International Journal of Innovative Research in Computer and Communication Engineering

(An ISO 3297: 2007 Certified Organization)
Vol. 3, I ssue 7, J uly 2015

Operations on Digraphs and Digraph Folding

E. EL Kholy, H Ahmed
Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt
Department of Mathematics, Faculty of Shoubra Engineering, Banha University, Banha, Egypt

Abstract

In this paper we examined the relation between digraph folding of a given pair of digraphs and digraph folding of new digraphs generated from these given pair of digraphs by some known operations like union, intersection, joins, Cartesian product and composition. We first redefined these known operations for digraphs, then we defined some new maps of these digraphs and we called these maps union, intersection, join, Cartesian and composition dimaps. In each case we obtained the necessary and sufficient conditions, if exist,for a dimap to be digraph folding. Finally we explored the digraph folding, if there exist any, by using the adjacency matrices.

KEY WORDS:Digraphs, adjacency matrices,digraph folding, union, intersection,join the Cartesian product and the composition of digraphs

I. INTRODUCTION

Graph folding is introduced by E.EL-Kholy and A.AL-Esway [3]. The notion of digraph folding is introduced by E.EL-Kholy and H.Ahmed [4]. Definitions (1.1)
(1) A digraph D consists of elements, called vertices and a list of ordered pairs of these elements, called arcs. The set of vertices is called the vertex set of D , denoted by $\mathrm{V}(\mathrm{D})$, and the list of arcs is called the arc list of D , denoted by $A(D)$. If v and we are vertices of D, then an arc of the form vw is said to be directed from v to w. The digraph with no loops is called simple. Two or more arcs joining the same pair of vertices in the same direction is called multiple arcs [5].
(2) Let D_{1} and D_{2} be digraphs and f: $D_{1} D_{2}$ acompinuous function. Then f is called a digraph map if,
(i)For each vertex $v \epsilon V\left(D_{1}\right), f(v)$ is a vertex in $V\left(D_{2}\right)$.
(ii)For each arc e $\epsilon \mathrm{A}\left(\mathrm{D}_{1}\right)$, $\operatorname{dim}(\mathrm{f}(\mathrm{e})) \leq \operatorname{dim}$ (e) [4].
(3) Let D_{1} and D_{2} be simple digraphs, we call a digraph map $f: D_{1} D_{2}$ a digłaph folding if f maps vertices to vertices and arcs to arcs, i.e., for each $v \epsilon V\left(D_{1}\right), f(v) \epsilon V\left(D_{2}\right)$ and for each $e \epsilon A\left(D_{1}\right), f(e) \epsilon A\left(D_{2}\right)(4)$ If the digraph contains loops, then the digraph folding must send loops to loops but of the same direction. Theset of digraph folding between digraphs D_{1} and D_{2} is denoted by $Đ\left(D_{1}, D_{2}\right)$ and from D into itself by $Đ(D)$.
(5)Let D be a diagraph without loops, with n vertices labeled $1,2,3, \ldots, n$. The adjacency matrix $M(D)$ is the $n x n$ matrix in which the entry in row i and column j is thenumber of arcs from vertex i to vertex j [5].
A. Proposition

Let D be a connected digraph without loops with n vertices. Then a digraph folding of D into itself may be defined, if there is any, as a digraph map f of D to an image $f(D)$ by mapping:
(i) The multiple arcs into one of its arcs.
(ii)(a)The vertex v_{i} to the vertex v_{j} if the numbers appearing in the adjacencymatrix in the $i^{\text {th }}$ and $\mathrm{j}^{\text {th }}$ rows (or columns) are the same.
(b)The vertex v_{i} to the vertex v_{j} if the entries of the $i^{\text {th }}$ and $\mathrm{j}^{\text {th }}$ rows are zerosandif the $\mathrm{i}^{\text {th }}$ and $\mathrm{j}^{\text {th }}$ columns are the same, or there exists a row k which has numbers 1 in the $\mathrm{i}^{\text {th }}$ and $\mathrm{j}^{\text {th }}$ columns.
(iii)(a)The $\operatorname{arc}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{k}}\right)$ to the $\operatorname{arc}\left(\mathrm{v}_{\mathrm{j}}, \mathrm{v}_{\mathrm{k}}\right)$ if the $\mathrm{i}^{\text {th }}$ and $\mathrm{j}^{\text {th }}$ rows (or columns) arethesame.

International Journal of Innovative Research in Computer and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, I ssue 7, J uly 2015

(b) The $\operatorname{arc}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)$ to the $\operatorname{arc}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{k}}\right)$ if the $\mathrm{j}^{\text {th }}$ and $\mathrm{k}^{\text {th }}$ columns (or rows) are the same. In general the $\operatorname{arc}\left(v_{i}, v_{j}\right)$ will be mapped to the $\operatorname{arc}\left(v_{k}, v_{l}\right)$ if v_{i} mapped to v_{k} and v_{j} mapped to v_{l}, [4].

II. UNION OF DIGRAPHS

In the following we redefine the known operation, union, given for two simple graphs [3], for digraphs. Definition (2-1)
Let $\mathrm{D}_{1}=\left(\mathrm{V}_{1}, \mathrm{~A}_{1}\right)$ and $\mathrm{D}_{2}=\left(\mathrm{V}_{2}, \mathrm{~A}_{2}\right)$ be simple digraphs .Then the simple digraphD $=(\mathrm{V}, \mathrm{A})$ where $\mathrm{V}=\mathrm{V}_{1} \mathrm{UV} \mathrm{V}_{2}$ and $A=A_{1} U A_{2}$ is called the union of digraphs D_{1} and D_{2} and is denoted by $D_{1} U D_{2}$. When D_{1} and D_{2} are vertex disjoint $D_{1} U D_{2}$ is denoted by, $D_{1}+D_{2}$, and is called the sum of digraphs D_{1} and D_{2}.
Definition (2-2)
Let $\mathrm{D}_{1}=\left(\mathrm{V}_{1}, \mathrm{~A}_{1}\right)$ and $\mathrm{D}_{2}=\left(\mathrm{V}_{2}, \mathrm{~A}_{2}\right)$ be simple digraphs .Let $\mathrm{f}: \mathrm{D}_{1} \mathrm{D}_{1}$ andtg. $\mathrm{H}_{2} \mathrm{D}_{2}$ be digraph maps.By the union dimap of the digraph maps f and g, fUg,we mean a digraph map from the digraph $D_{1} U D_{2}$ into itself.f
$\mathrm{Ug}: \mathrm{D}_{1} \mathrm{UD}_{2} D_{1} U D_{2}$ such thatf(v) $=g(\mathrm{v})$, for all $\mathrm{v} \in \mathrm{V}_{1} \cap V_{2}, f(\mathrm{e})=\mathrm{g}(\mathrm{e})$, for all $\mathrm{e} \epsilon \mathrm{A}_{1} \cap \mathrm{~A}_{2}$ defined by
$f(v)$, if $v \epsilon V_{1}$
(i) For each $v \epsilon V_{1} U V_{2},(f U g)(v)$$\quad\left\{\begin{array}{l}g(v), \text { if } v \in V_{2}\end{array}\right.$
$\mathrm{f}(\mathrm{e})$, ife $\epsilon \mathrm{A}_{1}$
(ii) For each e $\epsilon \mathrm{A}_{1} \mathrm{UA}_{2},(\mathrm{fUg})(\mathrm{e})=\{$
$\mathrm{g}(\mathrm{e})$, if e $\epsilon \mathrm{A}_{2}$

A. Theorem

Let $\mathrm{D} 1=(\mathrm{V} 1, \mathrm{~A} 1)$ and $\mathrm{D} 2=(\mathrm{V} 2, \mathrm{~A} 2)$ be simple connected digraphs .Let $\mathrm{f}: \mathrm{D} 1 \mathrm{D} 1$ ard $\mathrm{g}: \mathrm{D} 2 \mathrm{D} 2$ be digraph maps. Then the union dimap $f U g$ is a digraph folding if f and g are digraph foldings. In this case (fUg)(D1UD2) $=\mathrm{f}(\mathrm{D} 1) \mathrm{Ug}(\mathrm{D} 2)$ The proof is almost as in [2]. Example 2.4
Let $\mathrm{D} 1=(\mathrm{V} 1, \mathrm{~A} 1)$, where $\mathrm{V} 1=\{\mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 3, \mathrm{v} 4\}$ and $\mathrm{A} 1=\{\mathrm{e} 1, \mathrm{e} 2, \mathrm{e} 3, \mathrm{e} 4, \mathrm{e} 5\}$.
Let $\mathrm{D} 2=(\mathrm{V} 2, \mathrm{~A} 2)$, where $\mathrm{V} 2=\{\mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 3, \mathrm{v} 5\}$ and $\mathrm{A} 2=\{\mathrm{e} 1, \mathrm{e} 2, \mathrm{e} 6\}$, see Figure1.

