
         
          ISSN(Online): 2320-9801 
             ISSN (Print):  2320-9798                                                                                                                         

                                                                                                               
 

International Journal of Innovative Research in Computer  
and Communication Engineering 

(An ISO 3297: 2007 Certified Organization) 

      Vol. 2, Issue 4, April 2014            
 

Copyright to IJIRCCE                                                                     www.ijircce.com                                                                        3701          
 

 

On the Design of an Object Oriented Programming 
Language 

Mokua Richard 
MSc, Dept. of Computing, ICSIT, JKUAT, Kenya 

ABSTRACT: This paper presents work done to address two issues of interest to both Programming Language (PL) 
theory and software development: 1) The inadequacies of mainstream Object Oriented Programming Languages used 
in the software industry such as Java, C# and C++ and 2) The design and implementation of a statically typed Object 
Oriented Programming Language that addresses some of the issues identified above. 
Research was conducted through critical analysis of existing Object Oriented Programming Languages (OOPL) as well 
as a literature review of journal and conference publications in that area. The aim was to elicit evidence of PL 
constructs that had been found through previous experience to lead to poor Software Engineering practices such as 
increased amount of bugs, poor maintainability, late (i.e. runtime) detection of errors, poor usability and low 
programmer productivity. 
This work has produced key benefits that include a deeper understanding of PLs specifically OOPLs, and an improved 
comprehension and appreciation of the nuances of PL design. 
The findings have the potential to benefit PL researchers and designers in various ways. 
We consider that the contributions of this work are that a list of the language constructs (e.g., Static Variables, Lack of 
Object Level Encapsulation, Presence of Primitive Types) that seem to lead to poor Software Engineering practices 
with current OOPL have been identified. A further significant contribution is the production of a new OOPL designed 
to act as proof of concept to illustrate how these issues can be addressed. 
 
 KEYWORDS: Object Oriented Programming Language; Compilers; Software Engineering; Type Systems; Compiler 
Design and Construction 

I. RELATED WORK 
The concept of traits were first introduced by Smalltalk, but the version used here is based on [28]. The syntax of the 
designed language closely follows that of Scala [22]. Object based encapsulation is an extension of the one 
implemented in Scala [22] and also an adaptation of the one in Newspeak. Elimination of static state is partly an 
adaptation of work by Bracha [3] in which he does the same for his dynamically typed language. In this paper, the same 
concept is applied to statically typed language. Uniform object model was inspired by Smalltalk [15], Newspeak[3] and 
Scala [22]. In implementing the compiler, a lot was learnt from browsing Java compiler source code from the OpenJDK 
project and the open source Fortress project. 

II. INTRODUCTION 
Most programming languages can be classified into families based on their model of computation [24]. Declarative 

languages focus on instructing the computer what to do while imperative languages focuses on how the computer 
should do it. 

Declarative languages can further be divided into the following sub-categories: 
 Functional languages employ a computational model based on the recursive definition of functions. They take 

their inspiration from the lambda calculus [5]. In essence, a program is considered a function from inputs to 
outputs, defined in terms of simpler functions through a process of refinement. Languages in this category 
include Lisp [18], ML [20] and Haskell [23]. 

 Dataflow languages model computation as the flow of information (tokens) among primitive functional nodes. 
Val (Ackerman and Jack, 1979) is an example of a  language from this category. 

 Logic or constraint-based languages take their inspiration from predicate logic. They model computation as an 
attempt to find values that satisfy certain specified relationships, using a goal-directed search through a list of 
logical rules. Prolog [12] is the best-known logic language. 

Imperative languages are divided into the following subcategories: 



         
          ISSN(Online): 2320-9801 
             ISSN (Print):  2320-9798                                                                                                                         

                                                                                                               
 

International Journal of Innovative Research in Computer  
and Communication Engineering 

(An ISO 3297: 2007 Certified Organization) 

      Vol. 2, Issue 4, April 2014            
 

Copyright to IJIRCCE                                                                     www.ijircce.com                                                                        3702          
 

 

 von Neumann languages are the most familiar and commonly used programming languages. They include 
FORTRAN [13], Ada 83[6], C [19], and all of the others in which the basic means of computation is the 
modification of variables [20]. 

