
Volume 2, No. 4, April 2011

Journal of Global Research in Computer Science

RESEARCH ARTICLE

Available Online at www.jgrcs.info

© JGRCS 2011, All Rights Reserved 113

PERFORMANCE EVALUATION OF A NEW PROPOSED SHOTREST

EXECUTION FIRST DYNAMIC ROUND ROBIN (SEFDRR) SCHEDULING

ALGORITHM FOR REAL TIME SYSTEMS

Prof. Rakesh Mohanty
1
, Debapriya Maharana

2
, Swarnaprava Tripathy

3

Department of Computer Science and Engineering, Veer Surendra Sai University of Technology, Burla, Odisha, India

rakesh.iitmphd@gmail.com
1

debbandana41@gmail.com
2

Swarnapravatripathy7@gmail.com
3

Abstract: Round Robin (RR) scheduling algorithm is not suitable for real time operating system because of high context switch rate, larger waiting time, and
larger response time. In this paper, we have proposed a novel improved algorithm which is a variant of RR. Our proposed Shortest execution First Dynamic

Round Robin (SEFDRR) algorithm calculates individual time slice for each task in each round. Our Experimental results show that SEFDRR algorithm performs

better than Priority Based Simple Round Robin Algorithm (PBSRR) by decreasing the number of context switches, average waiting time, and average turnaround
time.

Keywords: Operating System; Real Time System; Scheduling; Round Robin, Time slice; Priority.

INTRODUCTION

Operating system is a program that acts as an intermediary

between the user and the computer hardware [8]. The purpose

of an operating system is to provide an environment in which a

user can execute programs in a convenient and efficient

manner. Operating System is responsible for managing the

hardware resources of a computer and hosting applications that

run on the computer. A Real-Time Operating System (RTOS)

is an operating system intended to serve real-time application

requests and guarantees a certain capability within a specified

time constraint. RTOS is specially designed to run

applications with very precise timing and a high degree of

reliability. Space research, audio conferencing, video

conferencing, money withdrawal from ATM are some of the

important applications of real time systems.

Scheduling is an essential task for operating system in which

the processes are assigned to the CPU for execution in

multitasking environment. Mmultitasking is a method where

multiple tasks, also known as processes, share common

processing resources such as CPU . In the case of a computer

with a single CPU, only one task is said to be running at any

point in time, meaning that the CPU is actively executing

instructions for that task. Multitasking solves the problem by

scheduling tasks and determines which task may be the one

running at any given time, and when another waiting task gets

a turn. In multiprogramming systems, the running task keeps

running until it performs an operation that requires waiting for

an external event or until the computer's scheduler forcibly

swaps the running task out of the CPU. Multiprogramming

systems are designed to maximize CPU usage Multitasking is

a logical extension of multiprogramming. Real Time Systems

always have time constraints on computation. Real-time

schedulers can schedule individual tasks for execution either

offline (prior to the system entering its running state) or online

(while the system is in an active, running state). Scheduler

deals with many time related parameters that a task can

complete on or before its deadline. Scheduling Algorithms are

divided into sub-classes such as fixed-priority and dynamic-

priority. If priority of the tasks does not change during running

time, then it is called fixed priority. In dynamic priority,

priority of the tasks change during the running time

RTOS Scheduling Algorithm

RTOS scheduling algorithms are divided into two types such as
static scheduling and dynamic scheduling. Static scheduling
algorithm is mainly done offline. Dynamic scheduling is an
online scheduling algorithm. Static scheduling can be Rate
Monotonic and Deadline Monotonic. Rate monotonic is an
optimal fixed-priority policy where the higher the frequency
(1/period) of a task, the higher is its priority. In deadline
monotonic, tasks are assigned priorities according to their
deadlines; the task with the shortest deadline being assigned the
highest priority. Dynamic scheduling algorithms can be Earliest
Deadline First (EDF). EDF is a dynamic pre-emptive
scheduling, in which, the task with closest deadline is executed
earlier.

RELATED WORK

Baskiyar and et al. have made a extensive survey on memory

management and scheduling in RTOS[1]. A worst case

response time analysis of real time tasks under hierarchical

fixed priority pre-emptive scheduling is done by Bril and

Cuijpers[2]. Yaasuwanth and et. al. have developed an

modified RR algorithm for scheduling in real time systems[3].

