1, i1; 3, i3) …

 … ∗ c(t − 1, it−1; t, it)………………………………………………(4)

The core function can be defined as the sum

 ΣkΠk…………………………………………………………..….(5)

of the products (4) relative to all the selections (3).

For example, in the case of CF(3), the core function can be defined as follows:

 CF(3) = c(1,1; 2,1) ∗ c(1,1; 3,1) ∗ c(2,1; 3,1) +

 c(1,1; 2,1) ∗ c(1,1; 3,2) ∗ c(2,1; 3,2) +

 c(1,1; 2,1) ∗ c(1,1; 3,3) ∗ c(2,1; 3,3) +

Journal of Global Research in Computer Sciences

GRCS| Volume 15| Issue 1| March, 2024 15

 c(1,1; 2,2) ∗ c(1,1; 3,1) ∗ c(2,2; 3,1) +

 . . . (other 22 products). . . +

 c(1,3; 2,3) ∗ c(1,3; 3,3) ∗ c(2,3; 3,3)……………………………(6)

It is easy to prove that there is an assignment of values TRUE or FALSE to variables appearing in Equation 1 which

make the value of that equation equal to TRUE when, and only when, the core function takes the value TRUE.

Notice that the processing work of the elementary operations of compatibility layer (Equation 2) increases as a

logarithmic function P(t) of the number of the variables since the increment of the length of the code of a name is

logarithmic. Therefore, the total processing work of the compatibility layer increases as 9 ∙ t ∙ (t– 1) ∙ P(t) where

9 ∙ t ∙ (t– 1)/2 is the total number of compatibility operations.

Besides, the problem solved by the core layer is clearly in NP, because it is easy to verify a witness solution. It follows

that, since the compatibility layer polynomially reduces an NP-complete problem (3SAT) to the problem solved by the

core layer, the core function describes a new NP-complete problem. Notice that the boolean function implemented

by the core layer may be an incompletely specified function. Indeed, assume that c(i, j; l, m) = 0 and c(i, j; p, q) = 0.

This implies that variable < i, j > and variable < l, m > have the same name and a different sign; similarly, < i, j >

and < p, q > have the same name and a different sign. It follows that < l, m > and < p, q > have the same name

and the same sign. Therefore, c(l, m; p, q) cannot be equal to 0. Therefore, all the minterms implying ! c(i, j; l, m) ∗

 ! c(i, j; p, q) ∗ ! c(l, m; p, q) are incomplete specifications of the Boolean function implemented by the core layer.

Some properties of core function have been discussed [7-9].

A theorem of boolean monotonic functions

Let f(x1, x2. . . , xh) be an isotonic Boolean function, that is a Boolean function which can be implemented with only

AND and OR gates, applied to uncomplemented literals x1, x2. . . , xh. It was believed that the minimum cost

implementation of f(x1, x2. . . , xh) always contains only OR and AND gates, but A.Razborov proved that there are

isotonic functions whose minimum cost implementation contains also NOT gates [6].

However, there is on upper bound on the comparison of the costs of the minimum cost implementations with and

without NOT gates. It is specified by the following theorem.

Theorem 4.1: Let Imin be one of the minimum cost implementations of the isotonic Boolean function f(x1, x2. . . , xh),

the cost being defined as the total number of AND, OR or NOT gates. Let Cmin be the cost of Imin.

There exists always an implementation J of f containing only AND and OR gates (in addition, if necessary, to the NOT

operators producing input variables ! x1, ! x2. . . , ! xh) such that cost(J) <= 2 ∙ Cmin + h. Where h is the number of

variables.The proof of this theorem can be found [2]. This theorem will be used to simplify the analysis of core function

circuits.

Properties of core function

It is easy to prove the following properties of core function.

Property 1: As stated in section 2, core function is a not completely specified function.

Property 2: Any product defined by Equation 4 is a prime implicant of core function (that is, a product of compatibilities

(“PoC”) which implies core function and no other term of it).

Journal of Global Research in Computer Sciences

GRCS| Volume 15| Issue 1| March, 2024 16

Property 3: Since the different selections of each of variables defined by Equation 3 are 3, the number of prime

implicants of Core Function is equal to 3t. Each of these prime implicants is essential (that is, it does not imply a sum

of other prime implicants) and it is the product of t ∙ (t − 1)/2 compatibilities.

Products of compatibilities

In the next chapters, reference will be made to the following definitions related to PoC’s or “products of

compatibilities”.

Definition of spurious compatibilities pair: A pair of compatibility variables {c(h, k; l, m), c(p, q; r, s)} is defined as a

spurious pair if (h = p and k ≠ q) or (h = r and k ≠ s) or (l = p and m ≠ q) or (l = r and m ≠ s).

For example, the pair {c(1,1; 2,1), c(1,2; 3,1)} is a spurious pair since the triplet index 1 is associated to two different

indexes of variables (1 and 2).

Definition of spurious products of compatibilities: A spurious product of compatibilities (spurious PoC) is a product of

compatibility variables containing the elements of one or more than one spurious pair.

For example, the PoC c(1,1; 2,1) ∗ c(1,2; 3,1) ∗ c(2,1; 3,1) is a spurious PoC since it contains the elements of the

spurious pair {c(1,1; 2,1), c(1,2; 3,1)}.

Definition of impure products of compatibilities: A PoC containing one or more complemented variables will be

defined as an impure PoC. In particular a term T of CF (that is, a PoC implying CF) which contains one or more

complemented variables, will be defined as an impure term of CF. A product of compatibilities which is neither

spurious nor impure will be defined as a pure product of compatibilities.

Definition of mark: Consider a pure product of compatibilities satisfying the property that all the indexes of triplet

{1,2, . . . , t} appear at least once in some variable. The product of the variables of such a subset will defined as a

“mark” or “pure mark” of the prime implicant of which it contains a subset of compatibilities.

For example, in the case of CF(4), the PoC

 M = c(1, a; 2, b) ∗ c(1, a; 3, c) ∗ c(1, a; 4, d)…………………………(7)

(Where the indexes of triplet are elements of the set {1,2,3,4} and a, b, c, d are elements of {1,2,3}) is a mark of the

prime implicant

 P = c(1, a; 2, b) ∗ c(1, a; 3, c) ∗ c(1, a; 4, d) ∗ c(2, b; 3, c) ∗ c(2, b; 4, d) ∗ c(3, c; 4, d)….(8)

since all the indexes of triplet appear at least once in Equation 7.

A mark M can be defined as a “strong mark” if there is a PoC R which is not a mark such that 𝑀 ∗ 𝑅 is a prime

implicant of core function. For example, the strong mark c(1,1; 2,1) ∗ c(1,1; 3,1) ∗ c(1,1; 4,1), multiplied by

c(2,1: 3,1) ∗ c(2,1; 4,1) ∗ c(3,1; 4,1), becomes a prime implicant of CF(4).

If a mark can not be defined as a strong mark, it will be called “a weak mark”. For example, the weak mark

 c(1,1; 2,1) ∗ c(1,1; 3,1) ∗ c(2,1; 4,1), must be multiplied by the weak mark c(1,1: 4,1) ∗ c(2,1; 3,1) ∗ c(3,1; 4,1) in

order to produce a prime implicant.

Definition of spurious mark: A spurious PoC in which all the indexes of triplet appear uncomplemented at least once

will be called a “spurious mark”. Notice that a spurious mark may be the mark of more than one prime implicant. For

example, in the case of CF(3), c(1,1; 2,1) ∗ c(1,1; 3,1) ∗ c(1,1; 2,2) is a spurious mark of both the prime implicants

c(1,1; 2,1) ∗ c(1,1; 3,1) ∗ c(2,1; 3,1) and c(1,1; 2,2) ∗ c(1,1; 3,1) ∗ c(2,2; 3,1). An impure PoC containing a (possibly

spurious) mark will be a defined as a (possibly spurious) impure mark.