 Object-oriented languages are comparatively recent, though their roots can be traced to Simula 67[14] .Most 
are closely related to the von Neumann languages but have a much more structured and distributed model of 
both memory and computation. Rather than picture computation as the operation of a monolithic processor on 
a monolithic memory, object-oriented languages picture it as interactions among semi-independent objects, 
each of which has both its own internal state and subroutines to manage that state. Smalltalk [15] is the purest 
of the object-oriented languages; C++ [25] and Java [16] are the most widely used. 

Programming Languages can also be categorized based on if they have a type system or not. In typed languages, 
program variables have an upper bound on the range of values that they can assume. On the other hand, un-typed 
languages do not restrict the range of variables [11]. 

III. CONTRIBUTIONS 
The contributions of this paper are as follows: Identify language constructs whose use in writing programs violate 
the Software Engineering principles of Testability, Reusability, Security and Expandability. Demonstrate through 
case studies and literature review ways in which such constructs affect the design principles identified above. 
Design the syntax and semantics of a language that solves the issues identified. We then proceed to give a detailed 
overview of both the syntax and semantics of the new language. Develop a prototype compiler for the languages. 
We give an overview of the design of the compiler and the challenges experienced and tradeoffs made in the design 
and implementation. 

IV. CRITIQUE OF THE STATE OF THE ART 
This research was undertaken using two key methods; first is the analysis of programming language theory and 

second experimenting with open source programming languages. We were able to identify several language constructs 
in most modern widely used Programming Languages that if used in the development of a software system they could 
lead to violation of some of the software engineering principles specified in the ISO/IEC 9126-1:2001 Standard. 

a) Presence of Static Variables 
If a field is declared static, there exist exactly one incarnation of the field, no matter how many instances 
(possibly zero) of the class may eventually be created. A static field, sometimes called a class variable, is 
incarnated when the class is initialized [16].In Java, static means one per class, not one for each object no matter 
how many instance of a class might exist. This means that a static variable can be used without creating an 
instance of the class. Static variable present a number of challenges in the language: 
 Static variables increase cases of security vulnerabilities 

This is due to two main factors , there is no way to check whether the code that changes such variables has 
the appropriate permissions and any mutable static state can cause unintended interactions between supposedly 
independent subsystems. 
 Static variables leads to systems that are not re-entrant. 

It is not possible to have several concurrent executions of the software in the same VM. In the paper [21], the 
authors describes a number of disadvantages that they encountered due to use of static variables in the first 
version of the Scala [22] compiler. Since all references between classes were hard links, the author could not 
treat compiler classes as components that can be combined with different other components. This, in effect, 
prevented piecewise extensions or adaptations of the compiler. Another issue is that since the compiler worked 
with mutable static data structures, it was not re-entrant, i.e. it was not possible to have several concurrent 
executions of the compiler in a single VM. This made it a problem for using the Scala compiler in integrated 
development environment such as Eclipse. 
 Static variables increase the startup time 
They encourage excess initialization up front. The Java Virtual Machine Specification [26] specifies that the 
static initializers and class variable initializers are executed in textual order. They may not refer to class 
variables declared in the class whose declarations appear textually after the use, even though these class 
variables are in scope. This restriction is designed to catch, at compile time, most circular or otherwise 
malformed initializations. Not to mention the complexities that static initialization engenders: it can deadlock, 



         
          ISSN(Online): 2320-9801 
             ISSN (Print):  2320-9798                                                                                                                         

                                                                                                               
 

International Journal of Innovative Research in Computer  
and Communication Engineering 

(An ISO 3297: 2007 Certified Organization) 

      Vol. 2, Issue 4, April 2014            
 

Copyright to IJIRCCE                                                                     www.ijircce.com                                                                        3703          
 

 

applications can see uninitialized state, and it is hard to compile efficiently (because there is need to test if 
things are initialized on every use). 
 Static variables are bad for distribution. 
Static state needs to either be replicated and synced across all nodes of a distributed system, or kept on a central 
node accessible by all others, or some compromise between the former and the latter. This is all difficult, 
expensive and unreliable. 
 Static variables make it difficult to do testing of code 
The reason is that states in static values may be kept between unit tests because the class or dll is not unloaded 
and reloaded between each unit test. This violates the principle that unit tests should be independent of each 
other, and can result in tests passing and failing depending on the order in which they are run. 

b) Lack of Object Level Encapsulation 
Most mainstream Object Oriented languages use class based encapsulation. The idea is that privacy is 
per class, not per object. This makes it possible to violate data abstraction as shown below. 