Recently, a number of CPU scheduling algorithms have been

developed for predictable allocation of processor. Self-

Adjustment Time Quantum Round Robin Algorithm [5] is

based on a new approach called dynamic time quantum in

which, time quantum is repeatedly adjusted according to the

burst time of the running processes. Dynamic Quantum with

Rakesh Mohanty et al, Journal of Global Research in Computer Science, 2 (4), April 2011

© JGRCS 2011, All Rights Reserved 114

Readjusted Round Robin Scheduling Algorithm [4] uses the

job mix order for the algorithm in [5]. According to [4], from a

list of N processes, the process which needs minimum CPU

time is assigned the time quantum first and then highest from

the list and so on till the Nth process. Again in the 2
nd

 round,

the time quantum is calculated from the remaining CPU burst

time of the processes and is assigned to the processes and so

on. Algorithms proposed in both [4] and [5] are better than RR

scheduling and overcomes the limitations of RR scheduling.

Recently improved variants of round robin algorithms

SRBRR[7] and PBDRR[8] have been developed. A New

Dynamic Round Robin and SRTN Algorithm with Variable

Original Time Slice and Intelligent Time Slice has been

proposed in [9]. In this paper, the time quantum that is

repeatedly adjusted on a run-time basis according to the burst

time of the running processes are considered to improve the

waiting time, turn-around time and number of context

switches.

Our contribution

The limitation of RR is the allocation of static time slice to the

processes in every round of execution. In this paper, we have

proposed a new variant of RR algorithm. In our proposed

algorithm, we have assigned time slice to each process such

that it changes with each round of execution dynamically. The

overall performance of Shortest Execution First Dynamic

RR(SEFDRR) is observed to be improved by using dynamic

time quantum over Priority Based Static RR(PBSRR) for real

time systems as per our experimental results

Organisation of our paper

 Section II shows the background and preliminaries and the

pseudo code and illustration of our proposed algorithm. In

section III, experimental results are presented. Conclusion and

future work is presented in section IV.

BACKGROUND PRELIMINARIES

Terminologies

A process is a program in execution. Ready queue holds the

processes waiting to be executed or to be assigned to the

processer. Burst time (bt) is the time, for which a process

requires the CPU for execution. The time at which a process

arrives is called its arrival time(at). Time quantum(tq) or time

slice is the period of time CPU is assigned to each process.

Turn around time (tat) is the time gap between the instant of

process arrival and the instant of its completion. The number

of times CPU switching from one process to another is called

the context switches (cs). Range is the average of maximum

and minimum burst time.

Uniqueness of our Approach

The shorter processes which have less assumed CPU burst time
than the processes are removed early form the ready queue and
get better turnaround time and waiting time. So in our proposed
algorithm, the shorter processes are given more time slice and
early finish their execution. Round Robin algorithm upon size
of time slice. If time quantum is very small, it cause too many

context switches. If time quantum is very large, then the
algorithm becomes FCFS. So our algorithm solves this problem
by making choice of dynamic time slice appropriately, where
the time slice are adjusted in every cycle according dynamic
priority.

PSEUDO CODE OF OUR PROPOSED ALGORITHM

Here R =Range

 N = No. of processes

 P = No. of priorities

Input : No of processes(P1, P2, ……., Pn),

 Burst time of processes (Bt1, Bt2,….Btn),

 Priority of processes (Pr1, Pr2……Prm).

 Output : Tav = Average turnaround time,

 Wav = Average waiting time,

 Ncs = Number of context switches.

 Method:

 1. Calculate Range as follows.

 Range =(Btmax+ Btmin) / 2

 2. For i=1,2,…..n, Calculate time slice for each processes Pi

 as follows.

 TS(Pi)=(R * N) / (Pr * P)

3. While (Ready queue != NULL)

 {

 Assign TS(Pi) to each process Pi for i=1,2,…..n.

 for (i=1,2,……n)

 {

 If (TS(Pi) >= Bti)

 Assign Bti to process Pi .

 Else if (TS(Pi) < Bti)

 Assign TS(Pi) to process Pi.

 Else

 RBti =Bti –TS(Pi).

 }

 For (i=1,2,………n)

 {

 If (RBti = = 0)

 Remove Pi from the ready queue

 Else if (0< RBti < 2)

 Assign Bti to process Pi

 }

}

4. Sort the processes present in the ready queue in

 Ascending order of RBti.