Figure 1: $\mathrm{D} 1=(\mathrm{V} 1, \mathrm{~A} 1)$, where $\mathrm{V} 1=\{\mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 3, \mathrm{v} 4\}$ and $\mathrm{A} 1=\{\mathrm{e} 1, \mathrm{e} 2, \mathrm{e} 3, \mathrm{e} 4, \mathrm{e} 5\}$

International Journal of Innovative Research in Computer and Communication Engineering

(An ISO 3297: 2007 Certified Organization)
Vol. 3, Issue 7, July 2015

Figure 2: fUg: D1UB2 BruD2
Now let $f \in Ð\left(D _1\right)$ be a digraph folding defined by $f\{v 1\}=\{v 3\}$ and $f\{e 1, e 3\}=\{e 2, e 5\}$, where through this paper the omitted vertices and arcs will be mapped to themselves . Also, let $\mathrm{g} \epsilon \mathrm{Đ}\left(\mathrm{D} _2\right)$ be a digraph folding defined by $\mathrm{g}\{\mathrm{v} 1\}=\{\mathrm{v} 3\}$ and $\mathrm{g}\{\mathrm{e} 1\}=\{\mathrm{e} 2\}$, see Figure1.The union dimapfUg: D1UD2D1UD2 defined by $(\mathrm{fUg})\{\mathrm{v} 1\}=\{\mathrm{v} 3\}$ and $(f U g)\{\mathrm{e} 1, \mathrm{e} 3\}=\{\mathrm{e} 2, \mathrm{e} 5\}$ is a digraph folding, see Figure2.The adjacency matrics of D1,D2 and D1UD2 are as follows :

$$
M\left(D_{1}\right)=\begin{aligned}
& v_{1} \\
& v_{2} \\
& v_{3} \\
& v_{4}
\end{aligned}\left[\begin{array}{cccc}
v_{1} & v_{2} & v_{3} & v_{4} \\
0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right], M\left(D_{2}\right)=\begin{gathered}
v_{1} \\
v_{2} \\
v_{3} \\
v_{5}
\end{gathered}\left[\begin{array}{cccc}
v_{1} \\
0 & v_{2} & v_{v_{3}} & v_{5} \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \text { and } M\left(D_{1} \cup D_{2}\right)=\begin{gathered}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{gathered}\left[\begin{array}{ccccc}
v_{1} \\
0 & 0 & v_{2} & v_{3} & v_{4} \\
1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

By using only these adjacency matrices we can define the digraph folding .Forexample ,by using the adjacency matrix $M\left(D_{1}\right)$ we can easily see that the vertex v_{1} will be mapped to the vertex v_{3} since the first and third rows of $M\left(D_{1}\right)$ have the same entries. Also the $\operatorname{arc}\left(v_{1}, v_{4}\right)=e_{3}$ will be mapped to the $\operatorname{arc}\left(v_{3}, v_{4}\right)=e_{5}$ since the $1^{\text {st }}$ and $3^{\text {rd }}$ rows are the same, finally the $\operatorname{arc}\left(v_{2}, v_{1}\right)=e_{1}$ will be mapped to the $\operatorname{arc}\left(v_{2}, v_{3}\right)=e_{3}$ since the $1^{\text {st }}$ and $3^{\text {rd }}$ columns are the same. Again by using $M\left(D_{2}\right)$ and $M\left(D_{1} U D_{2}\right)$ we can describe the digraph folding of both D_{2} and $D_{1} U D_{2}$

III. INTERSECTION OF DIGRAPHS

A. Definition

Let $\mathrm{D}_{1}=\left(\mathrm{V}_{1}, \mathrm{~A}_{1}\right)$ and $\mathrm{D}_{2}=\left(\mathrm{V}_{2}, \mathrm{~A}_{2}\right)$ be simple digraphs. Then the simple digraph $\mathrm{D}=(\mathrm{V}, \mathrm{A})$ where $\mathrm{V}=\mathrm{V}_{1} \cap \mathrm{~V}_{2}$ and $A=A_{1} \cap A_{2}$ is called the intersection of digraphs D_{1} and D_{2} and is denoted by $D_{1} \cap D_{2}$.
B. Definition

Let $\mathrm{D}_{1}=\left(\mathrm{V}_{1}, \mathrm{~A}_{1}\right)$ and $\mathrm{D}_{2}=\left(\mathrm{V}_{2}, \mathrm{~A}_{2}\right)$ be simple digraphs . Let $\mathrm{f}: \mathrm{D}_{1} \mathrm{D}_{1}$ thdg: $\mathrm{D}_{2} \mathrm{D}_{2}$ be digrapr maps. If f and g agree on $V_{1} \cap V_{2}$ and $A_{1} \cap A_{2}$ then by the intersection dimap of the digraph maps f and $g, f \cap g$, we mean a digraph mapf $\cap \mathrm{g}: \mathrm{D}_{1} \cap \mathrm{D}_{2} \mathrm{D}_{1} \cap \mathrm{D}_{2}$, where $\mathrm{V}_{1} \cap \mathrm{~V}_{2} \neq \varnothing$ defined by:
(i) For all $v \epsilon \mathrm{~V}_{1} \cap \mathrm{~V}_{2}$, (f $\left.\cap \mathrm{g}\right)(\mathrm{v})=\mathrm{f}(\mathrm{v}) \Rightarrow \mathrm{g}(\mathrm{v})$
(ii) For all e $\epsilon \mathrm{A}_{1} \cap \mathrm{~A}_{2},(\mathrm{f} \cap \mathrm{g})(\mathrm{e})=\mathrm{f}(\mathrm{e})=\mathrm{g}(\mathrm{e})$

ISSN(Online): 2320-9801
ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 7, July 2015

THEOREM

Let $\mathrm{D} 1=(\mathrm{V} 1, \mathrm{~A} 1)$ and $\mathrm{D} 2=(\mathrm{V} 2, \mathrm{~A} 2)$ be simple connected digraphs .Let $\mathrm{f}: \mathrm{D} 1 \mathrm{D} 1$ d $\mathrm{g}: \mathrm{D} 2 \mathrm{D} 2$ be digraph maps .Then the intersection dimapf $\cap \mathrm{g}$ is a digraph folding if f and g are digraphfolding. Inthiscase $(f \cap g)(D 1 \cap D 2)=f(D 1) \cap g(D 2)$. The proof is easy.
let $D_{1}=\left(V_{1}, A_{1}\right)$, where $V_{1}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}_{6}\right\}$ and $\mathrm{A}_{1}=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}, \mathrm{e}_{4}, \mathrm{e}_{5}, \mathrm{e}_{6}, \mathrm{e}_{7}, \mathrm{e}_{8}\right\}$. Let $\mathrm{D}_{2}=\left(\mathrm{V}_{2}, \mathrm{~A}_{2}\right)$, where $\mathrm{V}_{2}=\{$ $\left.\mathrm{v}_{1}, \mathrm{v}_{5}, \mathrm{v}_{6}, \mathrm{v}_{7}\right\}$ and $\mathrm{A}_{2}=\left\{\mathrm{e}_{5}, \mathrm{e}_{8}, \mathrm{e}_{9}, \mathrm{e}_{10}, \mathrm{e}_{11}\right\}$, see Figure 3.

Figure 3: $\mathrm{D}_{1}=\left(\mathrm{V}_{1}, \mathrm{~A}_{1}\right)$, where $\mathrm{V}_{1}=\left\{\mathrm{v}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}_{6}\right\}$ and $\mathrm{A}_{1}=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}, \mathrm{e}_{4}, \mathrm{e}_{5}, \mathrm{e}_{6}, \mathrm{e}_{7}, \mathrm{e}_{8}\right\}$

\qquad

Figure 4: $\mathrm{D}_{2}=\left(\mathrm{V}_{2}, \mathrm{~A}_{2}\right)$, where $\mathrm{V}_{2}=\left\{\mathrm{v}_{1}, \mathrm{v}_{5}, \mathrm{v}_{6}, \mathrm{v}_{7}\right\}$ and $\mathrm{A}_{2}=\left\{\mathrm{e}_{5}, \mathrm{e}_{8}, \mathrm{e}_{9}, \mathrm{e}_{10}, \mathrm{e}_{11}\right\}$

Figure 5: $(\mathrm{f} \cap \mathrm{g})\{\mathrm{v} 1\}=\{\mathrm{v} 5\}$ and $(\mathrm{f} \cap \mathrm{g})\{\mathrm{e} 8\}=\{\mathrm{e} 5\}$
Now let $\mathrm{f} \epsilon$ Đ $\left(D_{1}\right)$ be a digraph folding defined by $\mathrm{f}\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}=\left\{\mathrm{v}_{5}, \mathrm{v}_{4}\right\}$ andf $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{7}, \mathrm{e}_{8}\right\}=\left\{\mathrm{e}_{4}, \mathrm{e}_{3}, \mathrm{e}_{6}, \mathrm{e}_{5}\right\}$. Also , let $\mathrm{g} \in Ð\left(D_{2}\right)$ be a digraph folding defined by $\mathrm{g}\left\{\mathrm{v}_{1}\right\}=\left\{\mathrm{v}_{5}\right\}$ and $\mathrm{g}\left\{\mathrm{e}_{8}, \mathrm{e}_{9}\right\}=\left\{\mathrm{e}_{5}, \mathrm{e}_{11}\right\}$, see Figure 1.The intersection dimapf $\cap \mathrm{g}: \mathrm{D}_{1} \cap \mathrm{D}_{2} \mathrm{D}_{1} \cap \mathrm{D}_{2}$ defined by $(\mathrm{f} \cap \mathrm{g})\left\{\mathrm{v}_{1}\right\}=\left\{\mathrm{v}_{5}\right\}$ and $(\mathrm{f} \cap \mathrm{g})\left\{\mathrm{e}_{8}\right\}=\left\{\mathrm{e}_{5}\right\}$ is a digraph folding, see Figure 2.The adjacency matrie D_{1}, D_{2} and $D_{1} \cap D_{2}$ are as follows:

ISSN(Online): 2320-9801
ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer and Communication Engineering

(An ISO 3297: 2007 Certified Organization)
Vol. 3, I ssue 7, J uly 2015

By using only these adjacency matrices we can define the digraph folding. For example, by using the adjacency matrix $M\left(D_{1} \cap D_{2}\right)$ we can easily see that the vertex v_{1} will be mapped to the vertex v_{5}, since the first and second rows have the same entries. Also, the $\operatorname{arc}\left(\mathrm{v}_{1}, \mathrm{v}_{6}\right)=\mathrm{e}_{8}$ can be mapped to the $\operatorname{arc}\left(\mathrm{v}_{5}, \mathrm{v}_{6}\right)=\mathrm{e}_{5}$, since the first and second rows are the same. Again by using $M\left(D_{1}\right)$ and $M\left(D_{2}\right)$ we can describe the digraphfoldingof both D_{1} and D_{2}.