class C { 
private i :String ; 
def public m1(v : C) : Unit= { v.i = "XXX"} 
} 

As the above code illustrates, class based encapsulation does not protect one object from another since 
one object is able to access (and modify) the private attributes of another object. An alternative to class-
based encapsulation is object based encapsulation. Privacy is per object. A member M marked with 
private modifier can be accessed only from within the object in which it is defined. That is, a selection 
p.M is only legal if the prefix is this or O.this, for some class O enclosing the reference. 

class C { 
private i : String ; 
def public m1(v : C) : Unit= { v.i = "XXX"} //Error 
def public m2():Unit = { this.i = "YY";} //Ok 
} 

A member marked private is visible only inside the object that contains the member definition. 
 

c) Method Lookup Strategy 
In general, the semantics of a method invocation that has no explicit target (receiver) are that method 
lookup begins by searching the inheritance hierarchy of self (this); if no method is found, then the lookup 
procedure is repeated recursively at the next enclosing lexical level. This notion is described in detail in 
the Java Language Specification [16] in section 15.12 (Method Invocation Expressions). Situations like 
the following can arise:  

class Sup { } 
class Outer { 

int m(){ return 91} 
class Inner extends Sup { 

int foo(){return m()}// case 1: new Outer.Inner().foo() = 91 
} 

} 
} 

The expectation is that a call to foo will yield the result 91, because it returns the result of the call to m, 
which is defined in the enclosing scope [3]. Consider what happens if one now modifies the definition of 
Sup: 

class Sup { 
int m(){ return 42}// case 2: new Outer.Inner().foo() = 42 

} 
The result of calling foo is now 42. This is undesirable; since the behaviour of the subclass changes in a way 
that its designer cannot anticipate. The classic semantics whereby inherited members may obscure lexically 
visible ones are counterintuitive. Lexically visible definitions should be given priority over inherited ones, either 



         
          ISSN(Online): 2320-9801 
             ISSN (Print):  2320-9798                                                                                                                         

                                                                                                               
 

International Journal of Innovative Research in Computer  
and Communication Engineering 

(An ISO 3297: 2007 Certified Organization) 

      Vol. 2, Issue 4, April 2014            
 

Copyright to IJIRCCE                                                                     www.ijircce.com                                                                        3704          
 

 

implicitly via scope rules or by requiring references to inherited features to explicitly specify their intended 
receiver. Retain implicit receivers for both self sends and outer sends, but reverse the priority so as to favour 
sends to names with locally visible definitions. 
 

d) Presence of Primitive Types 
Most mainstream statically typed object oriented languages divide their types into two categories, primitive 

(built in) types e.g. int, char, long, double, float, short and reference types e.g. Integer, String 
This dichotomy presents a number of problems: 
1) Dichotomy of basic semantics. Features of the language carry different meaning depending on the type of 

entity being dealt with. For example the built in operator == means different things depending on whether 
the variable types are primitives or reference types [16] . 

2) Primitives cannot be used where objects are expected. For example, in the Java Language the container 
Vector cannot be used to store variables of primitive types, since it’s designed to store variables of 
reference type Object. 

3) Primitive types advertise their representation to the world. As one example, consider type char. When Java 
was introduced, the Unicode standard [27] required 16 bits. This later changed, as 16 bits were inadequate 
to describe the world’s characters. In the meantime, Java had committed to a 16 bit character type. Now, if 
characters were objects, their representation would be encapsulated, and nobody would be very much 
affected by how many bits are needed. 

4) Primitive types necessitate the existence of special code which leads to the undoing of polymorphism. This 
is due to the fact that we cannot send messages to variables of primitive type. For example the String class 
has a static method valueOf that produces a String representation of its argument. For reference 
arguments, the Objects toString method is invoked. 

5) The inclusion of primitive types forces Java Reflection API to be inconsistent and essentially broken to 
accommodate them. 

