
 ISSN (Online) : 2319 - 8753
 ISSN (Print) : 2347 - 6710

 International Journal of Innovative Research in Science, Engineering and Technology

 Volume 3, Special Issue 3, March 2014

 2014 IEEE International Conference on Innovations in Engineering and Technology (ICIET’14)

 On 21st&22ndMarch, Organized by

 K.L.N. College of Engineering, Madurai, Tamil Nadu, India

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1956

Optimizing Evaluated Preference Data in
Relational Database Using Query Optimization

Abstract: Preference-aware queries are needed to be
processed closer to the DBMS. Preference database
tuples are elaborated from the preference-aware
relational data model and the queries with the
preferences are processed using an extended algebra.
Query optimization strategies are provided for extended
query plan based on the set of algebraic properties and
cost model. Further illustration of an query execution
algorithm that blends preference evaluation with query
execution, simultaneously utilizing the native query
engine. The framework and methods have been
implemented in a prototype system, PrefDB. Transparent
and efficient evaluations of preferential queries of a
relational DBMS are allowed by PrefDB. This results in
experimenting extensive evaluation on two real world
data sets which illustrates the feasibility and advantages
of the framework. Early pruning of results based on
score or confidence during query processing are enabled
by combining the prefer operator with the rank and rank
join operators.

Keywords:Database Personalization, Personalization
search engine, Preferences.

I.INTRODUCTION

Considering query conditions as hard
constraints is the cornerstone of the Boolean database
query model. A nonempty answer to a database query is
returned only if it satisfies all query conditions.
However, this exact-match model is often too strict.

Imagine, for example, a movie rental application. A
search for recent movies would return several results
making it hard for the user to choose. Taking into
account that the user prefers comedies and action
movies would help focus her query to fewer recent
movies. On the other hand, if the query criteria are too
restrictive, the query might produce no results at
all. In this case, it may be better to consider the query
criteria as soft (i.e., preferences) and return results that
satisfy some of them.

Several approaches to integrating preferences
into database queries have been proposed and can be
roughly divided into two categories. Plug-in approaches
operate on top of the database engine and they typically
translate preferences into conventional query constructs.
On the other hand, native approaches focus on
supporting more efficiently specific queries, such as top-
k or skyline queries, by injecting new operators inside
the database engine.

PrefDB have been developed, PrefDB, a
preference-aware relational system that transparently and
efficiently handles queries with preferences. In its core,
PrefDB employs a preference-aware data model and
algebra, where preferences are treated as first-class
citizens. We define a preference using a condition on the
tuples affected, a scoring function that scores these
tuples, and a confidence that shows how confident these
scores are. In our data model, tuples carry scores with
confidences. Our algebra comprises the standard
relational operators extended to handle scores and

Fathima Sanjas .M,Shoba Rani .P
Student, Dept Of Computer Science and Engineering, R.M.D. Engineering College, Thiruvallur Dist., T.N. ,India.

Associate Professor, Dept of Computer Science and Engineering, R.M.D. Engineering College, Thiruvallur Dist., T.N. ,India.

OPTIMIZING EVALUATED PREFERENCE DATA IN RELATIONAL DATABASE..

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1957

confidences. In addition, our algebra contains a new
operator, prefer, that evaluates a preference on a relation,
i.e., given as inputs a relation and a preference on this
relation, prefer outputs the relation with new scores and
confidences.

During preference evaluation, both the
conditional and the scoring part of a preference are used.
The conditional part acts as a ‘soft’ constraint that
determines which tuples are scored without disqualifying
any tuples from the query result. In this way, PrefDB
separates preference evaluation from tuple filtering. This
separation is a distinguishing feature of our work with
respect to previous works. It allows us to define the
algebraic properties of the prefer operator and build
generic query optimization and processing strategies that
are applicable regardless of the type of preference
specified in a query or the expected type of answer.

For processing a query with preferences, we
follow a hybrid approach with respect to plug-in and
native approaches: we first construct an extended query
plan that contains all operators that comprise a query and
we optimize it. Then, for processing the optimized query
plan, our general strategy is to blend query execution
with preference evaluation and leverage the native query
engine to process parts of the query that do not involve a
prefer operator.

Given a query with preferences, the goal of
query optimization is to minimize the cost related with
preference evaluation. Based on the algebraic properties
of prefer, we apply a set of heuristic rules aiming to
minimize the number of tuples that are given as input to
the prefer operators. We further provide a cost-based
query optimization approach. Using the output plan of
the first step as a skeleton and a cost model for
preference evaluation, the query optimizer calculates the
costs of alternative plans that interleave preference
evaluation and query processing in different ways. Two
plan enumeration methods, i.e., a dynamic programming
and a greedy algorithm are proposed.