IV. JOIN OF DIAGRAPHS

A. Definition

Let D_{1} and D_{2} be vertex dis joint diagraphs. Then we define the join digraph, $D_{1} \vee D_{2}$, to be the digraph in which each vertex of D_{1} or D_{2} is adjacent to the vertices of $D_{2}\left(\right.$ or $\left.D_{1}\right)$.
B. Definition

Let $\mathrm{D} 1=(\mathrm{V} 1, \mathrm{~A} 1), \mathrm{D} 2=(\mathrm{V} 2, \mathrm{~A} 2), \mathrm{D} 3=(\mathrm{V} 3, \mathrm{~A} 3)$ and $\mathrm{D} 4=(\mathrm{V} 4, \mathrm{~A} 4)$ be simple digraphs. Let $\mathrm{f}: \mathrm{D} 1 \longrightarrow \mathrm{D} 3$ and $\mathrm{g}: \mathrm{D} 2 \longrightarrow$ D 4 be digraph maps. By a join dimap, we mean a digraph map, fvg: D1vD2 $\xrightarrow{\mathrm{D} 3 \mathrm{yD} 4 \text { defined by }}$
(i) For each vertex $v \in V_{1} U V_{2},(f v g)(v)=\left\{\begin{array}{l}f(v), \text { if } v \in V_{1} \\ g(v), \text { if } v \in V_{2}\end{array}\right.$
(ii) For each arc $\mathrm{e}=\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right), \mathrm{v}_{1} \in \mathrm{~V}_{1}$ and $\mathrm{v}_{2} \in \mathrm{~V}_{2}$, (fvg) $\{\mathrm{e}\}=\left\{\mathrm{f}\left(\mathrm{v}_{1}\right), \mathrm{g}\left(\mathrm{v}_{2}\right)\right\} \in \mathrm{A}_{3} \mathrm{vA}_{4}$.
(iii) If $\mathrm{e}=(\mathrm{u} 1, \mathrm{v} 1) \in \mathrm{A} 1$, then $(\mathrm{fvg})\{\mathrm{e}\}=(\mathrm{fvg})\{(\mathrm{u} 1, \mathrm{v} 1)\}=\{\mathrm{f}(\mathrm{u} 1), \mathrm{f}(\mathrm{v} 1)\}$, Also if $\mathrm{e}=(\mathrm{u} 2, \mathrm{v} 2) \in \mathrm{A} 2$,then $(\mathrm{fvg})\{\mathrm{e}\}=$ (fvg) $\{(\mathrm{u} 2, \mathrm{v} 2)\}=\{\mathrm{g}(\mathrm{u} 2), \mathrm{g}(\mathrm{v} 2)\}$
Note that If $f\left\{u_{1}\right\}=f\left\{v_{1}\right\}$, then the image of the join dimap (fvg) $\{e\}$ will be a vertex of $D_{3} v D_{4}$ and thus is not a digraph folding.

THEOREM

Let D1, D2, D3and D4 be digraphs, let $\mathrm{f}: \mathrm{D} \longrightarrow \mathrm{D} 3$ and $\mathrm{g}: \mathrm{D} 2 \longrightarrow \mathrm{D} 4$ be digraph maps .Then (fvg) $\in \mathrm{Đ}(\mathrm{D} 1 \mathrm{vD} 2$, D3vD4) is a digraph folding if f and g are digraph folding.
Proof: Suppose f and g are digraph folding.Then (fvg) $\{\mathrm{V} 1 \mathrm{UV} 2\}=\{\mathrm{f}(\mathrm{V} 1) \mathrm{Ug}(\mathrm{V} 2)\}$.But $\mathrm{f}(\mathrm{V} 1) \in \mathrm{V}(\mathrm{D} 3), \mathrm{g}(\mathrm{V} 2) \in$ $\mathrm{V}(\mathrm{D} 4)$.Thus $\{f(\mathrm{~V} 1) \mathrm{Ug}(\mathrm{V} 2)\} \in \mathrm{V}(\mathrm{D} 3 \mathrm{vD} 4)$, i.e., fvg maps vertices to vertices .Now, let e $\in \mathrm{A}(\mathrm{D} 1 \mathrm{vD} 2$).Then either e $\epsilon \mathrm{A}(\mathrm{D} 1)$ or $\mathrm{e} \epsilon \mathrm{A}(\mathrm{D} 2)$ or e is an arc joining a vertex of D 1 (or D2) to a vertex of D2 (or D1).In the first two cases and since each of f and g is a digraph folding, (fvg) $\{\mathrm{e}\} \in \mathrm{A}(\mathrm{D} 3 \mathrm{vD} 4)$.Now, if $\mathrm{e}=(\mathrm{v} 1, \mathrm{v} 2), \mathrm{v} 1 \in \mathrm{D} 1$ and $\mathrm{v} 2 \in \mathrm{D} 2$. Then $(\mathrm{fvg})\{\mathrm{e}\}=(\mathrm{fvg})\{(\mathrm{v} 1, \mathrm{v} 2)\}=\{\mathrm{f}(\mathrm{v} 1), \mathrm{g}(\mathrm{v} 2)\}=\{(\mathrm{v} 3, \mathrm{v} 4)\} \in \mathrm{A}(\mathrm{D} 3 \mathrm{vD} 4)$. Thus fvg maps arcs to arcs and hence the join digraph map is a digraph folding. The converse is guaranteed by the definition of the join digraph.

C. Example

Let $D_{1}=\left(V_{1}, A_{1}\right)$, where $V_{1}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\}$ and $\mathrm{A}_{1}=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}, \mathrm{e}_{4}\right\}$ and $\mathrm{D}_{2}=\left(\mathrm{V}_{2}, \mathrm{~A}_{2}\right)$, where $\mathrm{V}_{2}=\left\{\mathrm{v}_{5}, \mathrm{v}_{6}, \mathrm{v}_{7}\right\}$ and $\mathrm{A}_{2}=$ $\left\{\mathrm{e}_{5}, \mathrm{e}_{6}\right\}$, see Figure 3.

International Journal of Innovative Research in Computer and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, I ssue 7, July 2015

Figure 6: $\mathrm{D} 1=(\mathrm{V} 1, \mathrm{~A} 1)$, where $\mathrm{V} 1=\{\mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 3, \mathrm{v} 4, \mathrm{v} 5, \mathrm{v} 6\}$ and $\mathrm{A} 1=\{\mathrm{e} 1, \mathrm{e} 2, \mathrm{e} 3, \mathrm{e} 4, \mathrm{e} 5, \mathrm{e} 6, \mathrm{e} 7, \mathrm{e} 8\}$

Figure 7: $\mathrm{D} 1=(\mathrm{V} 1, \mathrm{~A} 1)$, where $\mathrm{V} 1=\{\mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 3, \mathrm{v} 4\}$ and $\mathrm{A} 1=\{\mathrm{e} 1, \mathrm{e} 2, \mathrm{e} 3, \mathrm{e} 4, \mathrm{e} 5\}$ $\mathrm{D} 2=(\mathrm{V} 2, \mathrm{~A} 2)$, where $\mathrm{V} 2=\{\mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 3, \mathrm{v} 5\}$ and $\mathrm{A} 2=\{\mathrm{e} 1, \mathrm{e} 2, \mathrm{e} 6\}$