V. CASE STUDIES 
A. Static Variables : Scala Compiler: 

This section relates the experience of the Scala Team in the implementation of two different versions of the Scala 
compiler as described in the paper Scalable Component Abstractions [21]. The Scala compiler consists of several 
phases. All phases after syntax analysis work with the symbol table module. The table consists of a number of 
modules including: Names module that represents symbol names. A name is represented as an object consisting of 
an index and a length, where the index refers to a global array in which all characters of all names are stored. 
Symbols modules that represent symbols corresponding to definitions of entities like classes, methods, variables in 
Scala and Java modules. A module Types that represents types. A module Definitions that contains globally visible 
symbols for definitions that have a special significance for the Scala compiler.  
In previously released versions of the Scala compiler, all modules described above were implemented as top-level 
classes using Java language, which contain static members  and data. For instance, the contents of names were 
stored in a static array in the Names class.  This technique has the advantage that it supports complex recursive 
references. But it also has two disadvantages, since all references between classes were hard links, the compiler 
classes could not be treated as components that can be combined with different other components. This prevented 
piecewise extensions or adaptations of the compiler and second, since the compiler worked with mutable static data 
structures, it was not re-entrant, i.e. it was not possible to have several concurrent executions of the compiler in a 
single JVM. This was a problem for using the Scala compiler in an integrated development environment such as 
Eclipse. 
The Scala Team solved the above problem introduced by static references through the use of nested classes and 
doing away with static references. In that way, they arrived at a compiler without static definitions. The compiler is 
by design re-entrant, and can be instantiated like any other class as often as desired. 

B. Method Lookup Strategy : Newspeak Programming Language: 
In the paper [3], Gilad Bracha provides his experience on the implementation of method lookup mechanism for the 
Programming Language Newspeak. Newspeak is a dynamically typed class based language which is a descendant 
of Smalltalk. The paper presents alternative interpretations of the semantics of method lookup: Require all sends to 



         
          ISSN(Online): 2320-9801 
             ISSN (Print):  2320-9798                                                                                                                         

                                                                                                               
 

International Journal of Innovative Research in Computer  
and Communication Engineering 

(An ISO 3297: 2007 Certified Organization) 

      Vol. 2, Issue 4, April 2014            
 

Copyright to IJIRCCE                                                                     www.ijircce.com                                                                        3705          
 

 

have an explicit receiver as in Smalltalk. The problem with this solution is that it’s overly verbose. Require outer 
sends to have an explicit receiver. Require all self sends to have an explicit receiver. Given that outer sends have an 
implicit receiver, it makes no sense to treat locally defined self sends differently, so we interpret this as only 
requiring all inherited self sends to have an explicit receiver. Retain implicit receivers for both self sends and outer 
sends, but reverse the priority so as to favor sends to names with locally visible definitions. 

C. Uniform object Model: 
In OOPL there has always been distinction between "primitive" or "built-in" and user defined types. The paper [7], 
shows how an object-oriented language can be defined without any primitive types at all, and yet achieve the same 
run-time efficiency as languages that make use of primitive types (at the expense of greater compile-time effort). 
The authors’ quote the following as advantages of having a uniform object model in a language: The programming 
model is simplified because the distinction between primitives and objects has been removed; and the language 
design is simplified and more easily verifiable because a larger amount of the language is in libraries, and there is 
no need for large numbers of rules for primitive types that must be included in the language specification and 
verified on an ad-hoc basis. 
The paper [22] describes how Scala uses a pure object-oriented model. Every value is an object and every operation 
is a message send. Every class in Scala inherits from class Scala.Any. Subclasses of Any fall into two categories: the 
value classes which inherit from scala.AnyVal and the reference classes which inherit from scala.AnyRef. Another 
aspect of Scala's unified object model is that every operation is a message send, that is, the invocation of a method. 
For instance the addition x + y is interpreted as x. +(y) i.e. the invocation of the method + with x as the receiver 
object and y as the method argument.     

VI. LANGUAGE SYNTAX AND SEMANTICS 
The Lexical Structure of the language closely resembles that of Java; in particular, lines are terminated by the ASCII 

characters CR, or LF, or CR LF. White space is defined as the ASCII space, horizontal tab, and form feed characters, as 
well as line terminators. Both single-line comments and multi-line comments are supported.  

The language has a nominal type system [31] with some elements of structural typing. In particular, it has the 
following kind of types , Class Type is introduced through a Class declaration. The name of the Class is the type. A 
class type e is a subtype of every type that appears on its extends clause. The Trait Type is introduced through a Trait 
declaration. The name of the Trait is the type. A trait type is a subtype of every type that appears on its extends clause. 
The Function type is introduced through block closure declaration. 

