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Abstract— This paper will present a short overview of several approaches to solve the k-way graph partitioning problem. In short this problem considers the 

partitioning of a graph in k partitions, in such a way that one minimizes the cut value. The cut value represents the number of edges crossing this partitions.The 

technique for simultaneous segmentation and classification of image partitions using graph cuts. By combining existing image segmentation a pproaches with 

simple learning techniques. We manage to include prior knowledge into this visual grouping process. 
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INTRODUCTION 

The graph partitioning problem consists of dividing a graph 

into equal sections, such that the cut separating these 

sections has the lowest cost of all possible partitions. The 

general graph partitioning problem is the k-way graph 

portioning: to create a partitioning of k equally sized 

partitions having minimal cut cost. Applications of graph 

partitioning are many, including VLSI circuit design, 

logistics, data mining, parallel computing and coloring. In 
this paper we shall consider the 2-way graph partitioning 

problem, but also show how to extend results to problems 

calling for more sections. Even in this relatively simple 

setting, the problem is too large to solve by mere 

enumeration of partitions, as the number of partitions is 

exponential in the number of nodes in the graph. Therefore 

many heuristics have been devised to solve the graph 

partitioning problem within a reasonable amount of time. A 

heuristic may yield a good solution quickly. As exhaustive 

methods will take very long to find a solution, speed is an 

important metric for comparing different heuristics.  
 

However, no heuristic may guarantee the result will be 

optimal: the solution method can get stuck in local optimum. 

This paper will therefore discuss a new algorithm for finding 

solutions to the graph partitioning problem. The main 

question we will address in this paper, is how well and to 

what extend several local search heuristics perform against 

each other. These approaches include: Genetic Algorithm 

(GA), Kernighan-Lin (KL), GA+KL, Our gym-class 

heuristic (GC) and GC+KL. To compare these five 

approaches, the main criteria will be the time complexity, 

but mainly empirical time performance, and the minimum 
cut value found. We will take the Kernighan-Lin heuristic as 

a benchmark, as it's good performance has been established 

for already a few decades . We will show, by fitting each of 

the algorithms into the local search template of Aarts, 

Lenstra and Vaessens [1], Genetic Algorithms belong to the 

class of local search algorithms. 

THEORY OF GRAPH CUTS 

A graph cut is the process of partitioning a directed or 

undirected graph into disjoint sets. The concept of 

optimality of such cuts is usually introduced by associating 

energy to each cut. Problems of this kind have been well 
studied within the field of graph theory but can for graphs 

with more than only a few nodes be notoriously difficult. 

Nevertheless, ever since it became apparent that many low-

level vision problems can be posed as finding energy 

minimizing cuts in graphs these techniques have received a 

lot of attention in the computer vision community. Graph 

cut methods have been successfully applied to stereo, image 

restoration, and texture synthesis and image segmentation. 

Below we give a brief overview of graph cuts for image 

segmentation as well as an introduction to some basic 

definitions. 

Min-cut/Max-flow cuts: 

Given a graph G = {V, E, W} , where V denotes its nodes, E 

its edges and W the affinity matrix, which associates a 

weight to each edge in E. A cut on a graph is a partition of V 

into two subsets A and B. Perhaps the simplest and best 

known graph cut method is the min-cut formulation. The 

min-cut of a graph is the cut that partitions G into disjoints 

segments such that the sum of the weights associated with 

edges between the different segments is minimized.  

 

However, as this is an NP-hard combinatorial optimization 

problem, the task of finding the solution can be a formidable 
one. In order to overcome this one can relax (1) into a semi-

definite program, resulting in a convex problem for which 

efficient solvers exist. However, the task of finding the 

solution to the original problem from the relaxed one still 

remains an open issue. Another commonly used approach is 

based on a slight reformulation of the original min-cut 

problem. By adding the requirement that two predefined 

nodes, denoted terminal nodes or source and sink nodes, in 

G must be in separate sets, the complexity of the problem is 

significantly reduced. Finding the min-cut separating the 

source and the sink, the s-t cut, can be achieved in 
polynomial time. If one views the weights associated to each 

node as a flow capacity it can be shown that the maximal 

amount of a flow from source to sink is equal to the capacity 

of a minimal cut. Therefore the min-cut problem is also 

known as the max-flow problem. 