Let $f \in Ð\left(D _1\right)$ be defined by $f\{v 1\}=\{v 3\}$ and $f\{e 1, e 2\}=\{e 4, e 3\}$.Also, let $g \epsilon Đ\left(D _2\right)$ be defined by $g\{v 5\}=\{v 7\}$ and $g\{e 5\}=\{\mathrm{e} 6\}$.The join dimap fvg:D1v D2 $\longrightarrow \mathrm{D} 1 \mathrm{v}$ D2 is defined by (fvg) $\{\mathrm{v} 1, \mathrm{v} 5\}=\{\mathrm{v} 3, \mathrm{v} 7\}$ and $(f v g)\{\mathrm{e} 1\}=(\mathrm{fvg})\{(\mathrm{v} 4, \mathrm{v} 1)\}=\{(\mathrm{v} 4, \mathrm{v} 3)\}=\{\mathrm{e} 4\}$, also, $(\mathrm{fvg})\{\mathrm{e} 5\}=(\mathrm{fvg})\{(\mathrm{v} 6, \mathrm{v} 5)\}=\{(\mathrm{v} 6, \mathrm{v} 7)\}=\{\mathrm{e} 6\}$ and $(f v g)\{(\mathrm{v} 5, \mathrm{v} 1)\}=\{(\mathrm{v} 7, \mathrm{v} 3)\}$, and so on, see Figure 4.The adjacency matrices of D1, D2 and D1vD2 are as follows:

$$
M\left(D_{1}\right)=\begin{gathered}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{gathered}\left[\begin{array}{cccc}
v_{1} \\
0 & 0 & v_{2} \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0
\end{array}\right], M\left(D_{2}\right)=v_{6}\left[\begin{array}{ccc}
v_{5} \\
v_{7}
\end{array}\left[\begin{array}{ccc}
v_{5} \\
0 & v_{6} & v_{7} \\
1 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \text { and } M\left(D_{1} \cup D_{2}\right)=\begin{array}{c}
v_{2} \\
v_{3} \\
v_{4} \\
v_{5} \\
v_{6} \\
v_{7}
\end{array} \left\lvert\,\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 \\
1 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 & 0
\end{array}\right]\right.\right.
$$

By using these adjacency matrices we can describe the digraph folding. The adjacency matrix $M\left(D_{1}\right)$ suggests that the vertex v_{1} can be mapped to the vertex v_{3} since the first and third columns of $M\left(D_{1}\right)$ have the same entries.Also the $\operatorname{arc}\left(\mathrm{v}_{4}, \mathrm{v}_{1}\right)=\mathrm{e}_{1}$ can be mapped to the $\operatorname{arc}\left(\mathrm{v}_{4}, \mathrm{v}_{3}\right)=\mathrm{e}_{4}$ and the $\operatorname{arc}\left(\mathrm{v}_{2}, \mathrm{v}_{1}\right)=\mathrm{e}_{2} \operatorname{can}$ be mapped to the $\operatorname{arc}\left(\mathrm{v}_{2}, \mathrm{v}_{3}\right)=e_{3}$ since the 1 st and 3rd columns are the same. Again by using $\mathrm{M}\left(\mathrm{D}_{2}\right)$ and $\mathrm{M}\left(\mathrm{D}_{1} \mathrm{vD}_{2}\right)$ we can describe the digraph folding of both D_{2} and $\mathrm{D}_{1} \mathrm{vD}_{2}$.

V. THE CARTESIAN PRODUCT OF DIAGRAPH

A. Definition

The Cartesian product $D_{1} \times D_{2}$ of two simple diagraphs is a simple diagraph with vertex set $V\left(D_{1} \times D_{2}\right)=V_{1} x V_{2}$ and arc set $A\left(D_{1} \times D_{2}\right)=\left[\left(A_{1} \times V_{2}\right) U\left(V_{1} \times A_{2}\right)\right]$ such that two vertices $\left(u_{1}, u_{2}\right)$ and $\left(v_{1}, v_{2}\right)$ are adjacent in $D_{1} \times D_{2} i f$,either

ISSN(Online): 2320-9801
ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, I ssue 7, J uly 2015
(i) $u_{1}=v_{1}$ and u_{2} is adjacent to v_{2} in D_{2}, or
(ii) u_{1} is adjacent to v_{1} in $D_{1}, u_{2}=v_{2}$.
B. Definition

Let D1, D2, D3 and D4 be simple digraphs .Let f: D1 $\longrightarrow \mathrm{D} 3$ and g: D2 $\longrightarrow \mathrm{D} 4$ is diagraph maps. Then by the Cartesian product dimapfxg: D1xD2 D3 x D4.
We mean a dimap defined as follows:
(i)If $v=\left(v_{1}, v_{2}\right) \in V_{1} x V_{2}, v_{1} \in V_{1}, v_{2} \in V_{2}$, then $(f x g)(v)=(f x g)\left(v_{1}, v_{2}\right)=\left(f\left(v_{1}\right), g\left(v_{2}\right)\right) \in V_{3} x V_{4}$ (ii)If the arc $e=\left\{\left(\left\{v_{1}\right\}_{i},\left\{v_{2}\right\}_{j}\right),\left(\left\{v_{1}\right\}_{i},\left\{v_{2}\right\}_{k}\right)\right\}$, where $\left\{v_{1}\right\}_{i} \in V\left(D_{1}\right)$ and $\left\{v_{2}\right\}_{j},\left\{v_{2}\right\}_{k} \in V\left(D_{2}\right)$, then (fxg) $\{\mathrm{e}\}=\left(\mathrm{fxg}^{2}\right)\left\{\left(\left\{\mathrm{v}_{1}\right\}_{\mathrm{i}},\left\{\mathrm{v}_{2}\right\}_{\mathrm{j}}\right),\left(\left\{\mathrm{v}_{1}\right\}_{\mathrm{i}},\left\{\mathrm{v}_{2}\right\}_{\mathrm{k}}\right)\right\}=\left\{\left(\left\{\mathrm{v}_{1}\right\}_{\mathrm{i}}, \mathrm{g}\left\{\mathrm{v}_{2}\right\}_{\mathrm{j}}\right),\left(\left\{\mathrm{v}_{1}\right\}_{\mathrm{i}}, \mathrm{g}\left\{\mathrm{v}_{2}\right\}_{\mathrm{k}}\right)\right\}$.
(iii)If the arce $e=\left\{\left(\left\{v_{1}\right\}_{i},\left\{v_{2}\right\}_{j}\right),\left(\left\{v_{1}\right\}_{k},\left\{v_{2}\right\}_{j}\right)\right\}$, where $\left\{v_{1}\right\}_{i},\left\{v_{1}\right\}_{k} \in V\left(D_{1}\right)$ and $\left\{v_{2}\right\}_{j} \in V\left(D_{2}\right)$,
then $(\mathrm{fxg})\{\mathrm{e}\}=(\mathrm{fxg})\left\{\left(\left\{\mathrm{v}_{1}\right\}_{\mathrm{I}},\left\{\mathrm{v}_{2}\right\}_{\mathrm{j}}\right),\left(\left\{\mathrm{v}_{1}\right\}_{\mathrm{k}},\left\{\mathrm{v}_{2}\right\}_{\mathrm{j}}\right)\right\}=\left\{\left(\mathrm{f}\left\{\mathrm{v}_{1}\right\}_{\mathrm{i}},\left\{\mathrm{v}_{2}\right\}_{\mathrm{j}}\right),\left(\mathrm{f}\left\{\mathrm{v}_{1}\right\}_{\mathrm{k}},\left\{\mathrm{v}_{2}\right\}_{\mathrm{j}}\right)\right\}$.
Note that if $g\left\{v_{2}\right\}_{j}=g\left\{v_{2}\right\}_{k}$ or $f\left\{v_{1}\right\}_{i}=f\left\{v_{1}\right\}_{k}$, the image of the arc will be a vertex