A Compilation Unit consists of a package declaration, followed by a sequence of type definitions. Class declaration 
contains the name of the class, a modifier  that restricts the visibility of the class constructor, a list of formal value 
parameters for the default constructor and an optional list of well-formed trait names that are accessible from this class 
declaration. The class body defines the class members i.e. fields, methods, constructors and nested class definitions.  

A Trait declaration contains the trait name followed by an optional type parameter clause and an extend clause 
finally followed by the trait body. When a trait extends others, it means that it inherits the methods from those traits, 
and that the type defined by that trait is a subtype of the types of traits it extends. 

We give an overview of the expressions in the language: 
1) Instance Creation Expression: Instance Creation Expression has the form new c where c is a constructor 

invocation. Let T denote the type of c, then T must denote a non-abstract subclass of Object. 
2) This and Super 

this refers to the object reference of the inner most class or trait enclosing the expression. The type of this is the 
type of the class or trait. A reference super.m refers statically to a member m in the super-type of the innermost class 
or trait containing the reference. It evaluates to a member m’ that has the same name as m. 
3) Method Invocation:  

A Method Invocation expression has the form e.m(e0,...,en).The expression e, if present, must evaluate to an object 
expression. Let the expression e have the type T given by the definition D. Then: 
a. D must be either a Trait or a Class. 
b. Further, D must define a method of the form m(e:T0,...,el: Tl). where: 
 l must be equal to n 



         
          ISSN(Online): 2320-9801 
             ISSN (Print):  2320-9798                                                                                                                         

                                                                                                               
 

International Journal of Innovative Research in Computer  
and Communication Engineering 

(An ISO 3297: 2007 Certified Organization) 

      Vol. 2, Issue 4, April 2014            
 

Copyright to IJIRCCE                                                                     www.ijircce.com                                                                        3706          
 

 

 for every i in 0...n, the type of the parameter value expression ,e in e.m(...,ei,...) must conform to the expected 
type of the corresponding formal parameter declaration m(...,ei:Ti,...).If the method invocation expression has the 
form m(e0,...,en). 

Then search for m in the following order: 
 Search for a field named m in the enclosing class declaration. 
 If m is a field, then its type must be function type and the expression is a Lambda Invocation . 
 Else, search for a method named m recursively in the outer class enclosing this class declaration if any. 
 If not found, search the Traits that this class extends for a method named m. 
 If still not found, return the error method not found. 

 
4) Blocks 
A Block expression has the form {s0,... sn, e0}. The result of evaluating the Block expression is the value of the 

evaluation of the last expression in the block. The type of the last expression in the block must conform to the type of 
the Block expression. Let the expected type of the Block expression e = {s0,...,sn,e0;} be T, then the type of the 
expression e0 must conform to T. 

5) Assignments 
An Assignment Expression has the form x= e .The assignment changes the current value of x to be the result of 

evaluating the expression e. The type of e is expected to conform to the type of x. 
6) If Expressions:  

An if expression has the form: if (e0) e1 else e2.The expression e0 must conform to a Boolean type. The type of the 
expression e1 and e2 must conform to the expected type of the if expression. The expression to be executed is chosen 
based on the results of the evaluation of the Boolean expression e0 
7) While Loop Expression 

A While loop has the form while(e0){ e1}.The expression e1 is repeatedly evaluated until the evaluation of the 
expression e0 results in a false value. If e0 evaluates to false, then the expression e1 is not evaluated. The type of the 
expression e0 must conform to a Boolean type. The type of the e1 expression must conform to the type of the while 
expression. 
8) Do Loop Expressions 

A Do Loop has the form do{e1}while(e0).  
The expression e1 is evaluated; if e0 evaluates to false, the expression e1 is not evaluated. Otherwise the 
expression e1 is repeatedly evaluated until the evaluation of the expression e0 results in a false value. The type of 
the expression e0 must conform to a Boolean type. The type of the e1 expression must conform to the expected 
type of the do loop expression. 

9) Lambda Expression 
Lambda Expression has the form #(p0: T0,...,p1: Tn) ⇒ e . 
The formal parameters #(p0: T0,...,p1: Tn) must be pair-wise distinct. The scope of  
the parameters is the expression e. The expression must conform to the expected type of the Lambda expression. 

VII. COMPILER 
The compiler is written in Java. It compiles programs and generates JVM byte-codes [26] which can execute on the 

JVM. The compilation is done over a number of phases. These phases include: Lexical Analysis in which the source 
program is transformed to a stream of tokens: symbols such as identifiers, literals, operators, keywords and 
punctuation. Comments and blank spaces are discarded. The parser constructs the Abstract Syntax Tree(AST) from the 
token stream during parsing. Semantic analysis involves several stages. 