 For all sorted processes Pi assign priority 1,2,….i

 Assign RBti =Bti and go to step 1

5. Calculate Tav, Wav and Ncs.

 End.

Rakesh Mohanty et al, Journal of Global Research in Computer Science, 2 (4), April 2011

© JGRCS 2011, All Rights Reserved 115

STOP

Flowchart of our Proposed Algorithm

 START

 Take input Pi, BTi, Pri

 Calculate time slice = (R * N)/(Pr * P)

 Ready queue!= NULL No STOP

 Yes

 TS(Pi) to all processes

 Is TS(Pi)>=Bti

 No Yes

 TS(Pi) to all processes Bti to all processes

 Calculate RBti =Bti – TS(Pi)

 Is RBti = 0

 Yes

 Remove process No

 Is 0<RBti<=2

 Yes No

 Bti to processPi sort processes in ascending

 Assign priority as sorted

 RBti = Bti

 Calulate Tav, Wav,Ncs

.

Illustration of our Proposed Algorithm

To illustrate our proposed algorithm we have considered the
following example. Let burst time of five processes are given
as - 9 42 23 35 15 with used priority 3 2 1 4 5 respectively.
Range is calculated by using equation I and is found as 26.
We calculate the time slice by using equation II and time slice
are found to be 9 13 23 7 6 respectively for the first round.
Remaining burst time are found to be 0 29 0 28 9 after round 1.
Processes having 0 remaining bust time are removed from the
ready queue. The processes remaining in the ready queue are
sorted in ascending order of remaining burst time. After that we
take the priority as sorted and priority of burst time are 3 2 1.
Now we again calculate just like above calculation. Here we
found time quantum for the second round are 7 10 9. After
completion of second round the remaining burst time are 22
18. And are given priority 2 1. After calculation there time
slices are 10 18 respectively for the next round. This is the
third round time quantum. And time slice of last round is 12.
Now the time quantum are available for each round execution
of processes. Then make the Gantt chart and calculate Tav,
Wav, and no of cs.

EXEPERIMENTAL RESULTS

Assumptions

The environment where all the experiments are performed is a

single processor environment and all the processes are

considered to be independent. Time quantum is assumed to be

not more than the maximum burst time. All the attributes like

burst time, number of processes, the time slice of all the

processes are known before submitting the processes to the

processor. All the processes are assumed CPU bound.

Experimental framework

Our experiments consist of several input and output

parameters. The input parameters consist of no of processes,

burst time, and priorities. The output parameters consist of

average waiting time, average turnaround time and number of

context switches. We consider four different cases for our

experiments.

CASE 1:

We Assume five processes with increasing burst time (P1 = 5,
P2 = 12, P3 = 16, P4 = 21, p5= 23) and priority (p1=2, p2=3,
p3=1, p4=4, p5=5) as shown in Table-1. The Table-2 and
Table-3 show the output using PBSRR algorithm and our new
proposed SEFDRR algorithm respectively. Fig-4.1 shows Gantt
chart for both the algorithms respectively.

Calculate range =(max burst + min burst)/2

Rakesh Mohanty et al, Journal of Global Research in Computer Science, 2 (4), April 2011

© JGRCS 2011, All Rights Reserved 116

Process Burst time priority

1 5 2

2 12 3

3 16 1

4 21 4

5 23 5

 Table1: Input data for CASE1

Pi Bt Pr R N P TS

1 5 2 14 5 5 7

2 12 3 14 5 5 5

3 16 1 14 5 5 14

4 21 4 14 5 5 4

5 23 5 14 5 5 3

Table 2: Time slice for PBSRR (CASE 1)

Table 3: Dynamic time slice for SEFDRR (CASE 1)

P1 P2 P3 P4 P5 P2 P4 P5 P4 P5 P4 P5

0 5 10 26 30 33 40 44 47 52 55 63 77

Fig1: Gantt chart for SEFDRR (CASE 1)

ALGORITHM TAV WAV NCS

PBSRR 47.2 31.8 19

SEFDRR 42.2 26.8 11

Table 4: Comparison of PBSRR and SEFDRR(CASE 1)

Case 2: We Assume five processes with decreasing burst time

(P1 = 63, P2 = 54, P3 = 30, P4 = 12, p5= 5) and priority

(p1=3, p2=2, p3=4, p4=1, p5=5) as shown in Table-5. The

Table-6 and Table-7 show the output using PBSRR algorithm

proposed in paper and our new proposed algorithm

respectively.