For executing an optimized query plan with
preferences, we describe an improved version of our
processing algorithm (GBU). The improved algorithm
uses the native query engine in a more efficient way by
better grouping operators together and by reducing the
out-of-the-engine query processing. We provide a
detailed experimental evaluation of our query
optimization and processing techniques. We evaluate
both greedy and dynamic programming plan
enumeration methods and compare their performance
against two plug-in algorithms. We compare the
effectiveness of our optimization methods with the

optimal query plan as produced by an exhaustive search
algorithm, both in terms of execution and optimization
times. Finally, we perform additional sensitivity analysis
experiments with respect to the query results size and the
preference selectivity.

PrefDB provides a personalization framework
that facilitates the enrichment of queries with preference
semantics such that query results match the specified
preferences. It offers simplified engineering for
applications that require preference processing on top of
a relational database. Instead of hard-wiring the
preference integration and evaluation strategy into the
application logic, PrefDB supports declarative
formulation and transparent execution for different types
of queries with preferences. At the same time, PrefDB’s
hybrid implementation pushes preference evaluation
closer to the database than plug-in approaches, enabling
operator-level optimizations, without being as obtrusive
as native ones, and remaining compatible with standard
relational DBMSs.

II. RELATED WORK

a. Context Sensitive Ranking
 Contextual preferences take the form that item
i1 is preferred to item i2 in the context of X. Preferences
are provided independently by various sources therefore
preferences contain cycle and contradictions. The
preferences gradually increasing from various sources
are reconciled to create a priori orderings of tuples in an
off-line preprocessing step. Few representative orders
corresponding to a contexts are saved. Ranked answers
are provided when orders and their concern context are
used at query time. Contextual preferences provide
algorithms for creating orders and processing queries,
and present experimental results that show their efficacy
and practical utility. For example, a preference might
state the choice for Nicole Kidman over Penelope Cruz
in drama movies, whereas another preference might
choose Penelope Cruz over Nicole Kidman in the context
of Spanish dramas.

OPTIMIZING EVALUATED PREFERENCE DATA IN RELATIONAL DATABASE..

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1958

b.A Framework for Expressing and combining
Preferences
 The advent of the World Wide Web has created
an explosion in the available on-line information. The
time and effort required to sort through them also
expands as the range of potential choices expands. This
problem could be addressed using a formal framework
for expressing and combining user preferences.
Preferences can be used to focus search queries and to
order the search results.

c.PrefDB: Bringing Preferences Closer to the DBMS
 A preference-aware relational query answering
system called PrefDB and PrefDB Admin is used for
demonstration. The user preferences and the profiles are
aggregated and stored into the PrefDB database by the
profile manager. By using the graphical tool PrefDB
Admin, the preference can be explicitly defined. The
preference selection algorithm is applied by the profile
manager when the preference is not provided with the
input query.

d.Towards Preference Aware Relational database.
 A Plug-In approach was built on top of the
database engine as a straight forward approach for
implementing a preference-aware query processing. The
expressivity and the performance of queries with
preference are affected treating the DBMS as a black
box. This argues in pushing the preference aware query
processing closer to the DBMS. Therefore this concept
illustrates a preference-aware relational data model that
extends database tuples with preferences and an extended
algebra that captures the essence of processing queries
with preferences. The preference model is defined in
three dimensions proving the tuples affected the
preference scores and the preference credibility. The
algebraic property for finer-grained query optimization
has the ability to influence through pushing the
preference evaluation inside the query plan by query
processing strategies. This paper compares the
framework to the plug-in approach implementation and
has shown the feasibility.

e.Preference Formulas in Relational Queries
 The volumes of data presented for the user are
reduced through the preferences used for information
filtering and extraction. User profiles are kept track to
formulate policies to improve and automate the decision
making. Preferences are formulated as preference
formulas using a simple logical framework. The
framework does not impose any restrictions on the
preference relations, and allows arbitrary operation and
predicate signatures in preference formulas and also
makes the straight forward composition of preference
relations. Winnow operator parameterized by a
preference formula is proposed for embedding of
preference formulas into a relational algebra. The
formulation of preference queries are made possible
through embedding.

OPTIMIZING EVALUATED PREFERENCE DATA IN RELATIONAL DATABASE..