Journal of Global Research in Computer Sciences

GRCS| Volume 15| Issue 1| March, 2024 17

Definition of remainder: A PoC which is not a mark will be called a “remainder”. Also a remainder may be pure (if for

any triplet index there is only one uncomplemented index of variable in that triplet) or spurious or impure. A remainder

is implied by more than one prime implicant. For example,

 R = c(2,1; 3,1) of CF(3)

is implied by the following prime implicants

P1 = c(1,1; 2,1) ∗ c(1,1; 3,1) ∗ c(2,1; 3,1)

 P2 = c(1,2; 2,1) ∗ c(1,2; 3,1) ∗ c(2,1; 3,1)

 P3 = c(1,3; 2,1) ∗ c(1,3; 3,1) ∗ c(2,1; 3,1)………………………………..(9)

On the definitions of mark and remainder the following property is based.

Property 1: Let P1 and P2 be two PoC’s such that P1 ∗ P2is equal to a prime implicant P of core function. It is easy to

prove that either P1 or P2 is a mark of P.

Property 2: The product of two marks M1 and M2 which are implied by two different prime implicants of core function

is not implied by core function.

For example, both M1 = c(1,1; 2,1) ∗ c(1,1; 3,1) and M2 = c(1,1; 2,1) ∗ c(1,1; 3,2) are marks of CF(3) and are implied

by CF(3), but their product is not implied by CF(3). Indeed, for example, the PoC c(1,1; 2,1) ∗ c(1,1; 3,1) ∗ ! c(1,1; 3,2)

is implied by M1 but it is not implied by M2 , by M1 ∗ M2 and by CF(3).

It follows, as is easy to verify, that the product (a + b) ∗ (c + d) (where a,b,c,d are products of compatibilities) can

produce only one or two prime implicants.

Indeed, assume that a ∗ c is a prime implicant P1 and a is a mark. It follows that a ∗ d cannot be a prime implicant P2

different from P1. b ∗ c can be a new prime implicant P2 only if c is a remainder satisfying the conditions of the following

property 7.

Property 7: The best way to integrate operations OR and AND is suggested by the ability of a remainder R to produce

3m prime implicants, where m is the number of triplet indexes missing in R, through the multiplication by a suitable

OoM (“Or Of Marks”) . For example, the remainder R = c(2,1; 3,1) of CF(4) can be used to obtain the following prime

implicants of CF(4):

R ∗ OoM =

c(1,1; 2,1) ∗ c(1,1; 3,1) ∗ c(1,1; 4,1) ∗ c(2,1; 3,1) ∗ c(2,1; 4,1) ∗ c(3,1; 4,1) +

c(1,2; 2,1) ∗ c(1,2; 3,1) ∗ c(1,2; 4,1) ∗ c(2,1; 3,1) ∗ c(2,1; 4,1) ∗ c(3,1; 4,1) +

c(1,3; 2,1) ∗ c(1,3; 3,1) ∗ c(1,3; 4,1) ∗ c(2,1; 3,1) ∗ c(2,1; 4,1) ∗ c(3,1; 4,1) +

c(1,1; 2,1) ∗ c(1,1; 3,1) ∗ c(1,1; 4,2) ∗ c(2,1; 3,1) ∗ c(2,1; 4,2) ∗ c(3,1; 4,2) +

c(1,2; 2,1) ∗ c(1,2; 3,1) ∗ c(1,2; 4,2) ∗ c(2,1; 3,1) ∗ c(2,1; 4,2) ∗ c(3,1; 4,2) +

c(1,3; 2,1) ∗ c(1,3; 3,1) ∗ c(1,3; 4,2) ∗ c(2,1; 3,1) ∗ c(2,1; 4,2) ∗ c(3,1; 4,2) +

c(1,1; 2,1) ∗ c(1,1; 3,1) ∗ c(1,1; 4,3) ∗ c(2,1; 3,1) ∗ c(2,1; 4,3) ∗ c(3,1; 4,3) +

c(1,2; 2,1) ∗ c(1,2; 3,1) ∗ c(1,2; 4,3) ∗ c(2,1; 3,1) ∗ c(2,1; 4,3) ∗ c(3,1; 4,3) +

 c(1,3; 2,1) ∗ c(1,3; 3,1) ∗ c(1,3; 4,3) ∗ c(2,1; 3,1) ∗ c(2,1; 4,3) ∗ c(3,1; 4,3)…………...…… (10)

The external core function

Let Ij be a prime implicant of CF(n). The External Core Function related to Ij, Ij, ECF(n, Ij), is defined as the sum of all

the minterms of CF(n) which imply Ij and no other prime implicant Ik of CF(n) with k ≠ j. (Remember that a minterm

Journal of Global Research in Computer Sciences

GRCS| Volume 15| Issue 1| March, 2024 18

of a boolean function F is a product of all the variables of F, some complemented and some other uncomplemented,

implying F).

Of course,

 ECF(n, Ij) = Ij ∗ Πk≠j(! Ik)

where all the prime implicants of Core Function are involved and ! 𝐼𝑘 denotes the complement of Ik (i.e., NOT Ik).

The global external core function of order n, or ECF(n), will be defined as the sum of ECF(n, Ij)’s relative to all the

prime implicants Ij of CF(n):

 ECF(n) = ΣjECF(n, Ij)………………………….(11)

The importance of External Core Function derives from the following theorems.

Theorem 1: Let T = Ij ∗ X

where Ij is a prime iimplicant and X is a possibly empty PoC. T can also be written as T = T(Ij).

All the minterms of T(Ij) contained in ECF(n) are minterms of ECF(n, Ij).

Theorem 2: Let T be a term of CF(n) implying two or more than two prime implicants of CF(n): T = T(Ij, Ik).

The number of minterms of T(Ij, Ik) belonging to ECF(n) is equal to 0.

Theorem 3: Let T = T(Ij) = Ij ∗ X be a term of CF(n) which is spurious for a single not complemented compatibility X.

If NMT(F) denotes the number of minterms of boolean function F, the number of minterms of Ij ∗ X contained in

ECF(n, Ij) is

 NMT(Ij ∗ X ∗ ECF(n, Ij)) <= (1/2) · NMT(ECF(n, Ij))………………..(12)

However, for large values of n,

 NMT(Ij ∗ X ∗ ECF(n, Ij)) ≈ (1/2) · NMT(ECF(n, Ij))……………………(13)

By proceeding in the same way it is possible to generalize the preceding THEOREM 3 as follows.

Theorem 4: Let IJ ∗ X1 ∗ X2 ∗ … Xm be a spurious term characterized by m spurious not complemented compatibilities.

The number of its minterms contained in ECF(n, Ij) is

 NMT(IJ ∗ X1 ∗ X2 ∗. . . Xm ∗ ECF(n, Ij)) <= (1/(2m)) · NMT(ECF(n, Ij)…..(14)

However, for large values of n,

 NMT(IJ ∗ X1 ∗ X2 ∗. . . Xm ∗ ECF(n, Ij)) ≈ (1/(2m)) · NMT(ECF(n, Ij)..(15)

Theorem 5: Let T = T(Ij) be an impure term of CF(n) characterized by a single impure variable (! X): T = Ij ∗ (! X).

For large values of n, the number of minterms of ECF(n, Ij) contained in T is

 NMT (Ij ∗ (! X) ∗ ECF(n, Ij) ≈ (1/2) · NMT(ECF(n, Ij)…………………..(16)

Theorem 6: Let T = T(Ij) be an impure term of CF(n) characterized by m impure variables: T = Ij ∗ (! X1) ∗ (! X2) ∗

… (! Xm). For large values of n, the number of minterms of ECF(n, Ij) contained in T is

 NMT(T ∗ ECF(n, Ij)) ≈ ((1/2)m) · NMT(ECF(n, Ij)) ……………………….(17)

Notice that NMT (ECF(n, Ij)) = NMT (ECF(n, IK)) for any j and k. It will be called NMT1(n).