The Image Seen as a Graph: 

The general approach to constructing an undirected graph 

from an image is shown in fig 1 
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Figure 1: 

Graph representing a 3-by-3 image. Basically each pixel in 

the image is viewed as a node in a graph, edges are formed 

between nodes with weights corresponding to how alike two 

pixels are, given some measure of similarity, as well as the 

distance between them. In attempt to reduce the number of 

edges in the graph only pixels within a smaller, 

predetermined neighborhood N of each other are considered.  

 

The two terminal nodes, the source and the sink does not 

correspond to any pixel in the image but instead are viewed 
as representing the object and background respectively. 

Edges are formed between the source and sink and all other 

non-terminal nodes, where the corresponding weights are 

determined using models for the object and background. The 

min-cut of the resulting graph will then be the segmentation 

of the image at hand. This segmentation should then be a 

partition such that, flowing to the definition of image-pixel 

resemblance, similar pixels close to each other will belong 

to the same partition. In addition, as a result of the terminal 

weights, pixels should also be segmented in such a manner 

so they end up in the same partition as the terminal node 
corresponding to the model (object or background) they are 

most similar to an illustration of the segmentation process 

can be seen in figure 2. 

 
Figure 2: Example segmentation of a very simple 3-by-3 image. Edge 

thickness corresponds to the associated edge weight. (Image courtesy of 

Yuri Boykov) 

EVALUATION AND COMPARISON OF IMAGE 

SEGMENTATION  

The research on evaluation of image segmentation can 

provide crucial reference for those segmentation algorithms, 

and so this research deserves wide attentions. 

Understandably, the basic requirements are as follows: 

universal use for evaluation algorithms, its simplification 

and reliability, and whether referent images or manual 

intervention is needed. Generally, two basic methods are 

applied to objective evaluation of image segmentation: 

analytical technique and experimental technique. 

The Analytical Technique: 

The analytical technique evaluates an image segmentation 

algorithm by analyzing the principle of the algorithm, its 
complexity, the prior knowledge needed, accurate detecting 

probability, image resolution and so forth. The analytical 

technique usually provides supplementary information and 

supports for other methods of segmentation evaluation and it 

is seldom used alone.  

The Experimental Technique: 

The experimental technique, which is widely used, interprets 

and compares experiment results of image segmentation 

algorithms to make an evaluation. This technique can be 

subdivided into two distinct methods: superiority evaluation 

method and deviation evaluation method. 

The Superiority Evaluation Method: The superiority 
evaluation method evaluates an image segmentation 

algorithm by utilizing human visual trait. It judges the 

quality of a segmentation algorithm by calculating certain 

measures based on image segmentation result. The 

commonly used measures are region uniformity, contrast of 

regions, region shape and synthetically measure based on 

ambiguity. The evaluation method based on region 

uniformity characterizes segmentation result by quantizing 

uniformity within regions after segmentation. Suppose Ri 

stands for region i. 

The Deviation Evaluation Method: In this method, firstly a 
standard segmentation image is provided for comparison 

criteria. Then the disparity between actual segmentation and 

ideal one can be calculated to evaluate the image 

segmentation algorithm. With a comparing test, the 

deviation evaluation method is generally more effective than 

the superiority evaluation method. Generally, this method 

executes evaluation via factors as follows: the probability of 

mistaken pixels, the position of mistaken pixels, the 

consistency for the number of regions and so on. The 

evaluation method based on the consistency for the number 

of regions evaluates image segmentation in the manner like 

this: suppose that N’ stands for the number of regions after 
image segmentation and N is the number of regions 

correctly partitioned. Reasonably, we can evaluate image 

segmentation algorithms by analyzing the difference 

between N’ and N. 