THEOREM

Let D_{1}, D_{2}, D_{3} and D_{4} be digraphs, letf: $D_{1} \mathrm{D}_{3}$ and $g: D_{2} D_{4}$ be digraph maps.Then $(f x g) \epsilon$ $\mathrm{D}_{(}\left(\mathrm{D}_{1} \times D_{2}, D_{3} \times D_{4}\right)$ is a digraph folding iff $\epsilon \boxplus\left(D_{1}, D_{3}\right)$ and $g \epsilon Đ\left(D_{2}, D_{4}\right)$ are digraph foldings.In this case $(f x g)\left(D_{1} \times D_{2}\right)=f\left(D_{1}\right) \times g\left(D_{2}\right)$.
Proof:Suppose f and g are digraph folding. Then for each vertex $\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) \in\left(\mathrm{D}_{1} \mathrm{xD}_{2}\right)=\mathrm{V}_{1} \times \mathrm{V}_{2},(\mathrm{fxg})\left\{\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)\right\}=\left\{\left(\mathrm{f}\left(\mathrm{v}_{1}\right), \mathrm{g}\left(\mathrm{v}_{2}\right)\right)\right\}=\left(\mathrm{v}_{3}, \mathrm{v}_{4}\right) \in \mathrm{V}\left(\mathrm{D}_{1} \times \mathrm{D}_{2}\right)=\mathrm{V}_{3} \times \mathrm{V}_{4}$, i.e., vertices to vertices. Now, let $\mathrm{e} \epsilon \mathrm{A}\left(\mathrm{D}_{1} \times \mathrm{D}_{2}\right)$, then if $\mathrm{e}=\left\{\left(\left\{\mathrm{v}_{1}\right\}_{\mathrm{i}},\left\{\mathrm{v}_{2}\right\}_{\mathrm{j}}\right),\left(\left\{\mathrm{v}_{1}\right\}_{\mathrm{k}},\left\{\mathrm{v}_{2}\right\}_{\mathrm{j}}\right)\right\}$, where $\left\{\mathrm{v}_{1}\right\}_{\mathrm{i}}$ is adjacent to $\left\{\mathrm{v}_{1}\right\}_{\mathrm{k}}$ in D_{1} and $\left\{\mathrm{v}_{2}\right\}_{\mathrm{j}} \in D_{2}$, then $(\mathrm{fxg})\{\mathrm{e}\}=(\mathrm{fxg})\left\{\left(\left\{\mathrm{v}_{1}\right\}_{\mathrm{i}},\left\{\mathrm{v}_{2}\right\}_{\mathrm{j}}\right),\left(\left\{\mathrm{v}_{1}\right\}_{\mathrm{k}},\left\{\mathrm{v}_{2}\right\}_{\mathrm{j}}\right)\right\}=\left\{\left(\mathrm{f}\left\{\mathrm{v}_{1}\right\}_{\mathrm{i}},\left\{\mathrm{v}_{2}\right\}_{\mathrm{j}}\right),\left(\mathrm{f}\left\{\mathrm{v}_{1}\right\}_{\mathrm{k}},\left\{\mathrm{v}_{2}\right\}_{\mathrm{j}}\right)\right\}$, since $\left\{\mathrm{v}_{1}\right\}_{\mathrm{i}}$ is adjacent to $\left\{\mathrm{v}_{1}\right\}_{\mathrm{k}}$ and f is a digraph folding, Then $\mathrm{f}\left\{\mathrm{v}_{1}\right\}_{i} \neq \mathrm{f}\left\{\mathrm{v}_{1}\right\}_{\mathrm{k}}$. Thus (fxg$)\{\mathrm{e}\} \in \mathrm{A}\left(\mathrm{D}_{3} \mathrm{xD}_{4}\right)$. By the same procedure, if $\mathrm{e}=\left\{\left(\left\{\mathrm{v}_{1}\right\}_{\mathrm{i}},\left\{\mathrm{v}_{2}\right\}_{\mathrm{j}}\right),\left(\left\{\mathrm{v}_{1}\right\}_{\mathrm{i}},\left\{\mathrm{v}_{2}\right\}_{\mathrm{k}}\right)\right\}$, where $\left\{\mathrm{v}_{1}\right\}_{\mathrm{i}} \in \mathrm{V}\left(\mathrm{D}_{1}\right)$ and $\left\{\mathrm{v}_{2}\right\}_{\mathrm{j}}$ is adjacent to $\left\{\mathrm{v}_{2}\right\}_{\mathrm{k}}$ in D_{2}, then (fxg$)\{\mathrm{e}\} \in$ $\mathrm{A}\left(\mathrm{D}_{3} \times \mathrm{D}_{4}\right)$ i.e., fxg maps arcs to arcs and hence the Cartesian product dimap is a digraph folding.To prove the converse suppose that ($f \times g$) is a digraph folding and for g,is not a digraph folding. In this case f or g, will maps an arc to a vertex, say $\left.f\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right)\right\}=\left\{\mathrm{u}_{3}\right\} \in \mathrm{V}\left(\mathrm{D}_{3}\right)$.Then
$(f x g)\left\{\left(\left\{\mathrm{u}_{1}\right\},\left\{\mathrm{v}_{2}\right\}_{\mathrm{j}}\right),\left(\left\{\mathrm{v}_{1}\right\},\left\{\mathrm{v}_{2}\right\}_{\mathrm{j}}\right)\right\}=\left\{\left(\mathrm{f}\left\{\mathrm{u}_{1}\right\},\left\{\mathrm{v}_{2}\right\}_{\mathrm{j}}\right),\left(\mathrm{f}\left\{\mathrm{v}_{1}\right\},\left\{\mathrm{v}_{2}\right\}_{\mathrm{j}}\right)\right\}=\left\{\left(\left\{\mathrm{u}_{3}\right\},\left\{\mathrm{v}_{2}\right\}_{\mathrm{j}}\right),\left(\left\{\mathrm{u}_{3}\right\},\left\{\mathrm{v}_{2}\right\}_{\mathrm{j}}\right)\right\} \in \quad \mathrm{V}\left(\mathrm{D}_{3} \mathrm{xD} \mathrm{D}_{4}\right)$.This contradicts the assumption and thus each of f and g must be a digraph folding.
A. Examples
(a) Let $\mathrm{D}_{1}=\left(\mathrm{V}_{1}, \mathrm{~A}_{1}\right)$, where $\mathrm{V}_{1}=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}, \mathrm{A}=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}, \mathrm{e}_{4}\right\}$ and $\mathrm{D}_{2}=\left(\mathrm{V}_{2}, \mathrm{~A}_{2}\right)$, where $\mathrm{V}_{2}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\}$, $\mathrm{A}=$ $\left\{\mathrm{e}_{5}, \mathrm{e}_{6}\right\}$, see Figure 4.

Figure 8: $(f x g)\left\{\left(\mathrm{u}_{4}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{4}, \mathrm{v}_{2}\right),\left(\mathrm{u}_{4}, \mathrm{v}_{3}\right),\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{2}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{3}, \mathrm{v}_{1}\right)\right\}=\left\{\left(\mathrm{u}_{2}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right),\left(\mathrm{u}_{2}, \mathrm{v}_{3}\right),\left(\mathrm{u}_{1}, \mathrm{v}_{3}\right),\left(\mathrm{u}_{2}, \mathrm{v}_{3}\right),\left(\mathrm{u}_{3}, \mathrm{v}_{3}\right)\right\}$

Figure 9: $(\mathrm{fvg})\{\mathrm{e} 5\}=(\mathrm{fvg})\{(\mathrm{v} 6, \mathrm{v} 5)\}=\{(\mathrm{v} 6, \mathrm{v} 7)\}=\{\mathrm{e} 6\}$

ISSN(Online): 2320-9801
ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, I ssue 7, J uly 2015

Figure 10: (fxg) $\{((\mathrm{u} 4, \mathrm{v} 1),(\mathrm{u} 3, \mathrm{v} 1)),((\mathrm{u} 3, \mathrm{v} 1),(\mathrm{u} 3, \mathrm{v} 2))\}=\{((\mathrm{u} 2, \mathrm{v} 3),(\mathrm{u} 3, \mathrm{v} 3)),((\mathrm{u} 3, \mathrm{v} 3),(\mathrm{u} 3, \mathrm{v} 2))\}$

Figure 11: (fxg) $\{((\mathrm{u} 4, \mathrm{v} 1),(\mathrm{u} 3, \mathrm{v} 1)),((\mathrm{u} 3, \mathrm{v} 1),(\mathrm{u} 3, \mathrm{v} 2))\}=\{((\mathrm{u} 2, \mathrm{v} 3),(\mathrm{u} 3, \mathrm{v} 3)),((\mathrm{u} 3, \mathrm{v} 3),(\mathrm{u} 3, \mathrm{v} 2))\}$
Let $\mathrm{f} \epsilon$ Đ $\left(D_{1}\right)$ defined by $\mathrm{f}\left\{\mathrm{u}_{4}\right\}=\left\{\mathrm{u}_{2}\right\}$ and $\mathrm{f}\left\{\mathrm{e}_{1}, \mathrm{e}_{2}\right\}=\left\{\mathrm{e}_{4}, \mathrm{e}_{3}\right\}$. Also, let $\mathrm{g} \epsilon$ Đ $\left(D_{2}\right)$ defined by $\mathrm{g}\left\{\mathrm{v}_{1}\right\}=\left\{\mathrm{v}_{3}\right\}$ and $\mathrm{g}\left\{\mathrm{e}_{5}\right\}=$ $\left\{\mathrm{e}_{6}\right\}$. Then the Cartesian product dimapfxg : $\mathrm{D}_{1} \times \mathrm{D}_{2} \mathrm{D}_{3} \times \mathrm{D}_{4}$ is defined as follows :
$(f x g)\left\{\left(\mathrm{u}_{4}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{4}, \mathrm{v}_{2}\right),\left(\mathrm{u}_{4}, \mathrm{v}_{3}\right),\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{2}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{3}, \mathrm{v}_{1}\right)\right\}=\left\{\left(\mathrm{u}_{2}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right),\left(\mathrm{u}_{2}, \mathrm{v}_{3}\right),\left(\mathrm{u}_{1}, \mathrm{v}_{3}\right),\left(\mathrm{u}_{2}, \mathrm{v}_{3}\right),\left(\mathrm{u}_{3}, \mathrm{v}_{3}\right)\right\}$.Also, $(\mathrm{fxg})\left\{\left(\left(\mathrm{u}_{4}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{3}, \mathrm{v}_{1}\right)\right),\left(\left(\mathrm{u}_{3}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{3}, \mathrm{v}_{2}\right)\right)\right\}=\left\{\left(\left(\mathrm{u}_{2}, \mathrm{v}_{3}\right),\left(\mathrm{u}_{3}, \mathrm{v}_{3}\right)\right),\left(\left(\mathrm{u}_{3}, \mathrm{v}_{3}\right),\left(\mathrm{u}_{3}, \mathrm{v}_{2}\right)\right)\right\}$ and so on, see Figure 4 . The adjacency matrices of D_{1}, D_{2} and $D_{1} \times D_{2}$ are as follows:

		(u_{1}, v_{1})	(u_{2}, v_{1})	$\left(u_{3}, v_{1}\right)$	(u_{4}, v_{1})	(u_{1}, v_{2})	$\left(u_{2}, v_{2}\right)$	(u_{3}, v_{2})	$\left(u_{4}, v_{2}\right)$	$\left(u_{1}, v_{3}\right)$	$\left(u_{2}, v_{3}\right)$	(u_{3}, v_{3})	(u_{4}, v_{3})
	(u_{1}, v_{1})	${ }^{0}$	1	0	1	1	0	0	0	0	0	0	$0]$
	$\left(u_{2}, v_{1}\right)$	0	0	1	0	0	1	0	0	0	0	0	0
	(u_{3}, v_{1})	0	0	0	0	0	0	1	0	0	0	0	0
	$\left(u_{4}, v_{1}\right)$	0	0	1	0	0	0	0	1	0	0	0	0
	(u_{1}, v_{2})	0	0	0	0	0	1	0	0	0	0	0	0
	(u_{2}, v_{2})	0	0	0	0	0	0	1	0	0	0	0	0
$M\left(D_{1} x D_{2}\right)$	(u_{3}, v_{2})	0	0	0	0	0	0	0	0	0	0	0	0
	(u_{4}, v_{2})	0	0	0	0	0	0	1	0	0	0	0	0
	(u_{1}, v_{3})	0	0	0	0	1	0	0	0	0	1	0	1
	$\left(u_{2}, v_{3}\right)$	0	0	0	0	0	1	0	0	0	0	1	0
	$\left(u_{3}, v_{3}\right)$ $\left(u_{4}, v_{3}\right)$	0	0	0	0	0	0	1	0	0	0	0	0
	$\left(u_{4}, v_{3}\right)$	0	0	0	0	0	0	0	1	0	0	1	0

International Journal of Innovative Research in Computer and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, I ssue 7, J uly 2015
Once again we can describe the digraph foldings by using $M\left(D_{1}\right), M\left(D_{2}\right)$ and $M\left(D_{1} X D_{2}\right)$.For example, from $M\left(D_{1} X D_{2}\right)$ we can see that the vertex $\left(u_{4}, v_{1}\right)$ can be mapped to the vertex $\left(u_{2}, v_{1}\right)$ since the second and fourth columns are the same. Also, the arc $\left(\left(u_{1}, v_{1}\right),\left(u_{4}, v_{1}\right)\right)$ will be mapped to the $\operatorname{arc}\left(\left(u_{1}, v_{3}\right),\left(u_{2}, v_{3}\right)\right)$ since the vertex $\left(u_{4}, v_{1}\right)$ is mapped to the vertex $\left(u_{2}, v_{3}\right)$ and the vertex $\left(u_{1}, v_{1}\right)$ is mapped to the vertex $\left(u_{1}, v_{3}\right)$, and so on, see Figure 4.
(b)Let $D_{1}=\left(V_{1}, A_{1}\right)$, where $V_{1}=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}, A_{1}=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}, \mathrm{e}_{4}\right\}$ and $\mathrm{D}_{2}=\left(\mathrm{V}_{2}, \mathrm{~A}_{2}\right)$, where $\mathrm{V}_{2}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\}, \mathrm{A}_{2}=$ $\left\{\mathrm{e}_{5}, \mathrm{e}_{6}, \mathrm{e}_{7}, \mathrm{e}_{8}\right\}$, see Figure 5.

Figure 13: (fxg) $\{((\mathrm{u} 4, \mathrm{v} 1),(\mathrm{u} 3, \mathrm{v} 1)),((\mathrm{u} 3, \mathrm{v} 1),(\mathrm{u} 3, \mathrm{v} 2))\}=\{((\mathrm{u} 2, \mathrm{v} 3),(\mathrm{u} 3, \mathrm{v} 3)),((\mathrm{u} 3, \mathrm{v} 3),(\mathrm{u} 3, \mathrm{v} 2))\}$

Figure 14: (fxg) $\{((\mathrm{u} 4, \mathrm{v} 1),(\mathrm{u} 3, \mathrm{v} 1)),((\mathrm{u} 3, \mathrm{v} 1),(\mathrm{u} 3, \mathrm{v} 2))\}=\{((\mathrm{u} 2, \mathrm{v} 3),(\mathrm{u} 3, \mathrm{v} 3)),((\mathrm{u} 3, \mathrm{v} 3),(\mathrm{u} 3, \mathrm{v} 2))\}$

International Journal of Innovative Research in Computer and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, I ssue 7, J uly 2015

Let $\mathrm{f} \epsilon \mathrm{Ð}\left(D_{1}\right)$ be defined by $\mathrm{f}\left\{\mathrm{u}_{4}\right\}=\left\{\mathrm{u}_{2}\right\}, \mathrm{f}\left\{\mathrm{e}_{1}, \mathrm{e}_{2}\right\}=\left\{\mathrm{e}_{3}, \mathrm{e}_{4}\right\}$ and $\mathrm{g} \epsilon \mathrm{Đ}\left(D_{2}\right)$ be defined by $\mathrm{g}\left\{\mathrm{v}_{1}\right\}=\left\{\mathrm{v}_{3}\right\}, \mathrm{g}\left\{\mathrm{e}_{6}, \mathrm{e}_{8}\right\}=$ $\left\{\mathrm{e}_{5}, \mathrm{e}_{7}\right\}$. Then the cartesian product dimap $\mathrm{h}=\mathrm{fxg}: \mathrm{D}_{1} \times \mathrm{D}_{2} \mathrm{D}_{\perp} \times \mathrm{D}_{2}$ is defined as follows: $h\left\{\left(\mathrm{u}_{4}, \mathrm{v}_{2}\right),\left(\mathrm{u}_{3}, \mathrm{v}_{1}\right)\right\}=\left\{\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right),\left(\mathrm{u}_{3}, \mathrm{v}_{3}\right)\right\}$, and so on. Also, $\mathrm{h}\{((\mathrm{u} 4, \mathrm{v} 2),(\mathrm{u} 1, \mathrm{v} 2)),((\mathrm{u} 3, \mathrm{v} 1),(\mathrm{u} 3, \mathrm{v} 2))\}=$ $\{((\mathrm{u} 2, \mathrm{v} 2),(\mathrm{u} 1, \mathrm{v} 2)),((\mathrm{u} 3, \mathrm{v} 3),(\mathrm{u} 3, \mathrm{v} 2))\}$, and so on, see Figure 6. The adjacency matrices of D1,D2 and D1 x D2 are as follows:

$$
M\left(D_{1}\right)=\begin{gathered}
u_{1} \\
u_{1} \\
u_{2} \\
u_{3} \\
u_{4}
\end{gathered}\left[\begin{array}{llll}
0 & u_{2} & u_{3} & u_{4} \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0
\end{array}\right] \quad, \quad M\left(D_{2}\right)=\begin{aligned}
& v_{1} \\
& v_{1} \\
& v_{2} \\
& v_{3} \\
& v_{4}
\end{aligned}\left[\begin{array}{llll}
0 & 1 & 0 & v_{3} \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \text { and }
$$

$\left.\begin{array}{rllllllllllllllll}\left(u_{1}, v_{1}\right) & \left(u_{2}, v_{1}\right) & \left(u_{3}, v_{1}\right) & \left(u_{4}, v_{1}\right) & \left(u_{1}, v_{2}\right) & \left(u_{2}, v_{2}\right) & \left(u_{3}, v_{2}\right) & \left(u_{4}, v_{2}\right) & \left(u_{1}, v_{3}\right) & \left(u_{2}, v_{3}\right) & \left(u_{3}, v_{3}\right) & \left(u_{4}, v_{3}\right) & \left(u_{1}, v_{4}\right) & \left(u_{2}, v_{4}\right) & \left(u_{3}, v_{4}\right) & \left(u_{4}, v_{4}\right) \\ \left(u_{1}, v_{1}\right) & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ \left(u_{2}, v_{1}\right) & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ \left(u_{3}, v_{1}\right) & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ \left(u_{4}, v_{1}\right) & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \left(u_{1}, v_{2}\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \left(u_{2}, v_{2}\right) & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \left(u_{3}, v_{2}\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ M\left(D_{1} x D_{2}\right) \\ \left(u_{4}, v_{2}\right) & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \left(u_{1}, v_{3}\right) & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ \left(u_{2}, v_{3}\right) & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ \left(u_{3}, v_{3}\right) & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ \left(u_{4}, v_{3}\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ \left(u_{1}, v_{4}\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \left(u_{2}, v_{4}\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ \left(u_{3}, v_{4}\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \left(u_{4}, v_{4}\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0\end{array}\right)$