The value of a node

Let U be a node of the network implementing core function and let F(U) be the boolean function of compatibilities

c(i, j, h, k) implemented by U. Since the subnetwork having U as its input does not contain any NOT gate, we can write:

Journal of Global Research in Computer Sciences

GRCS| Volume 15| Issue 1| March, 2024 19

 CF = F(U) ∗ (x1 + x2+. …) + y1 + y2 … …………………..(18)

where x1, x2, . . . y1, y2, . . ., are products of variables of core function, that is , products of compatibilities. Notice also

that every F(U) ∗ xi and every yj must be an extended prime implicant of core function, that is, it is equal to

P ∗ X where P is a prime implicant of core function and X is a PoC. As we shall see in some examples, often a single

product of compatibilities is sufficient to implement core function according to the following equation:

 CF = F(U) ∗ x + y1 + y2 … …………………………….(19)

where x is a single compatibility. x1, x2, . . . x, y1, y2, . . ., will be called “completion code”.

More than one solution of Equation 18 or Equation 19 can produce core function. However, we are looking for a

solution characterized by the following property: The total number of minterms of the External Core Functions ECF(n)

contained in F(U) ∗ (x1 + x2 +….) or in F(U) ∗ x takes the maximum value. By definition, this maximum value will be

considered as the value val(U) of the node U or the value val(F(U)) of the boolean function implemented by U.

If U is a strong mark M, the value val(M) will be assumed to be equal to NMT1(n) (unless corrections must be made

because of spurious or impure variables in F(U) or xi).The value val(R) of a remainder R will be assumed to be equal

to 0. The reasons for these choices are very simple as follows.

M is implied by the set of minterms of ECF(n) deriving from the prime implicant of which M is a mark and by no other

mimterm of ECF(n), while R is implied by the minterrms of many prime implicants and by the corresponding subsets

of minterms of ECF(n, Ij). Besides, R must be multiplied by a mark xi (or x) in order to produce a prime implicant and

that mark is generated outside the circuit produced by node U. The merit of that prime implicant will be attributed to

an other node V of the network.

The value of a weak mark can be assumed as equal to (1/2) · NMT1(n). Indeed, a weak mark A must be multiplied

by a weak mark B in order to produce a prime implicant I = A ∗ B.

Variables x, x1, x2, . .. must be remainders. This choice is justified by the fact that remainders are the basic units of all

the circuits implementing Core Function while a mark used as a variable x or xi in Equation 18 and Equation 19 would

be produced outside the subnetwork which produces node U.

Boolean function implemented by a node U may be the sum of products of compatibilities which may be marks or

remainders. The values of node U for the most important values of addends can be determined as follows. By virtue

of the above discussed properties it is easy to prove the following theorem. Consider the sum of two strong marks

marks M1 and M2. For the sake of simplicity, assume that M2 can be obtained from M1 by replacing all the

occurrences of a single variable v1 of M1 with variable v2 of M2. For example, if M1 = c(1,1; 2,1) ∗ c(1,1; 3,1) ∗

c(1,1; 4,1) and M2 = c(1,2; 2,1) ∗ c(1,2; 3,1) ∗ c(1,2; 4,1) are the two strong marks of CF(4), by assuming the

complation code (Equation 21) x = c(2,1; 3,1) ∗ c(2,1; 4,1) ∗ c(3,1; 4,1), we obtain

val(M1) = val(M2) = NMT1(4)

val(M1 + M2) = val(M1) + val(M2) = 2 ∙ NMT1(4).

This does not happen if both M1 and M2 are strong marks but they are not characterized by a single different variable.

For example, if M1 = c(1,1; 2,1) ∗ c(1,1; 3,1) ∗ c(1,1; 4,1) and M2 = c(1,2; 2,2) ∗ c(2,2; 3,1) ∗ c(2,2; 4,1) by assuming

in Equation 19 x1 = ! c(1,2; 2,2) ∗ c(2,1; 3,1) ∗ c(2,1; 4,1) ∗ c(3,1; 4,1) and x1 = ! c(1,1; 2,1) ∗ c(1,2; 3,1) ∗

c(1,2; 4,1) ∗ c(3,1; 4,1), we obtain

val(M1) = val(M2) = NMT1(4)

Journal of Global Research in Computer Sciences

GRCS| Volume 15| Issue 1| March, 2024 20

val(M1 + M2) = (1/2) · NMT1(4) + (1/2) · NMT1(4) = NMT1(4)

Other important examples of sums of two PoC’s related to CF(4) are the following ones. If A = c(1,1; 2,1) ∗

c(1,1; 3,1) ∗ c(1,1; 4,1) (strong mark) and B = c(1,2; 2,1) ∗ c(1,2; 3,1) ∗ c(2,1; 4,1) (weak mark) then, by assuming

x = c(2,1; 3,1) ∗ c(2,1; 4,1) ∗ c(3,1; 4,1) ∗ ! c(1,2; 2,1) in Equation 19, we obtain:

val(A) = NMT1(4)

val(B) = 0

val(A + B) = (1/2) · NMT1(4) < val(A) + val(B)

If M1 = c(1,1; 2,1) ∗ c(1,1; 3,1) ∗ c(1,1; 4,1) (strong mark) and R = c(1,1; 2,1) ∗ c(1,1; 3,2) (remainder) then, by

assuming x = c(2,1; 3,1) ∗ c(2,1; 4,1) ∗ c(3,1; 4,1) ∗ ! c(1,1; 3,2) we obtain:

val(M1) = NMT1(4)

val(R) = 0

val(M1 + R) = (1/2) · NMT1(4) < val(M) + val(R)

On the basis of previous properties it is easy to prove the following theorem.

Theorem 7: Let F(U) = P1 + P2 +. . ., where every Pi may be a mark or a remainder. It is easy to prove that val(F(U)) <

= val(P1) + val(P2)+. .. Besides, it is necessary to remember that the sum of two remainders may be a mark. For

example, for CF(4), if R1 = c(1,1; 2,1) ∗ c(1,1; 3,1) ∗ ! c(1,1; 3,2), R2 = c(1,1; 4,1) ∗ c(1,1; 3,2), M = c(1,1; 2,1) ∗

c(1,1; 3,1) ∗ c(1,1; 4,1) then

R1 + R2 = R1 + R2 + M

However, all the minterms of M1 are contained in R1 or R2. This holds also for the minterms contained in ECF.

Therefore, the new mark gives no contribution to ECF. The following new definitions will be adopted.

The set of the minterms of ECF produced by F(U) ∗ (x1 + x2+. . .) or by F(U) ∗ x will be called SECF(U) (set of minterms

of external core function produced by U). The number of elements in SECF(U) will be the value val(U) of node U or the

value val(F(U)) of the boolean function implemented by U.

The value of an OR operation

An n inputs OR operation can be implemented as a set of (n − 1) two inputs OR operations. Therefore, we can restrict

our attention to two inputs OR operations.

Consider the operation op(U = A OR B). Let SECF(op(A OR B)) be the set of all minterms of ECF contained in SECF(U)

and not contained in SECF(A) or SECF(B). The value val(op(A OR B)) of this operation is defined as the number of

elements in SECF(op(A OR B)), i.e. the number of new minterms of ECF created by the operation op(A OR B). Note

that val(op(A OR B)), which is the value of this operation, is less than or equal to val(A OR B), which is the value of the

node that implements the Boolean function (A OR B).

Let A = a1 + a2+. .., B = b1 + b2+. .., where every ai and every bj is a mark or a remainder. Obviously, C = A + B =

a1 + a2+. . . +b1 + b2+. .. By virtue of the properties above listed and summarized by Theorem 7.1 and also by virtue

of the property above stated according which the mark produced by the sum of two remainders does not give any

new contribution to the minterms of ECF, it is easy to prove the following theorem.

Theorem 8: The value of an OR operation is always equal to 0.

Journal of Global Research in Computer Sciences

GRCS| Volume 15| Issue 1| March, 2024 21

The value of an AND operation, the most powerful AND operation

As in the case of OR operations, an n inputs AND operation can be implemented as a set of (n − 1) two inputs AND

operations. Therefore, we can restrict our attention to two inputs AND operations.

The value of an AND operation having A and B as its inputs and U as its output can be defined as: the number of

minterms of the external core function contained in the definition of the value of U (according to Equation 18 or

Equation 19) and not contained in the definitions of A and B.