 PROCESS BURST TIME PRIORITY

 1 63 3

 2 54 2

 3 30 4

 4 12 1

5 5 5

Table 5: Input data for CASE 2

Table 6: Time slice for PBSRR (CASE 2)

Process Burst

time

Priority(Pr)
ROUNDS

1ST 2ND 3RD 4TH

1 63 3 12 12 14 25

2 54 2 20 18 16 0

3 30 4 9 21 0 0

4 12 1 12 0 0 0

5 5 5 5 0 0 0

Table 7: Dynamic time slice of SEFDRR (CASE 2)

P1 P2 P3 P4 P5 P1 P2 P3

0 12 32 41 53 58 70 88 109

…. P1 P2 P1

 109 123 139 164

Fig 2: Gantt chart for SEFDRR (CASE 2)

ALGORITHM TAV WAV NCS

PBSRR 109.8 77 14

SEFDRR 106.4 73.6 10

Table 8: Comparison of PBSRR and SEFDRR (CASE 2)

Case 3: We Assume five processes with random burst time

(P1 = 30, P2 = 8, P3 = 24, P4 = 19, p5= 46) and priority

(p1=5, p2=3, p3=2, p4=1, p5=5) as shown in Table-9. The

Table-10 and Table-11 show the output using PBSRR

algorithm and SEFDRR algorithm respectively.

 Process Burst time priority

 1 30 5

 2 8 3

process Burst

time

Priority(Pr) Rounds

1ST 2ND 3RD 4TH

1 5 2 5 0 0 0

2 12 3 5 7 0 0

3 16 1 16 0 0 0

4 21 4 4 4 5 8

5 23 5 3 3 3 14

Pi Bt Pr R N P TS

1 63 3 34 5 5 12

2 54 2 34 5 5 20

3 30 4 34 5 5 9

4 12 1 34 5 5 12

5 5 5 34 5 5 5

Rakesh Mohanty et al, Journal of Global Research in Computer Science, 2 (4), April 2011

© JGRCS 2011, All Rights Reserved 117

 3 24 2

 4 19 1

 5 46 4

 Table 9: Input data (CASE3)

Pi Bt Pr R N P TS

1 30 5 27 5 5 6

2 8 3 27 5 5 8

3 24 2 27 5 5 14

4 19 1 27 5 5 19

5 46 4 27 5 5 7

TABLE 10: Time Slice of PBSRR (CASE 3)

process Burst

time

Priority(Pr) Rounds

1ST 2ND 3RD 4TH

1 30 5 6 13 11 0

2 8 3 8 0 0 0

3 24 2 14 10 0 0

4 19 1 19 0 0 0

5 46 4 7 9 11 19

TABLE 11: Dynamic time slice for SEFDRR (CASE3)

P1 P2 P3 P4 P5 P1 P3 P5

0 6 14 28 47 54 67 77 86

….. P1 P5 P1

 86 97 108 127

Fig 3: Gantt chart of SEFDRR (CASE 3)

ALGORITHM TAV WAV NCS

PBSRR 74.4 48 15

SEFDRR 73.4 47 10

TABLE12: Comparison of PBSRR and SEFDRR (CASE3)

Case 4: We Assume five processes with same burst time (P1 =

10, P2 = 23, P3 = 15, P4 = 34, p5= 15) and distinct priority

(p1=2, p2=4, p3=1, p4=3, p5=5) as shown in Table-13. The

Table-14 and Table-15 show the output using PBSRR

algorithm and our new proposed SEFDRR algorithm

respectively.

 Process Burst time Priority

 1 10 2

 2 23 4

 3 15 1

 4 34 3

 5 15 5

 TABLE 13: Input data (CASE 4)

Pi Bt Pr R N P TS

1 10 2 22 5 5 10

2 23 4 22 5 5 6

3 15 1 22 5 5 15

4 34 3 22 5 5 8

5 15 5 22 5 5 5

TABLE 14: Time Slice of PBSRR (CASE 4)

process Burst

time

Priority(Pr) Rounds

1ST 2ND 3RD 4TH

1 10 2 10 0 0 0

2 23 4 6 9 8 0

3 15 1 15 0 0 0

4 34 3 8 6 7 13

5 15 5 5 10 0 0

TABLE15: Dynamic time slice of SEFDRR (CASE 4)