Once again we can describe the digraph foldings by using $M\left(D_{1}\right)$ and $M\left(D_{1} \times D_{2}\right)$. For example, from $M\left(D_{1} \times D_{2}\right)$ we can see that the vertex $\left(u_{4}, v_{2}\right)$ can be mapped to the vertex $\left(u_{2}, v_{2}\right)$ since the $6^{\text {th }}$ and $8^{\text {th }}$ rows have the same entries. And the vertex $\left(u_{3}, v_{1}\right)$ can be mapped to the vertex $\left(u_{3}, v_{3}\right)$ since the $3^{\text {rd }}$ and $11^{\text {th }}$ rows are the same .Also, the $\operatorname{arcs}\left(\left(\mathrm{u}_{4}, \mathrm{v}_{2}\right),\left(\mathrm{u}_{1}, \mathrm{v}_{2}\right)\right)$ and $\left(\left(\mathrm{u}_{4}, \mathrm{v}_{2}\right),\left(\mathrm{u}_{3}, \mathrm{v}_{2}\right)\right)$ can be mapped to the $\operatorname{arcs}\left(\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right),\left(\mathrm{u}_{1}, \mathrm{v}_{2}\right)\right)$ and $\left(\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right),\left(\mathrm{u}_{3}, \mathrm{v}_{2}\right)\right)$,respectively, since the $6^{\text {th }}$ and $8^{\text {th }}$ rows are the same. Finally the $\operatorname{arcs}\left(\left(u_{3}, v_{1}\right),\left(u_{3}, v_{2}\right)\right)$ and $\left(\left(u_{3}, v_{1}\right),\left(u_{3}, v_{4}\right)\right)$ can be mapped to the $\operatorname{arcs}\left(\left(\mathrm{u}_{3}, \mathrm{v}_{3}\right),\left(\mathrm{u}_{3}, \mathrm{v}_{2}\right)\right)$ and $\left(\left(\mathrm{u}_{3}, \mathrm{v}_{3}\right),\left(\mathrm{u}_{3}, \mathrm{v}_{4}\right)\right)$, respectively, since the $3^{\text {th }}$ and $11^{\text {th }}$ rows are the same.And so on, see Figure 6.

VI. THE COMPOSITION OF DIGRAPHS

A. Definition

The composition $D_{1}\left[D_{2}\right]$ of two simple diagraphs is a simple diagraphs with $V\left(D_{1}\left[D_{2}\right]\right)=V_{1} x V_{2}$. The vertices $\mathrm{u}=\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)$ and $\mathrm{v}=\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)$ are adjacent if either u_{1} is adjacent to v_{1} and $\mathrm{u}_{2}=\mathrm{v}_{2}$ or $\mathrm{u}_{1}=\mathrm{v}_{1}$ and u_{2} is adjacent to v_{2}.

B. Definition

Let $\mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{3}$ and D_{4} be simple diagraphs.Let $\mathrm{f}: \mathrm{D}_{1} \mathrm{D}_{3}$ and : $\mathrm{D}_{2} \mathrm{D}_{4}$ be diagraph thaps. By the composition dimap $\mathrm{f}[\mathrm{g}]: \mathrm{D}_{1}\left[\mathrm{D}_{2}\right] \mathrm{D}_{3}\left[\mathrm{D}_{4}\right]$ we mean a map defined as follows
(i)Ifv $=\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) \in \mathrm{V}\left(\mathrm{D}_{1}\left[\mathrm{D}_{2}\right]\right)=\mathrm{V}_{1} \mathrm{x} \mathrm{V}_{2}$, then $\mathrm{f}[\mathrm{g}]\left\{\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)\right\}=\left\{\left(\mathrm{f}\left(\mathrm{v}_{1}\right), \mathrm{g}\left(\mathrm{v}_{2}\right)\right)\right\} \in \mathrm{V}\left(\mathrm{D}_{3}\left[\mathrm{D}_{4}\right]\right)$
(ii)Let $e=\left\{\left(\left\{\mathrm{v}_{1}\right\}_{\mathrm{i}},\left\{\mathrm{v}_{2}\right\}_{\mathrm{j}}\right),\left(\left\{\mathrm{v}_{1}\right\}_{\mathrm{k}},\left\{\mathrm{v}_{2}\right\}_{1}\right)\right\}$.If $\left\{\mathrm{v}_{1}\right\}_{\mathrm{i}}=\left\{\mathrm{v}_{1}\right\}_{\mathrm{k}}$ and $\left\{\mathrm{v}_{2}\right\}_{\mathrm{j}}$ is adjacent to $\left\{\mathrm{v}_{2}\right\}_{1}$, then $\mathrm{f}[\mathrm{g}]\{\mathrm{e}\}=\left\{\left(\left\{\mathrm{v}_{1}\right\}_{\mathrm{i}}, \mathrm{g}\left\{\mathrm{v}_{2}\right\}_{\mathrm{j}}\right),(\right.$ $\left.\left.\left\{\mathrm{v}_{1}\right\}_{\mathrm{i}}, \mathrm{g}\left\{\mathrm{v}_{2}\right\}_{1}\right)\right\}$.Also, if $\left\{\mathrm{v}_{2}\right\}_{\mathrm{j}}=\left\{\mathrm{v}_{2}\right\}_{1}$ and $\left\{\mathrm{v}_{1}\right\}_{\mathrm{i}}$ is adjacent to $\left\{\mathrm{v}_{1}\right\}_{\mathrm{k}}$, thenf $[\mathrm{g}]\{\mathrm{e}\}=\left\{\left(\mathrm{f}\left\{\mathrm{v}_{1}\right\}_{\mathrm{i}},\left\{\mathrm{v}_{2}\right\}_{\mathrm{j}}\right),\left(\mathrm{f}\left\{\mathrm{v}_{1}\right\}_{\mathrm{k}},\left\{\mathrm{v}_{2}\right\}_{\mathrm{j}}\right)\right\}$.

ISSN(Online): 2320-9801
ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, I ssue 7, July 2015

THEOREM

Let D_{1}, D_{2}, D_{3} and D_{4} be digraphs. letf: $\mathrm{B}_{1} \mathrm{D}_{3}$ and $\mathrm{g}: \mathrm{D}_{2} \mathrm{D}_{4}$ be drgraph maps. Then the composition dimap $\mathrm{f}[\mathrm{g}] \epsilon \mathrm{Ð}\left(\mathrm{D}_{1}\left[\mathrm{D}_{2}\right], \mathrm{D}_{3}\left[\mathrm{D}_{4}\right]\right)$ is a digraph folding if $\mathrm{f} \epsilon \mathrm{Đ}\left(\mathrm{D}_{1}, \mathrm{D}_{3}\right)$ and $\mathrm{g} \epsilon \mathrm{Đ}\left(\mathrm{D}_{2}, \mathrm{D}_{4}\right)$ are digraph foldings .
Proof:Let f and g be digraphfolding, then
(i) Foreach vertex $v=\left(v_{1}, v_{2}\right) \in V\left(D_{1}\left[D_{2}\right]\right)=V_{1} x V_{2}, f[g]\left\{\left(v_{1}, v_{2}\right)\right\}=\left\{\left(f\left(v_{1}\right), g\left(v_{2}\right)\right)\right\}$.But $f\left(v_{1}\right) \in V\left(D_{3}\right)$ and $g\left(v_{2}\right) \in V_{(}\left(D_{4}\right)$,then $\left\{\left(\mathrm{f}\left(\mathrm{v}_{1}\right), \mathrm{g}\left(\mathrm{v}_{2}\right)\right)\right\} \in \mathrm{V}\left(\mathrm{D}_{3}\left[\mathrm{D}_{4}\right]\right.$, i.e., $\mathrm{f}[\mathrm{g}]$ maps vertices to vertices.
(ii)Let $e=\left\{\left(\left\{\mathrm{v}_{1}\right\}_{\mathrm{i}},\left\{\mathrm{v}_{2}\right\}_{\mathrm{j}}\right),\left(\left\{\mathrm{v}_{1}\right\}_{\mathrm{k}},\left\{\mathrm{v}_{2}\right\}_{1}\right)\right\}$ and suppose $\left\{\mathrm{v}_{1}\right\}_{\mathrm{i}}$ is adjacent to $\left\{\mathrm{v}_{1}\right\}_{\mathrm{k}}$, then there exists an arc $\left\{\left(\left\{\mathrm{v}_{1}\right\}_{\mathrm{i}}\right.\right.$,$\left.\left.\left\{\mathrm{v}_{1}\right\}_{\mathrm{k}}\right)\right\} \in \mathrm{A}_{1}$, since f is a digraph folding and $\left\{\left(\left\{\mathrm{v}_{1}\right\}_{\mathrm{i}},\left\{\mathrm{v}_{1}\right\}_{\mathrm{k}}\right)\right\} \in \mathrm{A}_{1}$, then $\mathrm{f}[\mathrm{g}]\{\mathrm{e}\} \in \mathrm{A}\left(\mathrm{D}_{3}\left[\mathrm{D}_{4}\right]\right)$.Now, if $\left\{\mathrm{v}_{1}\right\}_{\mathrm{i}}=\left\{\mathrm{v}_{1}\right\}_{\mathrm{k}}$ and $\left\{\mathrm{v}_{2}\right\}_{\mathrm{j}}$ is adjacent to $\left\{\mathrm{v}_{2}\right\}_{1}$, thenf $[\mathrm{g}]\{\mathrm{e}\}=\left\{\left(\left\{\mathrm{v}_{1}\right\}_{\mathrm{i}}, \mathrm{g}\left\{\mathrm{v}_{2}\right\}_{\mathrm{j}}\right),\left(\left\{\mathrm{v}_{1}\right\}_{\mathrm{i}}, \mathrm{g}\left\{\mathrm{v}_{2}\right\}_{1}\right)\right\}$, since $\left\{\mathrm{v}_{2}\right\}_{\mathrm{j}}$ is adjacentto $\left\{\mathrm{v}_{2}\right\}_{1}$, thenthere exists an $\operatorname{arc}\left\{\left(\left\{\mathrm{v}_{2}\right\}_{j},\left\{\mathrm{v}_{2}\right\}_{1}\right)\right\} \in \mathrm{A}_{2}$ such that $\left\{\left(\mathrm{g}\left\{\mathrm{v}_{2}\right\}_{\mathrm{j}}, \mathrm{g}\left\{\mathrm{v}_{2}\right\}_{1}\right)\right\} \in \mathrm{A}_{3}$,i.e., $\mathrm{g}\left\{\mathrm{v}_{2}\right\}_{\mathrm{j}} \neq \mathrm{g}\left\{\mathrm{v}_{2}\right\}_{1}$ andhencef $[g]\{e\} \in A\left(D_{3}\left[D_{4}\right]\right)$, i.e., $f[g]$ maps arcs to arcs. The converse is not true since if $f[g]$ is a digraph folding and for g , is not a digraphfolding. In this case for g ,maps an arc to a vertex, say $\mathrm{f}\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right)=\left(\mathrm{u}_{3}, \mathrm{u}_{3}\right)$, $\mathrm{u}_{3} \mathrm{E}$ $\mathrm{V}\left(\mathrm{D}_{3}\right)$.