 Name Analysis: When defining a name if the name is already in the local environment: the identifier is already 
declared. Else, the new name is inserted in the environment. When looking up a name, first look in the local 
environment. If it is found we are done, otherwise repeat in the next environment on the search path. If there are no 
more environments the identifier is not declared.  

The Type-checker performs the following tasks, determine the types of all expressions and checking that values and 
variables are used consistently with their definitions and with the language semantics. 



         
          ISSN(Online): 2320-9801 
             ISSN (Print):  2320-9798                                                                                                                         

                                                                                                               
 

International Journal of Innovative Research in Computer  
and Communication Engineering 

(An ISO 3297: 2007 Certified Organization) 

      Vol. 2, Issue 4, April 2014            
 

Copyright to IJIRCCE                                                                     www.ijircce.com                                                                        3707          
 

 

Reachability Analysis: This phase involves carrying out a conservative flow analysis to make sure all statements are 
reachable. There must be some possible execution path from the beginning of the constructor, method or instance 
initializer that contains the expression to the expression itself.  

Definite (un)assignment analysis: consists of two parts, in the first part, each local variable and every blank val must 
have a definitely assigned value before any access of its value occurs and every blank val variable must be assigned at 
most once; it must be definitely unassigned when an assignment to it occurs. 

Closure conversion transforms a program in which functions can be nested and have free variables into an equivalent 
one containing only top level functions. 

Algorithm 
i. The closing of functions through the introduction of environments. Functions are closed by adding a parameter 

representing the environment, and using it in the function’s body to access free variables. Function abstraction 
must create and initialize the closure and its environment; Function application must extract the environment and 
pass it as an additional parameter. 

ii. The hoisting of nested, closed functions to the top level. Once they are closed, nested anonymous functions are 
hoisted to the top level and given an arbitrary name. The original occurrence of the nested function is replaced by 
that name. 

The input to the byte-code generation is an attributed AST. The algorithm traverses this AST generating byte-code 
for each of the constructs found in the tree. The algorithm uses object web byte code generation library. 

VIII. CONCLUSION AND FUTURE WORK 
 
 We have presented several programming language constructs that we believe when used in large software projects 

they can lead to software that is of poor quality. We then demonstrated by use of four case studies the problems caused 
by some of the constructs based on real life large software projects. Each of this construct is avoided in some of the 
existing Statically Typed Object Oriented Programming Language, but we believe we are the first to eliminate all of 
them in one STOOPL language. 

There are several issues that need to be addressed through further research: A formalization of the design of the 
language along with proofs of type safety and the implementation of a production quality compiler. 

REFERENCES. 
1. Ackerman, W.B.and Jack B. D. ,VAL: a Value oriented Algorithmic Language, 1979. 
2. Ancona, D., Lagorio, G. & Zucca, E., Jam - A Smooth Extension of Java with Mixins, ECOOP00 European Conference on Object 

Oriented Programming. Springer, pp. 154-178, 2000. 
3. Bracha, G, On the Interaction of Method Lookup and Scope with Inheritance and Nesting, 2010. 
4. Bracha, G. & Cook, W., Mixin-Based Inheritance, ACM Sigplan Notices. ACM, pp. 303-311, 1990. 
5. Barendregt, H.P., The Lambda Calculus its Syntax and Semantics, North-Holland, 1981. 
6. Barnes, J., Ada 2005 Rationale, Springer, 2008. 
7. Bacon, D.F., Kava: a Java dialect with a uniform object model for lightweight classes, Concurrency: Pract. Exper.,2003. 
8. Boehm, B.W., Brown, J.R. & Lipow, M., Quantitative evaluation of software quality, 2008. 
9. Cielecki, M., Fulara, J. & Jakubczyk, K., Propagation of JML non-null annotations in Java programs of programming in Java, 2006. 
10. Cardelli, L., Type systems. ACM Computing Surveys, 28(1), pp.263-264, 1996. 
11. Clocksin, W.F. & Mellish, C.S., Programming in Prolog, Springer-Verlag, 1981. 
12. Chivers,I  and Sleightholme,J., Introduction to Programming with Fortran: With Coverage of Fortran 90, 95, 2003 and 77. Springer: 