PARTITIONING USING NATURAL CUT 

HEURISTICS 

PUNCH (Partitioning Using Natural Cut Heuristics), a 

partitioning algorithm tailored to graphs containing natural 

cuts, such as road networks. Given a parameter U (the 

maximum size of any cell), PUNCH partitions the graph 

into cells of size at most U while minimizing the number of 

edges between cells.The algorithm runs in two phases: 

filtering and assembly. The filtering phase aims to reduce 

the size of the graph significantly while preserving its 

overall structure. It keeps the edges that appear in natural 
cuts, relatively sparse cuts close to denser areas, and 

contracts other edges. The notion of natural cuts and 

efficient algorithms to compute them are the main 
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contributions of our work. Note that to find a natural cut it is 

not enough to pick a random pair of vertices and run a 

minimum cut computation between them: because the 

average degree in road networks is small, this is likely to 

yield a trivial cut. We do better by finding minimum cuts 

between carefully chosen regions of the graph. Edges that 
never contributed to a natural cut are contracted, potentially 

reducing the graph size by orders of magnitude. Although it 

is smaller, the filtered (contracted) graph preserves the 

natural cuts of the input. 

 

The second phase of our algorithm (assembly) is the one 

that actually builds a partition. Since the filtered graph is 

much smaller than the input, we can use more powerful (and 

time-consuming) techniques in this phase. Another 

important contribution of our work is a better local search 

algorithm for the second phase. Note that the assembly 

phase only tries to combine fragments (the contracted 
regions). Unlike existing practitioners, we do not 

disassemble individual fragments. Note that we focus on 

finding partitions with small cells, but with no hard bound 

on the number of cells thus created. As already mentioned, 

previous work in this area has concentrated on finding 

balanced partitions, in which the total number of cells is 

bounded.  

 

We show how one can use simple heuristics to transform the 

solutions found by our algorithm into balanced ones. Our 

comparison shows that PUNCH significantly improves the 
best previous bounds for road networks. We are not aware 

of any approach using min-cut computations to reduce the 

graph size in the context of graph partitioning. However, 

work on improving a partition is vast. For example, many of 

the algorithms within the MGP framework use local search 

based on vertex swapping, which improves the cut size by 

moving vertices from one cell to another. The most 

important ones are the FM and KL heuristics. The FM 

heuristic runs in worst-case linear time by allowing each 

vertex to be moved at most once. Local improvements based 

on minimum cuts often yield better results than greedy 

methods. For example, Andersen and Lang  run several 
minimum cut computations to improve the cut between two 

neighboring cells. Another common approach to optimize a 

cut between two cells is based on parametric minimum cut 

computation. Besides vertex swapping and minimum cuts, 

local search based on diffusion gives good results as well. 

This approach has the nice side effect of optimizing the 

shape of the cells, but it requires an embedding of the graph. 

Most other methods, including ours, do not.  

CONCLUSIONS 

In this paper we have suggested a method for automatic 

detection, segmentation and classification of textured 

regions in color images. It describes how prior information 

can be brought into a graph cut framework through the use 

of terminal node weights and learning techniques. An 

efficient implementation is also presented along with some 
very promising results on an underwater image of a coral 

reef as well as an ordinary holiday picture. PUNCH, a new 

algorithm for graph partitioning that works particularly well 

on road networks. The key feature of PUNCH is its graph 

reduction routine: By identifying natural cuts and 

contracting dense regions, it can reduce the input size by 

orders of magnitude, while preserving the natural structure 

of the graph. Because of this efficient reduction in size, we 

can run more time-consuming routines to assemble a good 

partition. As a result, we obtain the best known partitions for 

road networks, improving previous bounds by more than 
10% on average. Altogether, PUNCH is slower compared to 

some previous graph partitioning algorithms, but it needs 

only a few minutes to generate an excellent partition, which 

is fast enough for most applications. 
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