
Volume 4, No. 8, August 2013

Journal of Global Research in Computer Science

REVIEW ARTICLE

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 57

Operational Profile: A Critical Review

Pawan Kumar Chaurasia1 and Jahid Ali2

Assistant Professor1

Department of Information Technology1,

BBAUniversity, Lucknow-226025, India1

pkc.gkp@gmail.com

 Professor2

SSICMT, Pathankot2

Punjab -145001, India2

Abstract—Technology is changed with the requirement of the user. There is a tremendous change in size, speed and structure of computer

hardware and software. With these changes, complexity of computer system also increases with the time. As a result, different types of faults,

bugs and failures has also increased in due coverage of time. Therefore, plenty of work has been done to test the failure using operational profile

and numerous analysis software reliability models for estimating software reliability growth has been proposed. In order to assess their usability

and importance, this paper does a critical review on the need and significance of a specifying operational and usage based modeling.

Keywords - Meant Time Between Failure [MTBF], Mean Time to Failure [MTTF], Mean Time to Repair [MTTR, Software Operational Profile

[SOP], Markov Chain Model, State Hierarchy Model [SHY]

 INTRODUCTION

Software testing is very costly for any organization, if it is

not in a planned and systematic way to optimize the number

of tests. So the first requirement is to find the number of test

cases which are executed in various function/modules. The

reliability of a software product is to estimate how the

computer and other elements of the devices will used by

user/developer. In 1993 Musa proposed a dynamic and

innovative approach which is called Operational Profile(OP)

which allocates test cases and estimate the the reliability of

the software product. Software reliability is defined as “The

probability for failure free operations of a program for a

specified time under set of operating conditions in specific

environment”[1]. Reliability of a system is to be accessed by

test cases by testing the software product under simulated

conditions. It covers methods, models and metrics of how to

estimate and predict software reliability. There are different

methods which are used to measure the reliability. It is

measure by Mean Time Between Failures [MTBF] and

defined as the Mean Time to Failure [MTTF] and Mean

Time to Repair [MTTR][2]. Failure is the condition in

which system fails to perform its required function.

Reliability is the amount of time that software is available

for use. The major problem in the field of software

reliability estimation is the accuracy of the Operational

Profile[3].

Software Operational Profile (SOP) is a quantitative

description of software field usage. SOP consists of a set of

software operations together with their occurrence

probability [4]. An OP, guides testing, ensures that if testing

is finished and the software is shipped because of imperative

schedule constraints, the most used operations will have

perform the most testing and the reliability level will be the

utmost. It establish the communication between customers

and developers. It also discuss about the features they would

like to use. On the base of usage and usage specification

models are defined. It helps to organize the work processes

which are related to user processes and help the customer’s

training efforts towards the most-used operations. By using

the operational profile and software reliability, reorganize

the test and test conditions and improve the reliability and

reduced the cost of the software.

This paper is organized in four sections. Section I, depicts

about the introduction part of the software reliability and

operational profile. In section II different types of profiles

are discussed and describe in step-by-step. Different Usage

models are defined in section III and conclusion of the paper

with the future scope of the paper is presented.

PROFILE

When we develop any OP, several other profiles are also

developed as required by the profile. A profile is simply a

set of disjoint options with the probability that each will

occur [5]. Profile is explained with the help of example by

using the two variables X and Y, if X comes 30 percent of

the time and Y comes 70 percent of the time, then the

operational profile of X, 0.30 and Y is 0.70. It is the set of

independent operations that a software system performs and

their associated probabilities. To develop any OP, five steps

are to be processed in a consecutive mode.

 Find the Customer Profile.

 Establish the User Profile

 Define the System-Mode Profile

 Find Functional Profile.