Since we are interested in identifying the most powerful AND operation, as a first step we shall assume that both F(A)

and F(B) are sums of remainders so that both val(A) and val(B) are equal to 0 and the value of the considered

operation is equal to the value of output U.

The most powerful AND operation of this type (val(A) = val(B) = 0) can be identified by proceeding as follows.

1. Let A = (a1 + a2 + a3+. . .) and B = (b1 + b2 + b3+. . .), where all the ai and bj are remainders.

A product ai ∗ bj might become the product of two or more than two marks of different prime implicants.

For example, in CF(4), ai ∗ bj might be equal to m1 ∗ m2 = (c(1,1; 2,1) ∗ c(1,1; 3,1) ∗ c(2,1; 4,1)) ∗

(c(1,2; 2,1) ∗ c(1,2; 3,2) ∗ c(1,2; 4,1)). The complation code might be equal to x = c(1,1; 4,1) ∗ c(2,1; 3,1) ∗

c(3,1; 4,1) ∗ c(1,2; 3,2) ∗ c(2,1; 3,2) ∗ c(2,1; 4,1) ∗ c(3,2; 4,1) in such a way that

m1 ∗ m2 ∗ x = I1 ∗ I2

where I1 is the prime implicant produced by m1 and I2 is the prime implicant produced by m2. Since val

 (I1 ∗ I2) = 0 because no minterm contained in the product of two prime implicants may belong to External

Core Function, the product ai ∗ bj ∗ x can produce only one prime implicant of CF(n).

2. Consider the product a1 ∗ b1 if it is a mark. If a1 is a remainder, at least one of the t indexes of triplet does

not appear in the list of triplet indexes of a1 because, otherwise, a1 would be a mark, Let it be i’. For the

same reason, at least another triplet index does not appear in the list of triplet indexes of b1, Let it be j’.

By example, for CF(4):

a1 = c(1,1; 2,1) ∗ c(1,1; 3,1) ∗ c(2,1; 3,1)

 b1 = c(1,1; 4,1) ∗ c(2,1; 4,1)

 m1 = a1 ∗ b1…………………………………………………………(20)

Triplet index 4 is missing in a1; triplet index 3 is missing in b1. In order that a1 ∗ b1 ∗ x is a prime implicant

of CF(4), x must be equal to c(3,1; 4,1).

3. Equation 20 is the example of two remainders whose product is a mark without spurious or impure variables.

Obviously, the value of this mark is NMT1(4). According to Theorems 3 and 6, a mark containing a spurious

or impure compatibility has a value equal to about (1/2) · NMT1(n) while a mark containing m spurious or

·impure compatibilities has a value equal to about (1/2m) · NMT1(n).

4. Assume that a2 ∗ b1 is equal to a new mark 𝑚2 such that 𝑚2 ∗ 𝑥 is a new prime implicant of CF(4). We can

start by assuming that a2 is equal to c(1,2; 2,1) ∗ c(1,2; 3,1) ∗ c(2,1; 3,1). Since the optimal completion code

x is equal to c(3,1; 4,1) and a2 cannot contain all the three compatibilities involving < 1,2 >, the value of b1

must be corrected by adding c(1,2; 4,1) to b1 ∶ b1’ = b1 ∗ c(1,2; 4,1) Therefore, val(a1 ∗ b1’) = (1/2) ·

NMT1(4), val(a2 ∗ b1’) = (1/2) · NMT1(4).

Journal of Global Research in Computer Sciences

GRCS| Volume 15| Issue 1| March, 2024 22

No increment of the total value has been obtained by introducing a new mark. In the preceding example

remainder a2 is different from a1 for a single variable (< 1,1 > in a1, < 1,2 > in a2). Now assume that a1

and a2 are different for the values of two variables (< 1,1 > 𝑎𝑛𝑑 < 2,1 > 𝑖𝑛 a1, < 1,2 > 𝑎𝑛𝑑 < 2,2 > 𝑖𝑛 a2):

 a2 = c(1,2; 2,2) ∗ c(1,2; 3,1) ∗ c(2,2; 3,1).

Since the optimal complation code is c(3,1; 4,1) and a2 cannot contain all the compatibilities involving

< 1,2 > and < 2,2 >, b1’ must become: b1’ = b1 ∗ c(1,2; 4,1) ∗ c(2,2; 4,1).

 Therefore, val(a1 ∗ b1’) = 1/4 · NMT1(4), val(a2 ∗ b1’) = 1/4 · NMT1(4), The total value has been further

decreased.

5. Let us return to the example relative to CF(4) described by Equation 20, and assume: a2 = c(1,2; 2,1) ∗

c(1,2; 3,1) ∗ c(2,1; 3,1).

6. In order to implement the new mark m2 without reducing the value of m1 it is necessary to introduce a new

remainder b2 = c(1,2; 4,1) ∗ c(2,1; 4,1) so that

 m2 = a2 ∗ b2…………………………(21)

7. The result stated in 4 and 5 can be extended as follows.

The most powerful AND gate can be obtained by producing every mark as the product of a remainder ai by a

corresponding remainder bj, and it is not useful to produce two marks m1 and m2 by means of three

remainders as follows: m1 = ai ∗ bj, m2 = ak ∗ bj.

8. However, the products a1 ∗ b2 and a2 ∗ b1 are not marks. Therefore, it is necessary to introduce the following

corrections:

 a1 = c(1,1; 2,1) ∗ c(1,1; 3,1) ∗ c(2,1; 3,1)

 b1 = c(1,1; 4,1) ∗ c(2,1; 4,1) ∗ c(1,1; 2,1)

 a2 = c(1,2; 2,1) ∗ c(1,2; 3,1) ∗ c(2,1,3,1) ∗ ! c(1,1; 2,1)

 b2 = c(1,2; 4,1) ∗ c(2,1; 4,1) ∗ c(1,2; 2,1) ∗ ! c(1,1; 2,1)

 val(m1 = a1 ∗ b1) = NMT1(4)

 val(m2 = a2 ∗ b2) = NMT1(4) · (1/2)……………..(22)

Notice that c(1,1; 2,1) appears in both a1 and b1 and c(1,2; 2,1) appears in both a2 and b2. According to the

corrections introduced in Equation 22, both the products a1 ∗ b2 and a2 ∗ b1 are equal to 0. It is also possible

to introduce two spurious compatibilities in order that both a1 ∗ b2 ∗ x and a2 ∗ b1 ∗ x become prime

implicants of core function.

For example,

 a1 = c(1,1; 2,1) ∗ c(1,1; 3,1) ∗ c(2,1; 3,1)

 b1 = c(1,1; 4,1) ∗ c(2,1; 4,1) ∗ c(1,2,4,1)

 a2 = c(1,2; 2,1) ∗ c(1,2; 3,1) ∗ c(2,1,3,1)

 b2 = c(1,2; 4,1) ∗ c(2,1; 4,1) ∗ c(1,1; 4,1)

In this case,

 val(m1 = a1 ∗ b1) = NMT1(4) · (1/2)

 val(m2 = a2 ∗ b2) = NMT1(4) · (1/2)……………….(23)

Journal of Global Research in Computer Sciences

GRCS| Volume 15| Issue 1| March, 2024 23

It follows that Equation 22 is better than Equation 23. It is easy to prove that Equation 22 represents the

best solution for implementing two marks from the viewpoint of their values.