Then $\mathrm{f}[\mathrm{g}]\left\{\left(\mathrm{u}_{1},\left\{\mathrm{v}_{2}\right\}_{\mathrm{i}}\right),\left(\mathrm{v}_{1},\left\{\mathrm{v}_{2}\right\}_{\mathrm{j}}\right)\right\}=\left\{\left(\mathrm{f}\left(\mathrm{u}_{1}\right), \mathrm{g}\left\{\mathrm{v}_{2}\right\}_{\mathrm{i}}\right),\left(\mathrm{f}\left(\mathrm{v}_{1}\right), \mathrm{g}\left\{\mathrm{v}_{2}\right\}_{\mathrm{j}}\right)\right\}=\left\{\left(\mathrm{u}_{3}, \mathrm{~g}\left\{\mathrm{v}_{2}\right\}_{\mathrm{i}}\right),\left(\mathrm{u}_{3}, \mathrm{~g}\left\{\mathrm{v}_{2}\right\}_{\mathrm{j}}\right)\right\}$ which is an arc of $\mathrm{D}_{3}\left[\mathrm{D}_{4}\right]$.

A. Example

Let D_{1}, D_{2}, f and g be the digraphs and digraph foldings given in Example (A). The adjacency matrix of $D_{1}\left[D_{2}\right]$ is as follows:

		$\left(u_{1}, v_{1}\right)$	$\left(u_{2}, v_{1}\right)$	$\left(u_{3}, v_{1}\right)$	$\left(u_{4}, v_{1}\right)$	$\left(u_{1}, v_{2}\right)$	$\left(u_{2}, v_{2}\right)$	$\left(u_{3}, v_{2}\right)$	(u_{4}, v_{7})	$\left(u_{1}, v_{3}\right)$	$\left(u_{2}, v_{3}\right)$	$\left(u_{3}, v_{3}\right)$	$\left(u_{4}, v_{3}\right)$
$M\left(D_{1}\left[D_{2}\right]\right)=$	$\left(u_{1}, v_{1}\right)$	Γ^{0}	1	0	1	1	1	0	1	0	1	0	1
	$\left(u_{2}, v_{1}\right)$	0	0	1	0	0	0	1	1	0	0	1	0
	$\left(u_{3}, v_{1}\right)$	0	0	0	0	0	0	1.	0	0	0	0	()
	$\left(u_{4}, v_{1}\right)$	0	0	1	0	0	0	1	1	0	0	1	0
	$\left(u_{1}, v_{2}\right)$	0	1	0	1	0	1	0	1	0	1	0	1
	$\left(u_{2}, v_{2}\right)$	0	0	1	0	0	0	1	0	0	0	1	0
	$\left(u_{3}, v_{2}\right)$	0	0	0	0	0	0	0	0	0	0	0	0
	$\left(u_{4}, v_{2}\right)$	0	0	1	0	0	0	1	0	0	0	1	0
	$\left(u_{1}, v_{3}\right)$	0	1	0	1	1	1	0	1	0	1	0	1
	$\left(u_{2}, v_{3}\right)$	0	()	1	0	0	1	1	$1)$	0	$1)$	1	()
	$\left(u_{3}, v_{3}\right)$	0	0	0	0	0	0	1	0	0	0	0	0
	$\left(u_{4}, v_{3}\right)$	L_{0}	0	1	0	0	0	1	1	0	0	1	0

Nowa digraph folding $f[g]: D_{1}\left[D_{2}\right] \mathrm{D}_{1} \mathrm{D}_{2}>$ an be defined as
follows: $\mathrm{f}[\mathrm{g}]\left\{\left(\mathrm{u}_{4}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{4}, \mathrm{v}_{2}\right),\left(\mathrm{u}_{4}, \mathrm{v}_{3}\right),\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{2}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{3}, \mathrm{v}_{1}\right)\right\}=\left\{\left(\mathrm{u}_{2}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right),\left(\mathrm{u}_{2}, \mathrm{v}_{3}\right),\left(\mathrm{u}_{1}, \mathrm{v}_{3}\right),\left(\mathrm{u}_{2}, \mathrm{v}_{3}\right),\left(\mathrm{u}_{3}, \mathrm{v}_{3}\right)\right\}$. Also, $\mathrm{f}[\mathrm{g}]\left\{\left(\left(\mathrm{u}_{4}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{3}, \mathrm{v}_{1}\right)\right),\left(\left(\mathrm{u}_{3}, \mathrm{v}_{2}\right),\left(\mathrm{u}_{3}, \mathrm{v}_{1}\right)\right),\left(\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right),\left(\mathrm{u}_{3}, \mathrm{v}_{1}\right)\right)\right\}=\left\{\left(\left(\mathrm{u}_{2}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{3}, \mathrm{v}_{3}\right)\right),\left(\left(\mathrm{u}_{3}, \mathrm{v}_{2}\right),\left(\mathrm{u}_{3}, \mathrm{v}_{3}\right)\right),\left(\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right),\left(\mathrm{u}_{3}, \mathrm{v}_{3}\right)\right)\right\}$, and so on, see Figure 6.

ISSN(Online): 2320-9801
ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 3, I ssue 7, July 2015

Figure 15: $f[g]\left\{\left(u_{4}, v_{1}\right),\left(u_{4}, v_{2}\right),\left(u_{4}, v_{3}\right),\left(u_{1}, v_{1}\right),\left(u_{2}, v_{1}\right),\left(u_{3}, v_{1}\right)\right\}=\left\{\left(u_{2}, v_{1}\right),\left(u_{2}, v_{2}\right),\left(u_{2}, v_{3}\right),\left(u_{1}, v_{3}\right),\left(u_{2}, v_{3}\right),\left(u_{3}, v_{3}\right)\right\}$

Figure 16: $\mathrm{f}[\mathrm{g}]\left\{\left(\mathrm{u}_{4}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{4}, \mathrm{v}_{2}\right),\left(\mathrm{u}_{4}, \mathrm{v}_{3}\right),\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{2}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{3}, \mathrm{v}_{1}\right)\right\}=\left\{\left(\mathrm{u}_{2}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right),\left(\mathrm{u}_{2}, \mathrm{v}_{3}\right),\left(\mathrm{u}_{1}, \mathrm{v}_{3}\right),\left(\mathrm{u}_{2}, \mathrm{v}_{3}\right),\left(\mathrm{u}_{3}, \mathrm{v}_{3}\right)\right\}$
We can describe the digraph foldings by using $M\left(D_{1}\right), M\left(D_{2}\right)$ and $M\left(D_{1}\left[D_{2}\right]\right)$. For example, from $M\left(D_{1}\left[D_{2}\right]\right)$ we can see that the vertex $\left(u_{4}, v_{1}\right)$ can be mapped to the vertex $\left(u_{2}, v_{1}\right)$ since the second and fourth rows have the same entries. Also, the $\operatorname{arc}\left(\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{4}, \mathrm{v}_{1}\right)\right)$ can be mapped to the $\operatorname{arc}\left(\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right),\left(\mathrm{u}_{2}, \mathrm{v}_{1}\right)\right)$ since the second and fourth rows are the same. Also the vertex $\left(u_{1}, v_{1}\right)$ can be mapped to the vertex $\left(u_{1}, v_{3}\right)$ since 1 st and $9^{\text {th }}$ rows have the same entries, and so on.

REFERENCES

[^0]
[^0]: 1. Balakrishnan R, Ranganathan K, "text book of graph theory, Springer-Verlag",Inst., New York, 2000.
 2. EL-Esawy A, "Cayley folding of manifolds", Ph.D. Thesis, Tanta University, Egypt, 2005.
 3. El-Kholy E, Al-Esawy A,"Graph folding of some special graphs",J.Math \& Statistics, 1(1): 66-70, 2005.
 4. El-Kholy E, Ahmed H,"Folding of Digraphs".
 5. Wilson RJ, Watking JJ, "Graphs: An introductory approach", John Wileyand Sons, Inc., 1990.