 Implement Operational Profile

In figure 1 the first four profiles (Customer, User, System-

Mode, and Functional) are started on the design level of a

system while the last profile (Operational) is on the

implementation level and works on the operations of a

Pawan Kumar Chaurasia et al, Journal of Global Research in Computer Science, 4 (8), August 2013, 57-61

© JGRCS 2010, All Rights Reserved 58

Figure 1. Operational Profile

system. All the first four profiles are not essential for every

system. Customer profile is not used if there is a single

customer or if the entire customer used the system in a same

manner. Figure 1 Operational Profile is adopted from [6] to

implement the OP to guide test selection.

CUSTOMER PROFILE

It is a set of customer groups with corresponding occurrence

probabilities makes the customer profile. A customer is the

person, group, institutions or organization that acquires the

system. Customers in a customer group use the system in a

same manner, or in a different manner from other

customer’s types which categorize the user in homogeneous

or heterogeneous users. If the entire user used in a same

manner, then it is called homogeneous and if the entire user

execute the different operations in different manner then it is

called heterogeneous. In table 1, there are two different

types of customer groups in Institution, Small Institution and

Large Institution. Small institutions execute the required

operations with 40 percent of the use and the large

institutions execute 60 percent. So, the customer profile with

occurrence of probability is 0.40 and 0.60 which is

calculated on the occurrence of the group.

Table 1: Customer Profile

Customer Group Percent Occurrence

Probability

Small Institution 40% 0.40

Large Institution 60% 0.60

USER PROFILE

A user is a group, person or institution that employs, in the

system not acquire the system. System users are different

types of users which are not necessarily identical to its

customers. Different user groups can divide the task of

developing the operational profile among different analysts

of the system. The user profile can be defined on the

experience of customer profile and determining the different

user groups for each customer group.

Different user groups like homogeneous/heterogeneous

employ of the system separately work in the system. User

groups are system administrators, maintenance users,

regular users, part-time/full-time users etc. The overall

occurrence probability for user groups can be obtained by

multiplying the probability of user group and customer

group with the occurrence probability of that customer

group.

In table 2, User Groups are divided into two parts,

Regular Employee and Part-Time Employee. If User

Groups are combined over different customer groups, then

their probabilities will have to be added and calculate the

total User Group probability. Suppose if the input customer

profile is (40% Small Institute and 60% Large Institute) and

the user group use (30% Regular Employee and 70% Part-

Time Employee). In each customer group in a User Profile

of 0.12 (40% * 30%), used the Small Institute of Regular

Employee and 0.28(40%*30%) for Part-Time Employee,

0.18(60%*30) and 0.42(60%*70%) for Large Institution.

Total use by Regular Employee is 0.30 of system and 0.70

by Part-Time Employee of a system.

Table 2: User Profile

 Small Institute

probability=0.4

Large Institute

Probability=0.6

Total

User

group

Prob.
User

Group

User

with

cust.

Prob.

Group

Overall

user

group

prob. for

customer

group

User

with

cust

Prob.

Group

Overall

user

group

prob. for

customer

group

Reg. Emp 0.30 0.12 0.30 0.18 0.30

Part-Time

Emp

0.70 0.28 0.70 0.42 0.70

SYSTEM MODE PROFILE

System mode is a set of function and operations which is

helpful in analyzing the behavior of the user and the system.

Functions are used at the design level and operations are

used at the implementation level. A system mode profile is

the set of system modes and their associated occurrence

probabilities. It is possible to have system modes that can

only be used if no other system modes are used, but it is also

possible to have multiple system (operational and

functional) simultaneous system modes used. The same

function or operation can occur in different system modes.

There is no limit to establish to establish the system mode

but make balance between effort and cost to determine their

associated operational profile. In system mode, there is a

single user or different types of users which can be used the

system by the administrator, user or guest.

