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INTRODUCTION
Background and Literature Review

Several mathematicians have tried to obtain a radical solution of the quintic equation. Up to the past century no one 
succeeded to come up with its general algebraic solution. Joseph Louis Lagrange (1736-1814) wrote a book [1] in which he 
examined previous attempts to solve the quintic equation. Lagrange [2] introduced the concept of the Lagrange Resolvent and 
noted that the Resolvent worked for cubic and quartic equations but failed to achieve the desirable results for higher degree 
equations. In his contribution it is noted that the degree of the Resolvent of a polynomial is equal to the order of the sn. This means 
any attempt of solving a polynomial of degree 5 would lead to an equation of degree 120 (which is also the order of s5)

In math a Resolvent is an equation upon whose solution the solution of a problem depends. 

For the purpose of this paper I will touch on a few highlights of the Lagrange Resolvent. 

For an nth degree polynomial the Lagrange Resolvent is defined as

( ) 1
1

i n i
iiR xω ω= −

=
=Σ                           										                     1

where x_i, i=1,. . . , n, are the roots of the equation and ω is an nth root of unity.

For a cubic equation it means by the method of Lagrange resolvents,
2

1 2 3z x x xω ω= + +
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Where xi are the roots of the cubic equation and ω is the cube root of unity. By permuting these roots into each other we get 
six different values of z. 

The six different permutations are:
2

1 1 2 3z x x xω ω= + +

2 1z zω=
2

3 1z zω=
2

4 1 3 2z x x xω ω= + +

5 4z zω=
2

6 4z zω=

The equation ( )( )( )( )( )( )1 2 2 3 4 5 6 0x z x z x z x z x z x z− − − − − − =  is then formed.

We then find out that

( )( )( )( ) 3 3
1 2 2 3 4 1x z x z x z x z x z− − − − = −

And

( )( )( ) 3 3
4 5 6 4x z x z x z x z− − − = −

So that

( )( )( )( )( )( ) ( )( ) ( )3 3 3 3 6 3 3 3 3 3
1 2 2 3 4 5 6 1 4 1 4 1 4x z x z x z x z x z x z x z x z x z z x z z− − − − − − = − − = − + +

The above equation is quadratic in x3. 

The importance of the Lagrange resolvent is its ability to solve the cubic and even quartic equations. However if a similar 
construction is made with a quartic equation it would yield a solvable equation of degree 24. With the quintic equation however 
the Lagrange Resolvent would yield an unsolvable degree 120 polynomial equation. The Lagrange resolvent failed to provide a 
way forward to the solution of higher degree polynomial equations.

In 1799 Paolo Ruffini provided an incomplete proof of the impossibility of solving quintic and higher degree equations. In 
1826 Niels Henrik Abel [3] provided a proof to show the impossibility of solving general degree five equations and above. Evariste 
Galois (1832) [4] constructed the Galois resolvent that is, if we have a polynomial with coefficients in a field F then the resolvent:

1

i n

i i
i

v a x
=

=

=∑ 1 2,  .  .  .  ., na a a ∈R  is a Galois resolvent if one gets n! different functions when permuting the roots with each 

other.

The Galois resolvent is then used to form the polynomial ( ) ( )( ) ( )1 2 .  .  . nP v v v v v v v= − − −  where vi are symmetric functions 
of the roots of the polynomial. With His group theory Galois made the observation that because it is impossible to have a chain 
of groups for permutation groups of 5ns ≥  then it is impossible to solve algebraically equations of degree five and above. Galois 
Theory identified criteria for obtaining solvable cases.

Bring [5] and Jerrard [6] how the general quintic equation can be reduced to trinomial form

There is the Dummit proof theorem [7] which states that the irreducible quantic ( ) 5 3 2f x x px qx rx s= + + + +  is solvable in 
radicals if and only if the sextic equation

( )6 5 2 4 3 3 4 2 5 6 4 8 40 160 400 512 3125 256 9375 0x ax a x a x a x a x a ab+ + + + + − + − =  has a rational root. If this is the case the 
sextic factors into the product of a linear polynomial (x - θ) and an irreducible quintic g(x). I will show later in this paper how this 
sextic can be reduced to linear and quadratic factors.