9. Consider the product (a1 + a2) ∗ (b1 + b2) relative to CF(4) where a1 = c(1,1; 2,1) ∗ c(1,1; 3,1) ∗ c(1,1; 3,2),

a2 = c(1,1; 2,2) ∗ c(1,1; 3,2) ∗ c(1,1; 3,1), b1 = c(2,1; 3,1) ∗ c(2,1; 4,1) ∗ c(3,1; 4,1) ∗ c(2,2; 3,1) ∗ c(2,2; 4,1)

b2 = c(2,2; 3,2) ∗ c(2,2; 4,1) ∗ c(3,2; 4,1) ∗ c(2,1; 3,2) ∗ c(2,1; 4,1) with x = c[1,1] ∗ c[4,1]. The following four

marks of CF(4) are generated:

m1 = a1 ∗ b1 involving variables ([1,1], [2,1], [3,1], [4,1]),

m2 = a1 ∗ b2 involving variables ([1,1], [2,1], [3,2], [4,1])

m3 = a2 ∗ b1 involving variables ([1,1], [2,2], [3,1], [4,1])

m4 = a2 ∗ b2 involving variables ([1,1], [2,2], [3,2], [4,1])

It is easy to verify that val(m1) = val(m2) = val(m3) = val(m4) = (1/8) ∙ NMT1(4), Therefore, the total

value of the considered product is (1/2) ∙ NMT1(4). These values are very small. Therefore, there is no point

in continuing this line.

10. By following the same line of reasoning which has made it possible to prove that Equation 22 is the best

solution for implementing two marks, it is easy to prove that the best solution for implementing three marks

is the following one:

a1 = c(1,1; 2,1) ∗ c(1,1; 3,1) ∗ c(2,1; 3,1)

b1 = c(1,1; 4,1) ∗ c(2,1; 4,1) ∗ c(1,1; 2,1)

 a2 = c(1,2; 2,1) ∗ c(1,2; 3,1) ∗ c(2,1,3,1) ∗ ! c(1,1; 2,1)

 b2 = c(1,2; 4,1) ∗ c(2,1; 4,1) ∗ c(1,2; 2,1) ∗ ! c(1,1; 2,1)

 a3 = c(1,3; 2,1) ∗ c(1,3; 3,1) ∗ c(2,1; 3,1) ∗ ! c(1,1; 2,1) ∗ ! c(1,2; 2,1)

 b3 = c(1,3; 4,1) ∗ c(2,1; 4,1) ∗ ! c(1,1; 2,1) ∗ ! c(1,2; 2,1) ……………………….(24)

The value of this solution is

 (1 + (1/2) + (1/4)) · NMT1(4)

Equation 24 can be extended with the following algorithm in order to implement the marks of all the nine

prime implicants of CF(4) compatible with the conditions that the variables < 3,2 >, < 3,3 >, < 4,2 >, <

4,3 > do not appear in that product and the completion code x takes the value c(3,1; 4,1).

 U = A ∗ B = (a1 + a2+. . . +a9) ∗ (b1 + b2+. . . +b9).. (24’)

Where

a1 = c(1,1; 2,1) ∗ c(1,1; 3,1) ∗ c(2,1; 3,1)

b1 = c(1,1; 4,1) ∗ c(2,1; 4,1) ∗ c(1,1; 2,1)

a2 = c(1,2; 2,1) ∗ c(1,2; 3,1) ∗ c(2,1,3,1) ∗ ! c(1,1; 2,1)

b2 = c(1,2; 4,1) ∗ c(2,1; 4,1) ∗ c(1,2; 2,1) ∗ ! c(1,1; 2,1)

a3 = c(1,3; 2,1) ∗ c(1,3; 3,1) ∗ c(2,1; 3,1) ∗ ! c(1,1; 2,1) ∗ ! c(1,2; 2,1)

b3 = c(1,3; 4,1) ∗ c(2,1; 4,1) ∗ ! c(1,1; 2,1) ∗ ! c(1,2; 2,1)

a4 = c(1,1; 2,2) ∗ c(1,1; 3,1) ∗ c(2,2; 3,1) ∗ ! c(2,1; 4,1)

b4 = c(1,1; 4,1) ∗ c(2,2; 4,1) ∗ c(1,1; 2,2) ∗ ! c(2,1; 3,1)

a5 = c(1,2; 2,2) ∗ c(1,2; 3,1) ∗ c(2,2; 3,1) ∗ ! c(1,1; 2,2) ∗ ! c(2,1; 4,1)

Journal of Global Research in Computer Sciences

GRCS| Volume 15| Issue 1| March, 2024 24

b5 = c(1,2; 4,1) ∗ c(2,2; 4,1) ∗ c(1,2; 2,2) ∗ ! c(1,1; ,2,2) ∗ ! c(2,1; 3,1)

a6 = c(1,3; 2,2) ∗ c(1,3; 3,1) ∗ c(2,2; 3,1) ∗ ! c(1,1; 2,2) ∗ ! c(1,2; 2,2) ∗ ! c(2,1; 4,1)

b6 = c(1,3; 4,1) ∗ c(2,2; 4,1) ∗ ! c(1,1; 2,2) ∗ ! c(1,2; 2,2) ∗ ! c(2,1; 3,1)

a7 = c(1,1; 2,3) ∗ c(1,1; 3,1) ∗ c(2,3; 3,1) ∗ ! c(2,1; 4,1) ∗ ! c(2,2; 4,1)

b7 = c(1,1; 4,1) ∗ c(2,3; 4,1) ∗ c(1,1; 2,3) ∗ ! c(2,1; 3,1) ∗ ! c(2,2; 3,1)

a8 = c(1,2; 2,3) ∗ c(1,2; 3,1) ∗ c(2,3; 3,1) ∗ ! c(1,1; 2,3) ∗ ! c(2,1; 4,1) ∗ ! c(2,2; 4,1)

b8 = c(1,2; 4,1) ∗ c(2,3; 4,1) ∗ c(1,2; 2,3) ∗ ! c(1,1; 2,3) ∗ ! c(2,1; 3,1) ∗ ! c(2,2; 3,1)

a9 = c(1,3; 2,3) ∗ c(1,3; 3,1) ∗ c(2,3; 3,1) ∗ ! c(1,1; 2,3) ∗ ! c(1,2; 2,3) ∗ ! c(2,1; 4,1) ∗ ! c(2,2; 4,1)

b9 = c(1,3; 4,1) ∗ c(2,3; 4,1) ∗ ! c(1,1; 2,3) ∗ ! c(1,2; 2,3) ∗ ! c(2,1; 3,1) ∗ ! c(2,2; 3,1)………………(25)

The value of the AND operation implementing those imarks is

 (1 + 1/2 + 1/4) · (1 + 1/4 + 1/16) · NMT1(4)

which is slightly less than

 (1 + (1 2⁄) + (1 4⁄))2 · NMT1(4)…………………………….(26)

Equation 25 and Equation 26 can be generalized and the value of the best operation implementing the

marks of 3(𝑛−2) prime implicants of CF(n) becomes:

 val1(n) = (1 + 1/2 + 1/4))n−3. (1 + 1/4 + 1/16) · NMT1(n)…….(27)

which is slightly less than

 val2(n) = (1 + 1/2 + 1/4)n−2 · NMT1(n) ……………………….(28)

In order to prove that the solution proposed by Equation 24 and extended by Equation 24’ is the most

powerful one, consider three marks which are different for the value of one and only one triplet index. For

example, the three marks m7 = a7 ∗ b7, m8 = a8 ∗ b8, m9 = a9 ∗ b9, which have been defined in Equation

24’, are different only for the values in triplet index 1. A set as {m7, m8, m9} will be called a “set of connected

marks”. In this example, in order that a7 ∗ b8 = 0 and a8 ∗ b7 = 0, both a8 and b8 must contain compatibility

! 𝑐(1,1; 2,3). Therefore, the value of mark m8 will be multiplied by 1/2.

In order that a7 ∗ b9 = a9 ∗ b7 = a8 ∗ b9 = a9 ∗ b8 = 0, both a9 and b9 must contain ! c(1,1; 2,3) ∗

 ! c(1,2; 2,3). Therefore, the value of mark m9 will be multiplied by 1/4. No other solution makes it possible

to reduce the values of m8 and m9 by a smaller value.

Every mark m appearing in Equation 24’ belongs to t sets of connected marks. It is easy to verify on the data

of Equation 24’ that all the triplets {mi, mj, mk} of connected marks have received the same type of

corrections and only those corrections have been applied.

Therefore, we can state that the solution proposed in this paper leads to the best solution and that the

maximum value of an AND operation of the type above specified is slightly less than val2(n) = (1 + 1/2 +

 1/4)n−2 · NMT1(n).