Pawan Kumar Chaurasia et al, Journal of Global Research in Computer Science, 4 (8), August 2013, 57-61

© JGRCS 2010, All Rights Reserved 59

FUNCTIONAL PROFILE

After implementing a system mode profile, then we evaluate

the system mode for the functions performed during that

mode, and then assigning probabilities to each of the

functions. Functional profiles are usually designed during

the requirement phases or during early design phases and it

should be kept updated when changes occur. Basically,

functions worked as external entity set that user can execute

with the system. To create functional profile the system

modes have to be broken down into the single functions and

classified as in figure 1(Operational Profile):

 Number of Functions

 Initial Function List

 Explicit/Implicit Function List

 Environmental Variables

 Final Functional List

 Occurrence Probabilities

(a) Number of Functions: The number of operations or

functions in a functional profile is not fixed. It will vary

based on the project size, number of system modes,

environmental conditions and functions breadth. For

developing a system, task into two functions, are the

possibilities to develop them with different priorities and the

frequency of use.

(b) Initial Function List: The initial function list highlight

features, which are function capabilities of interest and

values to users. This list can be designed by functions which

are relevant to each key input variable. Features should be

taken from the customer or user and may be from

requirement specification. To identify the environmental

input variables and their values or value ranges that will

require separate development efforts. It defines the

conditions that affect the program runs, but do not relate to

the features. Traffic load and hardware configuration are

examples of environmental variables.

(c) Explicit/Implicit Function List: A functional profile can

be either explicit or implicit, depending on the key input

variables. A key input variable is an external parameter

which affects the execution path a software system traversed

on different values of the parameter. Implicit profile can be

used only when the input variables are independent with

each other and consider on the occurrence probability of

their value while explicit profile consist of enumerated set of

all variables with their associated occurrence probabilities.

An explicit profile includes a cross product of all key input

variables with the respective occurrence probabilities.

(d) Environmental Variables: The environmental input

variables can be identified in different conditions that affect

the way the program runs. These parameters variables can

cause the range of variables and different operations to be

performed.

(e) Final Function List: To create final function list, first

examine the dependencies among the key input variables

and its feature. If the variable is fully depending on another,

then it can eliminate from the final list.

Final Function List = No. of Environmental Variable Values

(No. of functions in Initial list - Combination of Initial

Function)

(f) Occurrence Probabilities: It can be measured by the

usage taken on the log of the system, latest use or

automation of the manual function. Occurrence Probability

can be calculated on Operation. When new versions are

released then the combination of old functions and new

functions are measured. So estimation of combined function

is less accurate than measure of the function.

Functional profile implemented at the design level of

the system. After implementing functional profile, it is

divided into number of functions and the probability of

function is defined. The initial function list highlight the

function of the list which is further either explicit/implicit of

the function which depends on the input variables. How the

program runs in different environmental conditions are

defined on the base of environmental variables and final

functional list identify the dependencies among the variable.

On the base of usage, probability of the occurrence of the

function is defined.

OPERATIONAL PROFILE

Operations are used at implementation level of a system

while functions are task of a system which is used for

design. The number of operations is higher than the number

of functions. A single function may be implemented by

multiple operations in the system. It is also possible to set of

functions to set of operations.

Operational Profile process is divided into three different

stages. First operations are associated with runs. To develop

the operational profile, runs which divide the execution time

of a program. A run is a quantity of work or a set of task

initiated by some specific user intervention or input state

and represent the activity. The input space is the set of input

states that can occur during the system executions. The

required input space and the design input space is different,

which required conditions to be tested to execute the

program. A list of input state is defined with the

corresponding probabilities for an input state profile.

As with the functional profile, there are two ways to

determine the occurrence probabilities are by recording the

input space or by estimating the occurrence probabilities of

the functional profile. After each input variable is partition

into ranges, with the probability of each variable must be

identified. The initial estimation of the system should be

performed by the expert who has knowledge of the system

and the user. The number of operations is too long, it is

essentially to minimize the number of operations by

applying three methods.

 Reduced run types.

 Run types are executed in a group.

 Avoid the run types expected to have total occurrence

probability considerable less than the failure intensity

objective of the system.