Edward Thabo Motlotle [8], in his 2011 master’s thesis managed to present a formula for solving the Bring-Jerrard quintic 
equation using the Newton’s sum formula. In his contribution Motlotle convincingly argued that Abel’s impossibility proof has been 
misconstrued by many as meaning that no general algebraic solution of the quintic equation is attainable. He showed that such 
a formula in unattainable only within a field of Rational numbers. He then moved on to deriving a formula. Motlotle demonstrated 
that the Galois group associated with the general quintic equation is solvable over algebraic numbers. 
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Motlotle identified a pattern that flows from the work of del Ferro (1465 – 1526) and Ferrari (1522 – 1565) in their approach 
to the cubic equation. The pattern he identified was of the form:

0nr K L− − =

Statement of the Problem

Could it be possible that the Galois Theory is incomplete in its treatment of higher degree polynomials? What about the 
Lagrange and Galois resolvents, are they all that the mathematics principles can provide in the solution of higher degree algebraic 
equations? Is it possible to come up with factorized forms that can be used to solve higher degree polynomials? Is it possible 
to come up with instantiations of the Newton’s sum formula? In the most general sense, the newton’s identity is a correlation 
between roots and coefficients of a polynomial equation. Could it be possible to come up with a correlation connecting the 
coefficients of a polynomial to a single root? If such a correlation can be obtained should make it possible to factorize a degree n 
polynomial to linear and degree n-1 factors. Is it possible that after reducing a higher degree polynomial and obtaining solutions 
in terms of lower degree polynomial to covert the same in forms of roots of the original polynomial?

In this paper I will seek to present methods of factorizing higher degree polynomial s to solvable forms. I will seek to present 
an instantiation of Newton’s identity that can be used factor linear factors from out polynomial equations. 

I will seek to show that the sextic equation of Dummit’s proof theorem is reducible to quintic and linear factors.

OBJECTIVES
The main objective of this paper is to show that algebraic equations of degree five and above are solvable algebraically.

Specifically I will seek to present a method by which a degree n polynomial can be factored to a linear factor and degree n-1 
polynomial. 

I will seek to present solvable factorized forms of polynomial equations.

I will seek to present a method of converting back a root to nth root form where the polynomial has been reduced to lower 
forms and roots have obtained in lower forms. 

METHODOLOGY
Approach and Justification

Abstract algebra asserts the impossibility of solving a general algebraic equation of degree 5n ≥  because the Alternating 
group is simple that is it does not permit normal subgroups.

In the paper “Solution of Solvable Irreducible Quintic Equations, without the aid of a Resolvent Sextic” [9], George Paxton 
Young asserts the irreducibility of the Bring-Jerrard quintic equation.

G.P. Young, on the basis of irreducibility of the quintic equation in the trinomial form, argues further that it cannot be solved 
algebraically except in particular cases.

The Bring-Jerrard quintic equation is given by:

5 0x px q+ + = 											            	           2

G.P. Young then brings in exogenous quantities or parameters by which the most general solvable cases of the Bring-Jerrard 
quintic equation can be determined algebraically. 

Young introduced the rational functional relations ( ), , .p A B etcφ=  and ( ), , .q A B etcψ=  with ( )4

2

5 3
16
A B

p
B
−

=
+

 and 

( )5

2

22
16

A B
q

B
+

=
+

 as his most general cases. Then he was able to determine the roots in terms of A, B. 

I will seek to use the approach of Young to propose a possible method of solving the quintic equation and higher degree 
equation. Since the parameterization of Young did not yield a complete solution, I will seek to modify it to achieve a general 
solution. 