London, U.K. Springer, 2006. 
13. Dahl, O.-J., Myrhaug, B. & Nygaard, K.,SIMULA 67. Common Base Language, 1968. 
14. Goldberg, A, and David R.(1985).Smalltalk-80: the Language and Its Implementation. Reading, MA: Addison-Wesley.  
15. Gosling, J. et al., The Java Language Specification, Third Edition, Addison Wesley, 2005. 
16. Halloway, S, Programming Clojure S. Davidson Pfalzer, ed., Pragmatic Bookshelf, 2009. 
17. Harrison, M,The Programming Language LISP: Its Operation and Applications, MIT Press,1967. 
18. Kernighan, B.W. & Ritchie, D.M, The C Programming Language, Prentice Hall, 1978. 
19. Milner, R., Tofte, M. & Harper, R., The Definition of Standard ML, MIT Press, 1990. 
20. Odersky, M. & Zenger, M.,Scalable component abstractions. ACM SIGPLAN Notices, 40(10), p.41, 2005. 
21. Odersky, M. et al.,An Overview of the Scala Programming Language, Second Edition, 2006. 
22. O’Sullivan, B., Goerzen, J. & Stewart, D., Real World Haskell, O’Reilly Media, 2008. 
23. Scott, M.L. , Programming language pragmatics, Morgan Kaufmann Pub, 2000. 
24. Stroustrup, B., The C++ Programming Language, Addison-Wesley,1997. 
25. Lindholm, T. & Yellin, F, The Java Virtual Machine Specification, Addison-Wesley,1999. 
26. Rossum, G.V. & Drake, F.L., Unicode HOWTO. History, 172(7), p.10, 2010. 



         
          ISSN(Online): 2320-9801 
             ISSN (Print):  2320-9798                                                                                                                         

                                                                                                               
 

International Journal of Innovative Research in Computer  
and Communication Engineering 

(An ISO 3297: 2007 Certified Organization) 

      Vol. 2, Issue 4, April 2014            
 

Copyright to IJIRCCE                                                                     www.ijircce.com                                                                        3708          
 

 

27. Scharli, N. et al. ,Traits: Composable units of Behaviour, ECOOP 2003–Object-Oriented Programming, p.327–339, 2003.  
28. Schärli, N. et al ,Traits: Composable Units of Behavior. Technical Report, 2743, pp.248-274, November 2002. 
29. Nutter, C. et al., Using JRuby, Pragmatic Programmers, 2010. 
30. Pierce, B.C., Types and Programming Languages, The MIT Press, 2002. 
31. Taivalsaari, A., On the notion of inheritance. ACM Computing Surveys, 28(3), pp.438-479, 1996. 
32. Borning, A.H. & Ingalls, D.H.H., Multiple Inheritance in Smalltalk-80. In Proceedings at the National Conference on AI. pp. 234-237, 

1982.  
33. Keene, S.E., Object-Oriented Programming in Common-Lisp, Addison Wesley, 1989. 
34. Meyer, B., Object-Oriented Software Construction, Second Edition, Prentice Hall PTR, 1997. 
35. Schaffert, C. et al., An Introduction to Trellis/Owl, ACM Sigplan Notices. pp. 9-16, 1986. 
36. Flatt, M., Krishnamurthi, S. & Felleisen, M., Classes and Mixins, Conference Record of POPL98 The 25th ACM SIGPLANSIGACT 

Symposium on Principles of Programming Languages, ACM Press, pp. 171-183, 1998. 
37. Mens, T. & Van Limberghen, M., Encapsulation and Composition as Orthogonal Operators on Mixins: A Solution to Multiple Inheritance 

Problems , Object Oriented Systems, 3(1), pp.1-30, 1996. 
38. Moon, D.A., Object-Oriented Programming with Flavors, Proceedings of the Conference on Object Oriented Programming Systems 

Languages and Applications OOPSLA. ACM Press, pp. 1-8.  
39. David A. Moon. Object-oriented programming with flavors. In Proceedings OOPSLA 86, ACM SIGPLAN Notices, volume 21, pages 

18,November 1986. 
 

 
BIOGRAPHY 

Mokua Ombati Richard is a MSc. Software Engineering student in the Computing Department, Jomo Kenyatta 
University Of Agriculture And Technology. His research interests are Programming Languages, Compilers, and 
Computer Security.  

 
 