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1959

III THE PREFERENCE DATABASE SYSTEM

Preference database is a prototype system based

on the preference and extended relational data model.
OVERVIEW
 Figure 1 depicts the system architecture. Two
alternative query options are offered by preference DB:
Input query consisting of preferences where preferences
are specified in a declarative way or a non-preferential
query can be enriched by the system with a related
preference where the relevant preferences are provided
by the profile manager. In preference DB the preferences
specified by the users are stored using a visual tool as
well as the preference depending on the past queries.
Query parser receives both the query option as input.
 Preference DB modules are:
a) Profile Manager
b) Query Parser
c) Query Optimizer
d) Execution Engine
e) Admin
f) Weka Tool
g) ARRF File

 Figure 1: System Architecture

IV QUERY OPTIMIZATION

 It is safe to assume to assume that the total cost
consists of two parts, the cost related with the non
preference operations and the cost related with
preference evaluation and score/confidence aggregation
on score relations.
 The purpose of the step is twofold: (i) The
number of tuples that are given as input to the prefer
operators are minimized. (ii) Suboptimal plans limiting
the search space of alternative plans are pruned. Two
plan enumeration algorithms are proposed: (i)
Alternative positions of the preferred operators are
examined, (ii) The cost of the respective plans are
estimated. (iii) Cheapest estimated cost with the plan are
selected.

Figure 7. Effect of Rule-Based Query Optimization

Figure 8. Alternative Positions for λ5.

V IMPLEMENTATION

Preference database is a prototype system based

on the preference and extended relational data model.
Implementation
 Implementation of the p-relation and the
operators in preference database is discussed below.
Implementing p-relations: Scores and confidence will be
query dependent for any database relation and many
tuples will remain unaffected by any preferences in a
single query. a corresponding score table
Rs(Pk,score,conf) is maintained for each base relation Rb
affected by preferences in a query, where Pk is a primary

OPTIMIZING EVALUATED PREFERENCE DATA IN RELATIONAL DATABASE..

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1960

key of Rb. Score table Rs contains only tuples with non-
default scores and confidences in order to save space.
Each time an operator is executed the score table is
updated with new score and confidence.
P-Operators implementation: All extended operators with
associated relations with no scored tuples can be
minimized to standard relational operators. Preference
Database checks if the input score relation is empty
before executing each operation; if it is empty then the
corresponding operation is forwarded to the native query
engine. Otherwise Preference Database uses the operator
implementation.
 Operators have to be implemented on both base
and a score table. For example, tuples do not satisfy the
conditions that are filtered out from both relations when
a select operator is evaluated. Project operators involve
both as well. If the Project operator does not appear in
the score table then the projected attribute does not
belong to the primary key. In that case the project
operator only concerns the base table.
 Evaluating a P-Operator is more complicated.
First the preference’s conditional part is executed on
both Rb and Rs. Rs’s qualifying tuples have non-default
scores and confidence assigned, which is updated with
new values. All qualifying tuples of Rb that do not
appear in Rs have to be assigned with new non-default
scores and confidences and added to Rs. The scoring part
is executed on the qualifying tuples of the table Rb,
inorder to calculate the new scores for both sets of tuples,
then the corresponding aggregate function is called to
calculate the final scores.

VI CONCLUSION

In this work a preference-aware data model
where preferences appear as first-class citizens and
preference evaluation is captured as a special ‘prefer’
operator has been illustrated. The algebraic properties of
the new operator and applied them in order to develop
cost-based query optimizations and holistic query
processing methods are studied. A framework have been
presented that is (i) flexible in handling different flavors
of preferential queries, (ii) closer to the database than
plug-in approaches, (iii) yet non-obtrusive to the
database engine. A prototype system implementation
demonstrated the performance advantages of our
methods when compared with two variation of a plug-in
strategy are experimented.

REFERENCES

[1] R. Agrawal, R. Rantzau, and E. Terzi. Context-sensitive ranking.
In SIGMOD, page 383–394, 2006.
[2] R. Agrawal and E. L. Wimmers. A framework for expressing and
combining preferences. In SIGMOD, pages 297–306, 2000.
[3]A. Arvanitis and G. Koutrika. PrefDB: Bringing preferences closer
to the DBMS. In SIGMOD, pages 665–668, 2012.
[4]A. Arvanitis and G. Koutrika. Towards preference-aware relational
databases. In ICDE, pages 426–437, 2012.
[5] J. Chomicki. Preference formulas in relational queries. TODS,
28(4):427–466,2003.
[6] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms
for middleware. In PODS, pages 102–113, 2001.
[7] W. Kießling. Foundations of preferences in database systems. In
VLDB, pages 311–322, 2002.
[8] G. Koutrika and Y. E. Ioannidis. Personalization of queries in
database systems. In ICDE, pages 597–608, 2004.
[9] C. Li, K. C.-C. Chang, I. F. Ilyas, and S. Song. RankSQL: Query
algebra and optimization for relational top-k queries. In SIGMOD,
pages 131–142, 2005.
[10] K. Stefanidis, E. Pitoura, and P. Vassiliadis. Adding context to
preferences. In ICDE, pages 846–855, 2007.