The trinomial quintic equation has two parameters. I seek to introduce a parameterization in which one of the parameters is 
a root of the algebraic equation and the other parameter/parameters are the coefficients of the equation. Such a parameterization 
is as a matter of fact an instantiation of the Newton identities. Newton identities can be viewed as a parameterization which 
correlates the roots and coefficients of the polynomial equation. 

To reduce the Bring-Jerrard quintic, I introduce the functional relation ( ),p A qφ=  Then the roots will be determined in terms 
of A, q. 
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It is desirable to express the roots in terms of p, q. In such cases a functional relationship between A, p and q must be sought 
for, that is:

( ),A f p q=

Whenever such relations are found then the polynomial has a general algebraic solution. 

In this research I will extend my argument to irreducible algebraic equations of degree n. I will show that such equations are 
reducible in the most general sense. Thus I will show that algebraic equations of higher degree are always reducible. 

In this paper partial reference will also be made to my previous contributions in the area [10, 11].

I will seek to show that there are factorable forms that are very effective in solving higher degree polynomials.

In the event formulae of a polynomial equation is given in terms of lower degree polynomials because of factorability, I will 
seek to present a method in which the root can be converted to an order equal to the degree of the polynomial.

Method

Consider the Bring- Jerrard quintic equation 
5 0x px q+ + = 												                       3

The functional relationship ( ),p A qφ= 									                    4 

can be used to reduce it to quartic and linear factors.

More definitely: 
4( )qp A

A
= − +

												                       5

Using such a relationship as above the Bring-Jerrard quintic equation can be reduced to: 

( ) 4 3 2 2 3 0qx A x Ax A x A x
A

 − + + + − = 
  									                   6 

Examples 

To illustrate, if in the above quintic equation, if we take A = 1 and q =1, then p = -2. One of the roots is therefore 1. 

If we take A = 5 and q = 10 then p = -627. One of the roots of quintic equation is 5 and so on. 

Thus the Bring-Jerrard quintic equation is solvable in the parameter A and q. It is however more desirable to solve it in 
parameters p and q. A further analysis shows it is still possible. This will be discussed further in the paper. 

By the transformation used by Bring, the sextic equation can be brought down to the form:

6 2
4 5 6 0x b x b x b+ + + = 											                      7

The functional relation ( )4 5 6, ,b h B b b= 									                    8 

can be used to reduce sextic to linear and quintic factors. 

More definitively:

4 5 6
4 2

b bb B
B B

 = − + + 
  										            	            9 

In this case the sextic equation 0.6 is reduced to:

( ) 5 4 2 3 3 2 5 6 6
2 0b b bx B x Bx B x B x x

B B B
  − + + + − + − =  

   						                 10

The expansion of equation 0.6 will result in equation 0.6 

Thus the sextic equation 0.6 is solvable in the parameters B, b5 and b6

Examples 

If in the above sextic equation we take  1B = , 5b 1= , 6b 1= , then 4b 3= − . One of the roots of the sextic equation is 1. 
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If we take  5B = , 5b 4= , 6b 1= , then 4
15646

25
b = −  0ne of the roots of the sextic equation is 5. 

The polynomial equation of degree n can be brought down to the form:
4

4 0. . . . 0n n
nx b x b−
−+ + + = 									                                  11

The functional relation 4 5 6 0
4 2 4( . . . . . . )n n

n n

b b bb C
C C C
− −

− −= − + + + +  						                12

can be used to reduce the polynomial equation 0.9 

In this case the polynomial equation 0.9 can be reduced to the form:

( ) 1 2 2 3 5 6 0 0
2 4. . . .  . . . . . 0n n n n n

n

b b b bx C x Cx C x x
C C C C

− − − − −
−

  − + + + − + + + − =  
   				            13

Thus the polynomial equation 0.9 is solvable in parameters 5 6 0, ,  .  .  .  . n nC b b b− −

It is however more desirable to obtain solutions of higher degree polynomials in terms of the endogenous parameters. 