P1 P2 P3 P4 P5 P2 P4 P5

0 10 16 31 39 44 53 59 69

…. P2 P4 P4

 69 77 84 97

Fig 4: Gantt chart of SEFDRR (CASE 4)

TYPE OF TS TAV WAV NCS

PBSRR 61.6 41.8 13

SEFDRR 56.8 36.8 10

TABLE16: Comparison of PBSRR and SEFDRR (CASE 4)

Rakesh Mohanty et al, Journal of Global Research in Computer Science, 2 (4), April 2011

© JGRCS 2011, All Rights Reserved 118

0

50

100

150

200

250

PBSRR

SEFDRR

Fig 5: Comparison of Performances of SEFDRR and PBSRR

 based on Average Turn Around Time

0
20
40
60
80

100
120
140
160

PBSRR

SEFDRR

Fig 6: Comparison of Performances of SEFDRR and PBSRR

 based on Average Waiting Time

0
10
20
30
40

PBSRR

SEFDRR

Fig 6: Comparison of Performances of SEFDRR and PBSRR

 based on number of context switches

CONCLUSION

Our experimental results show that our new proposed

SEFDRR algorithm is performing better than the PBSRR

algorithm in terms of average waiting time, average

turnaround time and number of context switches. Deadline can

be considered as another input parameter along with priority in

our proposed algorithm to develop new variant algorithm

suitable for hard real time systems.

REFERENCES
[1] S. Baskiyar and N. Meghanathan : A Survey On Real Time

Systems, Informatica (29), 233-240, 2005

[2] Reinder J. Bril and Pieter J. L. Cuijpers: Analytical of
hierarchical fixed priority pre-emptive scheduling revised,
TU/e, CS-Report, 06-36, December, 2006.

[3] C. Yaashuwanth and R. Ramesh: Design of real time
scheduler simulator and Development of Modified Round
Robin Architecture, 2010

[4] H.S. Behera, R. Mohanty, Debashree Nayak “A New
Proposed Dynamic Quantum with Readjusted Round
Robin Scheduling Algorithm and its Performance
Analysis”, International Journal of Computer
Applications(0975-8887) Volume 5- No.5, August 2010.

[5] Rami J. Matarneh. “Self-Adjustment Time Quantum
in Round Robin Algorithm Depending on Burst Time
of Now Running Processes”, American J. of Applied
Sciences 6(10):1831-1837, 2009.

[6] A. Silberschatz, P.B. Galvin, G. Gange, “Operating
Systems Concepts, 7

th
 Edn, John Wiley and Sons, USA,

ISBN:13:978-0471694663, 2004.

[7] Rakesh Mohanty, H.S. Behera and et. al, Design and
Performance Evaluation of a new proposed Shortest
Remaining Burst Round Robin(SRBRR) scheduling
algorithm, Proceedings of the International Symposium
on Computer Engineering and Technology(ISCET),
March, 2010.

[8] Rakesh Mohanty, H.S. Behera and et. al., Priority Based
Dynamic Round Robin (PBDRR) Algorithm with
Intelligent Time Slice for Soft Real Time Systems,
International Journal of Advanced Computer Science and
Applications(IJACSA), Vol 2 No. 2, pp 46-50, February
2011.

[9] H. S. Behera and et. al. A New Dynamic Round Robin
and SRTN Algorithm with Variable Original Time Slice
and Intelligent Time Slice for Soft Real Time Systems.
International Journal of Computer Applications 16(1):54–
60, February 2011.

SHORT BIODATA OF ALL THE AUTHORS

Prof. Rakesh Mohanty is currently

working as a Lecturer in Dept. of

Computer Science and Engineering,

VSS University of Technology,

Burla, Orissa, India. His research

areas of interest include Operating

Systems, Data Structures and

Algorithms.

Debapriya Maharana is a 4
th

 year

B. Tech. student in Dept. of Comp.

Science and Engineering, VSS

 University of Technology, Burla,

 Orissa, India. Her area of interest

 is operating systems.

Swarnaprava Tripathy is a 4
th

 year

B. Tech. student in Dept. of

Computer Science and Engineering,

VSS University of Technology,

Burla, Orissa, India. Her areas of

Rakesh Mohanty et al, Journal of Global Research in Computer Science, 2 (4), April 2011

© JGRCS 2011, All Rights Reserved 119

interest are operating systems and Data structures.