It is beneficial to reduce the number of run types in reducing

the testing effort, design and implementation costs. We can

reduce the number of run types either by reducing the

Pawan Kumar Chaurasia et al, Journal of Global Research in Computer Science, 4 (8), August 2013, 57-61

© JGRCS 2010, All Rights Reserved 60

number of input variables or the number of values for each

input variables. There are different ways to reduce the

number of input variables.

 Minimize operations.

 Minimize hardware configuration, if possible.

 Environment conditions are limited to execute the

operation.

 Dependency between successive runs is reduced.

 The system must tolerate the faults like human,

hardware and software.

Operational profile can change when new features added

with the profile and measured data regular on the base of

number of runs of each run types. This measurement is used

to identify the failures detection and recording functions or

other performance measurement system.

TEST SELECTION

Test cases are derived from the various possible taken runs

in each operation which define different states in a function.

Test cases can be selected efficiently on the based of usage

and the most used operation will be tested the most. Testing,

execute by an operational profile, is very effective for

identifying failures and their occurrence probability. It is

difficult to test all the input state. Selection should be based

on operation and run types, which is replaced if the failure

occurs. Selection must be perform without replacement in

which runs can be chosen only. Thus test are organized

from the incomplete design input state, because environment

are changed over time, repeating the same operation.

USAGE BASED MODELING

Modeling the usage in a usage specification, defines the

intended usage of the system. Specification defines both

how the users can use the system and the probabilities for

different use of the system. From the usage specification test

cases are generated according to the usage profile. If the

probability distribution is same as the system is used during

operation, we can estimate reliability of the system used.

There are several techniques that have been proposed for the

usage specification. The most used usage specification

models are introduced.

A. Markov Chain Model

WHITTAKER et. al. [7] proposed Markov-chains for
sequence of inputs of modeling sequences to software
systems. Musa describe usage for the purpose of generating
test cases and to guide software testing statically. Events are
executed in a consecutive sequence and represent as a
stochastic process. These sequences represent test cases and
can be used for statistical software testing. Construction of
Markov Chain model is divided into two phases, structural
phase and the statistical phase. During structured phase, a
state is created for every input of the system which is able to
receive. Arcs connect consecutive actions of the events of the
system which define the initial and final state of the system.
After establish the Markov chain, probabilities of the arcs are
assigned to the arcs during the execution of the statistical
phase.

 In Figure 2. Markov Chain defines finite state with
distinct parameters are used to model the sequences. The
states of the chain represent the inputs of the software, while
the arcs represent the sequences of states and are glossed
with probabilities. Each arc is independent from previous
state and represents the present state of the model.

The advantage of the Markov chain model is to generate the
execution of sequences of the usage and capture the
operational behavior of the system. It also helps to analysis
of the process which is based on random process. The
disadvantage of the system is that for a large system the
number of states acquire very large.

Figure 2. Markov Chain Model

B. State Hierarchy Model

This model is used for complex systems and several

users’ types and heterogeneous types of users. The aim

of this model is to divide the usage problem into

different levels. Markov chain is used by the Wohlin and

Runsen[8] for usage modeling and reliability

engineering of software components.

Arora, Mishra and Kumre[9] worked on the issue of

allocation of test cases to infrequent operations. For

usage modeling of software components for probabilistic

state-charts [10] describe usage structure and profile.

The representation in a hierarchical form of Markov

model is also called as State Hierarchy Model (SHY) is

used for the representation of the usage model. In figure

3 State Hierarchy models [7] is divided into different

complex systems with several user types and numerous

different users.