Note the above parameterizations involve connecting between a root of a polynomial equation and its parameter. 

The Newton’s sum formula can be viewed as a generalization of the above instantiation. 

There is the Dummit proof theorem [7], [8] which states that the irreducible quantic 5 3 2( )f x x px qx rx s= + + + +  is solvable 

in radicals if and only if the sextic equation ( )6 5 2 4 3 3 4 2 5 6 48 40 160 400 512 3125 256 9375 0x ax a x a x a x a x a ab+ + + + + − + − = 	
		                        											                    14 

has a rational root. If this is the case the sextic factors into the product of a linear polynomial (x - θ) and an irreducible quintic g(x).

In view of the above analysis the above sextic equation can be factorized if we can take:
4

4 4

3125 93758 1369 ba a
a a

= − + +
										                   15

so that the 12 now takes the form:

( )
4

6 5 2 4 3 3 4 2 5 6 4
4 4

3125 93751371 40 160 400 512 3125 256 9375 0bx a x a x a x a x a x a ab
a a

 
+ − + + + + + + − + − = 
 

 

The factorized form of the sextic equation 13 is 

( ) ( )
4 4 4 6 4

5 4 2 3 3 3 2 5
4 4 3 3 2 2

3125 9375 3125 9375 3125 9375 256 93751370 39 1370 (159 39 1370 ) 512 3125 0b b b a abx a x a x a x a a x a x
a a a a a a a

     −
− + − + + + − + + + + − + + + − − =    

    

Solvable Factorized Forms

In chapter 2 we saw that higher degree polynomials are always reducible. It is still possible to identify ways of reducing higher 
degree polynomial to produce quadratic, cubic and even quartic factors [12]. 

In this paper I will discuss possible factorization forms to achieve this. 

Consider the Bring-Jerrard quintic equation:
5 0x px q+ + = 											                	            16

For the Bring- Jerrard quintic equation the factorizations form:

 
( ) ( )

2
22 3 0q eax dx e x x a bx

e
 +

+ + − + + + = 
  	 							                 17

can be used to reduce the Bring-Jerrard quintic in general. In this form, the exogenous parameters can be related to 
endogenous parameters. That is: 

( ) ( ) ( ) ( ) ( ) ( )
2 3 2 3

3 3
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5
2 108 12 4 108 12 27 6 2 2 108 12 4 108 12 27 6 2 6

p q p q p q p q p q p q           − + + + + + − + + − + + + + + − + + +           
            	            18
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( ) ( ) ( ) ( ) ( ) ( )
2 3 2 3

3 3
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5
2 108 12 4 108 12 27 6 2 2 108 12 4 108 12 27 6 2 6

2

p q p q p q p q p q p q
a

           − + + + + + − + + − + + + + + − + + +           
           =

( ) ( ) ( ) ( ) ( ) ( )
2 3 2 3

3 3
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 12  
2 108 12 4 108 12 27 6 2 2 108 12 4 108 12 27 6 2 6

  
2

p q p q p q p q p q p q
 

            − + + + + + − + + − + + + + + − + + −                        
 + −

( ) ( ) ( ) ( ) ( ) ( )
2 3 2 3

3 3
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5
2 108 12 4 108 12 27 6 2 2 108 12 4 108 12 27 6 2 6

2

p q p q p q p q p q p q           − + + + + + − + + − + + + + + − + + +           
           
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( ) ( ) ( ) ( ) ( ) ( )
2 3 2 3

3 3
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5
2 108 12 4 108 12 27 6 2 2 108 12 4 108 12 27 6 2 6

2(
2

p q p q p q p q p q p q
e

           − + + + + + − + + − + + + + + − + + +           
           = +

( ) ( ) ( ) ( ) ( ) ( )
2 3 2 3

3 3
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 12  
2 108 12 4 108 12 27 6 2 2 108 12 4 108 12 27 6 2 6