In the described algorithms, two different marks mi = ai ∗ bi and mj = aj ∗ bj are characterized by one or

two complemented compatibilities. These complemented compatibilities reduce the total value. If we use

strong marks, not all these complemented compatibilities are necessary. For example, in the following

product, characterized by the use of strong marks:

A ∗ B = (a1 + a2 + a3) ∗ (b1 + b2 + b3)

Journal of Global Research in Computer Sciences

GRCS| Volume 15| Issue 1| March, 2024 25

where:

a1 = 𝑐(1,1; 2,1) ∗ 𝑐(1,1; 3,1) ∗ 𝑐(1,1; 4,1)

b1 = c(2,1; 3,1) ∗ c(2,1; 4,1) ∗ c(3,1; 4,1)

a2 = c(1,2; 2,1) ∗ c(1,2; 3,1) ∗ c(1,2; 4,1)

b2 = b1

a3 = c(1,3; 2,1) ∗ c(1,3; 3,1) ∗ c(1,3; 4,1)

b3 = b1

the three variables of triplet (a1 + a2 + a3) are associated to a single remainder b1=b2=b3 Besides, it has

been proved that a sum of three strong marks multiplied by a single remainder may reach the value 3 ·

NMT1. These results lead us to hope that strong marks may be useful in the synthesis of the most powerful

AND operation. A possible line of research is presented in the following example devoted to the synthesis of

CF(5) by using also strong marks.

A ∗ B = (a1 + a2+. . . +a27) ∗ (b1 + b2+. . . +b27) ………………..(29)

where:

a1 = c(1,1; 2,1) ∗ c(1,1; 3,1) ∗ c(1,1; 4,1) ∗ c(1,1; 5,1) ∗ c(2,1; 3,1) ∗ c(3,1; 5,1)

b1 = c(2,1; 3,1) ∗ c(2,1; 4,1) ∗ c(3,1; 4,1) ∗ c(2,1; 5,1) ∗ c(3,1; 5,1) ∗ c(4,1; 5,1)

a2 = c(1,2; 2,1) ∗ c(1,2; 3,1) ∗ c(1,2; 4,1) ∗ c(1,2; 5,1) ∗ c(2,1; 3,1) ∗ c(3,1; 5,1)

b2 = b1

a3 = c(1,3; 2,1) ∗ c(1,3; 3,1) ∗ c(1,3; 4,1) ∗ c(1,3; 5,1) ∗ c(2,1; 3,1) ∗ c(3,1; 5,1)

b3 = b1

a4 = c(1,1; 2,2) ∗ c(1,1; 3,1) ∗ c(1,1; 41) ∗ c(1,1; 5,1) ∗ c(2,2; 3,1) ∗ ! c(2,1; 3,1) ∗ c(3,1; 5,1)

b4 = c(2,2; 3,1) ∗ c(2,2; 4,1) ∗ c(3,1; 4,1) ∗ c(2,2; 5,1) ∗ c(3,1; 5,1) ∗ c(4,1; 5,1) ∗ ! c(2,1; 3,1)

a5 = c(1,2; 2,2) ∗ c(1,2; 3,1) ∗ c(1,2; 4,1) ∗ c(1,2; 5,1) ∗ ! c(2,1; 3,1) ∗ c(2,2; 3,1) ∗ c(3,1; 5,1)

b5 = b4

a6 = c(1,3; 2,2) ∗ c(1,3; 3,1) ∗ c(1,3; 4,1) ∗ c(1,3,5,1) ∗ ! c(2,1; 3,1) ∗ c(2,2; 3,1) ∗ c(3,1; 5,1)

b6 = b4

a7 = c(1,1; 2,3) ∗ c(1,1; 3,1) ∗ c(1,1,4,1) ∗ c(1,1; 5,1) ∗ c(3,1; 5,1) ∗ ! c(2,1; 3,1) ∗ ! c(2,2; 3,1)

b7 = c(2,3; 3,1) ∗ c(2,3; 4,1) ∗ c(3,1; 4,1) ∗ c(2,3; 5,1) ∗ c(3,1; 5,1) ∗ c(4,1,5,1) ∗ ! c(2,1; 3,1) ∗ ! c(2,2; 3,1)

a8 = c(1,2; 2,3) ∗ c(1,2; 3,1) ∗ c(1,2; 4,1) ∗ c(1,2; 5,1) ∗ c(3,1; 5,1) ∗ ! c(2,1; 3,1) ∗ ! c(2,2; 3,1)

b8 = b7

a9 = c(1,3; 2,3) ∗ c(1,3; 3,1) ∗ c(1,3; 4,1) ∗ c(1,3; 5,1) ∗ c(3,1; 5,1) ∗ ! c(2,1; 3,1) ∗ ! c(2,2; 3,1)

b9 = b7

··

a27 = c(1,3; 2,3) ∗ c(1,3; 3,1) ∗ c(1,3; 4,1) ∗ c(1,3; 5,3) ∗ c(3,1; 5,3) ∗ ! oc(2,1; 3,1) ∗ ! c(2,2; 3,1) ∗

! c(3,1; 5,1) ∗ ! c(3,1; 5,2)

b27 = b25

Notice that

A ∗ B = (a1 + a2+. . . +a27) ∗ (b1 + b2+. . . +b27)

Journal of Global Research in Computer Sciences

GRCS| Volume 15| Issue 1| March, 2024 26

 produces all the prime implicants of CF(5) with the exception of those which include variables < 3,2 >, <

3,3 >, < 4,2 > 𝑜𝑟 < 4,3 >, exactly as the prime implicants produced by Equation 24’.

Starting from Equation 29 it is easy to prove that

 val(A ∗ B) = 3 · (1 + 1 /2 + 1/4)3 · NMT1(5)……………….(29.2)

which can be extended to CF(n) as follows:

 val(A ∗ B) = 3 · (1 + 1 /2 + 1/4)n−3 · NMT1(n)……...…….(29.3)

 It has been shown that the value of the product (A ∗ B) specified by Equation 24 is equal to

val(A ∗ B) = (1 + 1/2 + 1/4)n−3 · (1 + 1/4 + 1/16) · NMT1(n)

Since 3 > (1 + 1 /4 + 1/16), val(A ∗ B) related to Equation 29 (solution with strong marks) is larger than

val(A ∗ B) related to Equation 24 (solution with only remainders). However, as it is easy to prove, in the

solution with strong marks val(A) is equal to val(A ∗ B) and, therefore, the value of the AND operation

producing (A ∗ B) is equal to 0.

To complete the most powerful AND operation

So far all the new marks contained only < 3,1 > and < 4,1 > of triplet 3 or 4 in the compatibilities used in the

synthesis of core function. This condition can be removed in order to increase the value of the considered AND

operation.

For example, we might start from Equation 24 and we might add nine new remainders a10. . . a18 to a1. . . a9 and

b10. . . b18 to b1. . . b9, where the new remainders are obtained by replacing all the appearances of < 4,1 > with <

4,2 >. Thus nine new marks and nine new prime implicants will be generated. This solution can be extended in such

a way that all the 81 prime implicants of CF(4) are generated. However, the values of many of these new 81 prime

implicants are very small because many complemented compatibilities must be introduced in order that all the

products ai ∗ bj with i <> j become equal to 0. Besides, the theoretical multiplication of every mark by the completion

code

x = c(3,1; 4,1) ∗ c(3,1; 4,2) ∗ c(3,1; 4,3) ∗ c(3,2; 4,1) ∗ c(3,2; 4,2) ∗ c(3,2; 4,3) ∗ c(3,3; 4,1) ∗ c(3,3; 4,2) ∗ c(3,3; 4,3)

strongly would reduce the value of the corresponding prime implicants. A better solution can be obtained by

integrating the completion codes in the tables of remainders and by multiplying the new terms produced by

complemented compatibilities in such a way that all the products ai ∗ bj with i <> j become equal to 0. It is necessary

to start from the values of ai and bi listed in Equation 24. As a first step, assume that:

for all i <= 9

 ai’ = ai ∗ c(3,1; 4,1)

 bi’ = bi ∗ c(3,1; 4,1);

for all i > 9 and <= 18

replace all the appearances of < 4,1 > with < 4,2 > and apply the following corrections:

 ai’ = ai−9 ∗ c(3,1; 4,2) ∗ ! c(3,1; 4,1)

 bi’ = bi−9 ∗ c(3,1; 4,2) ∗ ! c(3,1; 4,1).