Pawan Kumar Chaurasia et al, Journal of Global Research in Computer Science, 4 (8), August 2013, 57-61

© JGRCS 2010, All Rights Reserved 61

Figure 3. State Hierarchy Model

The function of this model is to divide the usage model

into different levels for concentrating on one expression at

the time. The number of levels can easily be added in the

modeling when required. In figure 3 the usage level

represent all the different usage of the system, the user type

level represent heterogeneous/homogeneous types of user

like (client user and administrative user) is assumed from

[11] to define the state hierarchy model. User level represent

the users of the system and the service level describes about

the services which service a particular user can avail. The

behavior level describes about the structural description of a

service. On the base of service transaction is made and an

event is added to the test case. Test cases can be generated

by system to top-down approach through the SHY model by

selecting different User types, User level, Services and the

corresponding Markov Models. All users of a specific user

type have the same individual profile. This profile behaves

as transactions probabilities. The choice of specific user to

generate the next event depends on the actual state of the

user and the state of its services. The weight of the state

depends on the behavior level to capture the probability of

the next event.

The advantage of this model is to allow for the dynamic

probabilities of the state. The disadvantage of this model is

that, it is difficult to find a desirable list of the state and the

second problem is both the services and users are dependent

of each other.

CONCLUSION

From the above approaches of developing different profiles

and usage modeling for software reliability. It is found that

Operational profile plays an important role in reliability

estimation. When the developer have limited time to test the

test cases and to select the test cases for testing the most

used functions ensure to increase the software reliability.

On the base of usage, Markov Chain and State Hierarchy

Model is proposed for measure the reliability of the

software. To calculate the reliability, failure data can be

collected on the based of usage or samples from the

intended usage and representation of the operation or test

cases. In future, novel model can be proposed to make

relation in extended levels. It is accommodating to calculate

the reliability of the handheld devices in medical and signal

control system in railway.

REFERENCES

[1] IEEE standard “Glossary of Software Engineerng Terminology”,
ANSI/IEEE standard 729, 1991.

[2] R.E. Mullen, “ The Lognormal Distribution of Software Failure
Rates: Application to Software Relaibility Growth Modelling”, Cisco
Systems, IEEE, 1998, pp. 134-142.

[3] R. A Khan, K. Mustafa and S.I Ahson, “Operational Profile-Factor for
Reliability Estimation”, University Press, Gautam Das & V P Gulati,
CIT, 2004, pp. 347-354.

[4] J.D Musa, A. Iannio and Okumoto, “Software Relaibility:
Measurement, Prediction, Application”, Professional Edition, Mc
Graw Hill Publishers, New York 1990.

[5] J.D Musa, “The Operational Profile in Software Reliability
Engineering: An Overview”, Proceeding: 3rd International
Symposium on Software Reliability Engineering, 7-10 Oct 1992,
pp. 140-154.

[6] J.D Musa, “Operational Profile in Software Reliability Engineering”,
IEEE Software, Vol. 10, No2, pp 14-32, March 1993, ISSN 0740-
7459.

[7] J.A.Whittaker, J.H. Poore, “Markov Analysis of Software
Specification”, ACM Transaction. Software Engineering
Methodology (1993), pp 93-106, ISSN 1049-331X.

[8] C. Wohlin, P. Runeson, “Certification of Software Components”,

 IEEE Trans.Softw. Eng. 20 (1994), pp. 494–499, ISSN 0098-

 5589.

[9] S.Arora, RB Mishra,V.M Kumre,“Software Reliability Improvement

 through Operational Profile Driven Testing”. In Proceedings of

 Annual IEEE Conference on Reliability and Maintainability

 Symphosium, Virginia, 2005, pp, 621-627.

[10] R.Shukla, D. Carrington, P. Strooper, “Systematic Operational

 Profile Development from Software Components”, in APSEC ’04:

Proceedings of the 11th Asia Pacific Software Engineering

 Conference, Washington, DC USA: IEEE Computer Science, 2004,

 ISBN 0-7695-9, pp 528-537.

[11] Heiko Koziolek, “Operational Profiles for Software Reliability”,

 Seminar “Dependability Engineering”, 6th July 2005, pp 1-17.