2

p q p q p q p q p q p q
 

            − + + + + + − + + − + + + + + − + + −                        
 

( ) ( ) ( ) ( ) ( ) ( )
2 3 2 3

3 3
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5
2 108 12 4 108 12 27 6 2 2 108 12 4 108 12 27 6 2 6

  )
2

p q p q p q p q p q p q           − + + + + + − + + − + + + + + − + + +           
            −

( ) ( ) ( ) ( ) ( ) ( )
2 3 2 3

3 3
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 12  
2 108 12 4 108 12 27 6 2 2 108 12 4 108 12 27 6 2 6

p q p q p q p q p q p q
 

            − + + + + + − + + − + + + + + − + + − −                        
 

( ) ( ) ( ) ( ) ( ) ( )
2 3 2 3

3 3
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11
2 108 12 4 108 12 27 6 2 2 108 12 4 108 12 27 6 2 6

p q p q p q p q p q p q           − + + + + + − + + − + + + + + − + + +           
            		            20

The Factorized form 0.2 of the Bring-Jerrard quintic equation is solved by substitution of the above coefficients in the auxiliary 
cubic and quadratic equations.

Two of the roots of the Bring-Jerrard quintic equations are;

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 3 2 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5
3 3

2 108 12 4 108 12 27 6 2 2 108 12 4 108 12 27 6 2 6

1 4 ( 2 (

2

2

1 1 1 1 1 1 1 1 1

 

2 108 12 4 108 12 27 6 22

1,2

1
2

p q p q p q p q p q p q

p q p q p q

x =

− + + + + + − + + − + + + + + − + + +

− +

− + + + + + − + +

±

           
           
           

    
    
    

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

3

3

2 3

1 1 1 1 1 1 1 1 1 1
3

2 108 12 4 108 12 27 6 2 6

2

2 3 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3

2 108 12 4 108 12 27 6 2 2 108 12 4 108 12 27 6 2

p q p q p q

p q p q p q p q p q p q

− + + + + + − + + −

− + + + + + − + + − + + + + + − + +

  
 

      
            

           
          
          

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

3

5
3

6

 )

2

2 3 2 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 32  

2 108 12 4 108 12 27 6 2 2 108 12 4 108 12 27 6 2 6

2

1 1 1 1 1 1 1 1 1

2 108 12 4 108 12 27 6 2

p q p q p q p q p q p q

p q p q p q

+

− − + + + + + − + + − + + + + + − + + − −

− + + + + + − + +




                                     
   
   
   

( ) ( ) ( )
3 2 3

1 1 1 1 1 1 1 1 1 11
3 3   )

2 108 12 4 108 12 27 6 2 6

2

p q p q p q− + + + + + − + + +
       
       
       

For sextic and septic equations the factorized form suggested below can be can be used be able to relate the endogenous 
and exogenous parameters and thus come up with their general solution: 

( )( ) ( )
2 2

2 34 3 3
2

q ea c ax bx x c dx e x x a fx
c e

 + +
+ + + + + − + + + +  				            	            21 

Conversion of Equation to Solvable Form

Consider the Bring Jerrard quintic equation:
5 0x px q+ + = 												                        22 
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If we take 3/2p kx= 											                      23

The equation 0.1 takes the form:
5 5/2 0x kx q+ + = 											                     	            24

In the form the roots of the quintic equation are:

2
25

1
4( )

2
k k qx − + −

= 											                      25

2
25

2
4( )

2
k k qx ω − + −

=
										               	            26

2
2 25

3
4( )

2
k k qx ω − + −

=
											                       27

2
3 25

4
4( )

2
k k qx ω − + −

=
									         	                          28

2
4 25

5
4( )

2
k k qx ω − + −

=
									         	                           29

Where ω is the fifth root of unity.