for all i > 18 and <= 27

replace all the appearances of < 4,1 > with < 4,3 > and apply the following corrections:

 ai’ = ai−18 ∗ c(3,1; 4,3) ∗ ! c(3,1; 4,1) ∗ ! c(3,1; 4,2)

Journal of Global Research in Computer Sciences

GRCS| Volume 15| Issue 1| March, 2024 27

 bi’ = bi−18 ∗ c(3,1; 4,3) ∗ ! c(3,1; 4,1) ∗ ! c(3,1; 4,2)

it follows that:

val ((a1
′ + a2

′ +. . . +a9
′ + a10

′ +. . . a19
′ +. . .) ∗ (b1′ + b2′+. . . +b9′ + b10′+. . . b19′+. . .)) = (1 + 1/2 + 1/4) · val1(4) =

(1 + 1/2 + 1/4) · (1 + 1/2 + 1/4) · (1 + 1/4 + 1/16) · NMT1(4)

which is the total value of the 3 ∙ 9 = 27 prime implicants of CF(4) characterized by the following pairs of indexes: <

3,1 >, < 4,1 >; < 3,1 >, < 4,2 >; < 3,1 >, < 4,3 >.

The same line of corrections can be applied in order to find the values of the other 6 · 9 = 54 prime implicants of

CF(4) which are characterized by the following pairs of indexes < 3,2 >, < 4,1 >; < 3,2 >, < 4,2 >; < 3,2 >, < 4,3 >

; < 3,3 >, < 4,1 >; < 3,3 >, < 4,2 >; < 3,3 >, < 4,3 >.

For example, for all i > 27 and <= 36, it is necessary to replace all the appearances of < 3,1 >; < 4,1 > with < 3,2 >

, < 4,1 > and to apply the following correction:

 ai’ = ai−27 ∗ c(3,2; 4,1) ∗ ! c(3,1; 4,1) ∗ ! c(3,1; 4,2) ∗ ! c(3,1; 4,3)

 bi’ = bi−27 ∗ c(3,2; 4,1) ∗ ! c(3,1; 4,1) ∗ ! c(3,1; 4,2) ∗ ! c(3,1; 4,3)

The final result of this line of corrections will be the following equation:

val ((a1+. . . +a10+. . . +a19+. . . +a28+. . . +a37+. . . +a46+. . . +a55+. . . +a64+. . . +a73+. . .) ∗

(b1+. . . +b10+. . . +b19+. . . +b28+. . . +b37+. . . +b46+. . . +b55+. . . +b64+. . . +b73+. . .)) = (1 + 1/2 + 1/4 + 1/8 +

1/16 + 1/32 + 1/64 + 1/128 + 1/256) · (1 + 1/2 + 1/4) · (1 + 1/4 + 1/16) · NMT1(4) ∼ 2 · (1 + 1/2 + 1/4) ·

(1 + 1/4 + 1/16) · NMT1(4)

which can be extended to

 2 · (1 + 1/2 + 1/4)n−3 · (1 + 1/4 + 1/16) · NMT1(n)

The set of solutions for completing the AND operation is discussed in the following section.

The value of the most powerful AND operation

The determination of the exact value of the most powerful AND operation is interesting and important, but it is very

difficult. The difficulty derives from the fact that the evaluation of the output of that operation is closely connected

with the evaluation of the values of inputs A and B. However, as will be proved, in order to solve the problem PvsNP

the exact solution of that question is not necessary.

The solution here proposed derives from Equation 25.

Equation 25 is a solution for CF(4), but it can be easily extended to CF(n), as shown by Equation 27. As already

observed, the products (a1 + a2+. . . +a9) ∗ (b1 + b2+. . . +b9) do not produce all the prime implicants of Core

Function. Indeed, the prime implicants containing variables different from those appearing in the completion code x

(in our example: < 3,2 >, < 3,3 >, < 4,2 >, < 4,3 >) do not appear in the list of prime implicants which have been

generated.

A simple solution for producing all the prime implicants of core function is the following one.

First, multiply a1, a2, . . . a9 by c(3,1; 4,1).

Then extend the list (a1 + a2+. . . +a9) with (a10 + a11+. . . +a18) and the list (b1 + b2+. . . +b9) with (b10 +

b11+. . . +b18) in order to obtain all the marks and all the prime implicants containing both variables < 3,1 > and <

4,2 >, in addition to the marks and the prime implicants containing variables < 3,1 > and < 4,1 > obtained by the

product (a1 + a2+. . .) ∗ (b1 + b2+. . .):

Journal of Global Research in Computer Sciences

GRCS| Volume 15| Issue 1| March, 2024 28

a10 = c(1,1; 2,1) ∗ c(1,1; 3,1) ∗ c(2,1; 3,1) ∗ c(3,1; 4,2)

b10 = c(1,1; 4,2) ∗ c(2,1; 4,2) ∗ c(1,1; 2,1)

a11 = c(1,2; 2,1) ∗ c(1,2; 3,1) ∗ c(2,1,3,1) ∗ ! c(1,1; 2,1) ∗ c(3,1; 4,2)

b11 = c(1,2; 4,2) ∗ c(2,1; 4,2) ∗ c(1,2; 2,1) ∗ ! c(1,1; 2,1)

..

a18 = c(1,3; 2,3) ∗ c(1,3; 3,1) ∗ c(2,3; 3,1) ∗ ! c(1,1; 2,3) ∗ ! c(1,2; 2,3) ∗ ! c(2,1; 4,2) ∗ ! c(2,2; 4,2) ∗ c(3,1; 4,2)

b18 = c(1,3; 4,2) ∗ c(2,3; 4,2) ∗ ! c(1,1; 2,3) ∗ ! c(1,2; 2,3) ∗ ! c(2,1; 3,1) ∗ ! c(2,2; 3,1)……………………………….(30)

The product (a10 + a11+. . . +a18) ∗ (b10 + b11+. . . +b18) produces all the nine implicants of core function containing

only < 3,1 > and < 4,2 > and no other variable of triplets 3 amd 4. Similarly, a new product (a19+. . . +a27) ∗

(b19+. . . +b27) can produce all the prime implicants of core function containing only < 3,1 > and < 4,3 > of the

variables of triplets 3 and 4, while the product (a28+. . . +a36) ∗ (b28+. . . +b36) can produce all the prime implicants

of core function characterized by variables < 3,2 > and < 4,1 >, and so on.

In this way all the prime implicants of core function will be produced by the product

 (a1+. . . +a10+. . . +a19+. . . +a28+. . . +a37+. . . +a46+. . . +a55+. . . +a64+. . . +a73+. . .)

 (b1+. . . +b10+. . . +b19+. . . +b28+. . . +b37+. . . +b46+. . . +b55+. . . +b64+. . . +b73+. . .)......(31)

where the nine pairs of variables < 3,1 >, < 4,1 >; < 3,1 >, < 4,2 >; < 3,1 >, < 4,3 >; < 3,2 >, < 4,1 >; < 3,2 >, <

4,2 >; < 3,2 >, < 4,3 >; < 3,3 >, < 4,1 >; < 3,3 >, < 4,2 >; < 3,3 >, < 4,3 > are involved.

It is easy to prove that every product as, for example, (a10 + a11+. . . +a18) ∗ (b10 + b11+. . . +b18) produces a subset

of prime implicants of core function disjoint from the other subsets of prime implicants; that is, a prime implicant

produced by a subset does not appear in any other subset. Besides, the value of a subset is the optimal one for that

subset of prime implicants. Equation 31 can be used to search for the maximum val(A ∗ B) but it can not be used to

search for the maximum value of the AND operation performing the product (A ∗ B). Indeed, val(A) = val(A ∗ B) and,

therefore, the value of the AND operation is equal to 0. In order to search for the maximum value of the AND operation,

the starting point of the above described algorithm must be corrected. A simple example of the necessary correction

is the following one.

multiply a1, a3, a5, a7, a9 by c(3,1; 4,1)

multiply b2, b4, b6, b8 by c(3,1; 4,1)

multiply a10, a12, a14, a16, a18 by c(3,1; 4,2)

multiply b11, b13, b15, b17 by c(3,1; 4,2)

multiply a19, a21, a23, a25, a27 by c(3,1; 4,3)

multiply b20, b22, b24, b26 by c(3,1; 4,3)

and so on.

Thus, val(A) and val(B) will become relatively small and the value of the AND gate will be slightly smaller than val(A ∗

B). A very large number of the terms appearing in Equation 31 and its variants must be corrected with complemented

compatibilities in order that, for any i <> j, ai ∗ bj = 0. In order to reduce the number of complemented

compatibilities we can use some marks of the subset of “strong marks”. As an example, we can start from the

algorithm described by Equation 29. That algorithm uses many strong marks as shown by the following lines which

are the first lines of the code related to CF(5):

Journal of Global Research in Computer Sciences

GRCS| Volume 15| Issue 1| March, 2024 29

Let

A ∗ B = (a1 + a2+. . . +a27) ∗ (b1 + b2+. . . +b27)

where:

a1 = c(1,1; 2,1) ∗ c(1,1; 3,1) ∗ c(1,1; 4,1) ∗ c(1,1; 5,1) ∗ c(2,1; 3,1) ∗ c(3,1; 5,1)

b1 = c(2,1; 3,1) ∗ c(2,1; 4,1) ∗ c(3,1; 4,1) ∗ c(2,1; 5,1) ∗ c(3,1; 5,1) ∗ c(4,1; 5,1)

a2 = c(1,2; 2,1) ∗ c(1,2; 3,1) ∗ c(1,2; 4,1) ∗ c(1,2; 5,1) ∗ c(2,1; 3,1) ∗ c(3,1; 5,1)

b2 = b1

a3 = c(1,3; 2,1) ∗ c(1,3; 3,1) ∗ c(1,3; 4,1) ∗ c(1,3; 5,1) ∗ c(2,1; 3,1) ∗ c(3,1; 5,1)

b3 = b1

As shown by those lines, three strong marks (for example a1, a2 , a3) are multiplied by the same remainder

(b1 = b2 = b3) in order to produce three different prime implicants of core function. This makes it possible to

increase val(A ∗ B) which was

(1 + 1/2 + 1/4)n−3 · (1 + 1/4 + 1/16) · NMT1(n)

according to Equation 27 while now it is

3 ∙ (1 + 1/2 + 1/4)n−3 · NMT1(n)………………………….(32)

before the corrections with complemented compatibilities. In section 9 it has been proved that the solution proposed

by Equation 24 and extended by Equation 27 is the best solution for the product of two sums of remainders. That

proof is based on the analysis of the so-called “connected marks”, which are triplets of marks different from each

other only for the values of one index. For example,

c(1,1; 2,1) ∗ c(1,1; 3,1) ∗ c(1,1; 4,1)

c(1,2; 2,1) ∗ c(1,2; 3,1) ∗ c(1,2; 4,1)

c(1,3; 2,1) ∗ c(1,3; 3,1) ∗ c(1,3; 4,1)

are a triplets of connected marks of CF (4).

The proof that the solution described by (25) is the best solution was based on the property that all the connected

marks had received the best corrections and that only those corrections had been applied. The proof that the solution

above presented, where also strong marks are involved, is the best solution can be developed as follows.

As shown by Equation 11, the sum of three marks (a1 + a2 + a3) multiplied by (b1 = b2 = b3) produces three

connected marks without any complemented compatibility.

Analogously,

(a4 + a5 + a6) ∗ b4 (where b4 = b5 = b6)

(a7 + a8 + a9) ∗ b7 (where b7 = b8 = b9)

.

(a25 + a26 + a27) ∗ b25 (where b25 = b26 = b27)

produce other connected marks without any complemented compatibility.

Instead, the connected marks

(a1 + a4 + a7) ∗ (b1 + b4 + b7)

have requested the following corrections:

a1 = a1′

Journal of Global Research in Computer Sciences

GRCS| Volume 15| Issue 1| March, 2024 30

a4 = a4′ ∗ ! c(2,1; 3,1)

a7 = a7′ ∗ ! c(2,1; 3,1) ∗ ! c(2,1; 4,1)

The number of corrections necessary for implementing this sum of remainders is larger than the number of

corrections used in the solution involving also strong marks. This is the reason for which val(A ∗ B) relative to the

implementation with strong marks is larger than the implementation with remainders.

Probably, val(op(AANDB)) of the implementation with remainders is larger than the corresponding value of the

implementation with strong marks but we narrow the focus on the implementation with strong marks, because it

leads to a more secure solution.

Equation 29.3 specifies the value of variable C1 = A1 AND B1 which produces all the 3n−2 prime implicants of core

function containing variables < 3,1 > and < 4,1 > and not containing variables < 3,2 >, < 3,3 >, < 4,2 >, < 4,3 >.

In order to produce all the prime implicant of core function it is necessary to extend the product A1 AND B1 as follows:

C = (A1 + A2+. . . +A9) ∗)(B1 + B2+. . . +B9)

where

A2 ∗ B2 produce all the prime implicants containing only variables < 3,1 > and < 4,2 >;

A3 ∗ B3 produce all the prime implicants containing only variables < 3,1 > and < 4,3 >;

………

A9 ∗ B9 produce all the prime implicants containing only variables < 3,3 > and < 4,3 >;

Since many complemented compatibilities must be introduced in order that, for i <> j, ai ∗ bj = 0,

val(C = A AND B) < valmax(n)

where

valmax(n) = 9 · 3 · (1 + 1/2 + 1/4)n−3 · NMT1(n)

Besides ,

val(op(A AND B) < val(A AND B)

CONCLUSION

Since the number of minterms of ECF(n) contained in CF(n) is equal to 3n. NMT1(n) and the value of an AND or OR

operation, that is the number of new minterms of ECF(n) produced by an operation, is less than

valmax(n) = 9 · 3 · (1 + 1/2 + 1/4)n−3 · NMT1(n)

the number of operations necessary to implement CF(n) is larger than

3n/(9 · 3 · (1 + 1/2 + 1/4)n−3)

and, therefore, it increases exponentially with n.

Since the synthesis of Core Function CF(n) is an NP-complete problem, this result is equivalent to proving that P and

NP do not coincide.

Journal of Global Research in Computer Sciences

GRCS| Volume 15| Issue 1| March, 2024 31

REFERENCES

1. A.R.Meo: “On the P versus NP question”.

https://www.accademiadellescienze.it/attivita/editoria/lavori-di-soci

2. A.R.Meo: “On the P vs NP question: a proof of inequality”, arXiv:1802.005484.

3. Lance Fortnow: “The status of the P versus NP problem”, Communications of the ACM, September 2009.

4. “The P versus NP problem,” in J.Carlson, A. Wiles (eds.), The Millennium Prize Problem, pp.88-104,

Providence: American Mathematical Soceity.

5. Razborov, “Lower bounds on the monotone complexity of some Boolean functions”. Soviet Mathematics-

Doklady 31,(1985)485-493.

6. A.R.Meo: “Some theorems concerning the core function” in “Concurrency, Graphs and Models”, Springer-

Verlag Berlin Heidelberg, 2008.

7. S.A.Cook: The complexity of theorem proving procedures, in: Proc. 3rd Annual ACM Symp. on Theory of

Computing, (1971),pp.151-158. ACM Press.

8. K.Mulmuley and M.Sohoni. Geometric complexity theory I: An approach to the P vs. NP and related problems.

SIAM Journal on Computing, 31(2):496{526,2001}.

https://www.accademiadellescienze.it/attivita/editoria/lavori-di-soci