Suppose we have a situation where the roots were obtained from say auxiliary quadratic equation after factorization, then 
the roots take the form:

L = f(p,q)													                        30 

where p and q are the parameters of the trinomial quintic equation

When L is equated to 0.5 and simplified we find out that:

5
5( )qk L

L
= − + 												                     31

Substituting the equation 9 into 0.5 to 0.8 then we get the following results:

5 5 2
5 55 2

1

( ) 4
( )

2

q qL L q
L Lx

+ + + −
=

									                                 32

5 5 2
5 55 2

2

( ) 4
( )

2

q qL L q
L Lx ω

+ + + −
=

								                               33

5 5 2
5 552 2

3

( ) 4
( )

2

q qL L q
L Lx ω

+ + + −
=

									                  34

5 5 2
5 553 2

4

( ) 4
( )

2

q qL L q
L Lx ω

+ + + −
=

									                   35

5 5 2
5 554 2

5

( ) 4
( )

2

q qL L q
L Lx ω

+ + + −
=

							        		           36

In the discussion in chapter 3.2 a value of L is given by:
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 3 2 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5
3 3

2 108 12 4 108 12 27 6 2 2 108 12 4 108 12 27 6 2 6

1 4 ( 2 (

2

2

1 1 1 1 1 1 1 1 1

 

2 108 12 4 108 12 27 6 22

1

p q p q p q p q p q p q

p q p q p q

L

− + + + + + − + + − + + + + + − + + +

− +

− + + + + + − + +

= − +

           
           
           

     
     
     

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 3
3 1 1 1 1 1 1 1 1 1

3
3

2 108 12 4 108 12 27 6 2

2 3 2 3
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3

2 108 12 4 108 12 27 6 2 6 2 108 12 4 108 12 27 6 2

2

p q p q p q

p q p q p q p q p q p q

− + + + + + − + + −

− + + + + + − + + − + + + + + − + +

       
             

                                    

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

5
3

6

2

2 3 2 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5
3 3

2 108 12 4 108 12 27 6 2 2 108 12 4 108 12 27 6 2 6

 

2

2 3

1 1 1 1 1 1 1 1 1 1
3) 2  

2 108 12 4 108 12 27 6 2 2

p q p q p q p q p q p q

p q p q p q

+

− + + + + + − + + − + + + + + − + + +

− − + + + + + − + + −

           
           
           

     
     
     

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 3

1 1 1 1 1 1 1 1 1
3

108 12 4 108 12 27 6 2 6

2 3 2 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11
3 3   )

2 108 12 4 108 12 27 6 2 2 108 12 4 108 12 27 6 2 6

2

p q p q p q

p q p q p q p q p q p q

+ + + + + − + + −

− − + + + + + − + + − + + + + + − + + +

                   
           
           
           

	
         														                       37 

Thus the roots of the quintic equation are obtained by substituting the value of L in 1.6 into equations 1.1 to 1.5. The 
advantage of the above formulation is that it puts all polynomial equations under the same formula structure. I have used this 
example to illustrate with quintic equations but it can be extended to higher degree polynomials. 

SUMMARY CONCLUSION and RECOMMENDATIONS 
There are a variety of techniques of solving algebraic equations of degrees greater than four degrees. The failure of the 

Lagrange and Galois resolvents to provide general algebraic solutions does not in any way mean that such solutions don’t exist. Abel 
– Ruffini impossibility theorem is incomplete in the sense that it did not exhaust all avenues of algebraic solution of higher degree 
polynomial. The proof was based on the limitations of the approaches used then. Galois Theory needs a fresh re-examination. 
There exists a framework under which formulae of polynomial equations of degree two and above take the same structural form. 
Abstract algebra needs a re-writing to enable other branches of mathematics and science that depend on it to grow. 

I recommend an active research be initiated on solvability of higher degree polynomials. 
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