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Abstract: Queue management schemes at the routers and congestion avoidance schemes at the end points cooperate to provide good congestion 

solutions in computer networks. While queue management schemes are still being developed, research on congestion avoidance has come a long way 
to serve the bandwidth requirement of the networks. Because of considerable lack on the evaluation research work, there is no consensus on the 
choice of the queue management algorithms over these networks. Evaluation of queue management schemes such as RED, RIO, SFB, SRR and 
BLUE are presented for high speed network testbed. Performance results are presented for several important metrics of interests such as Delay, 
Packet drop rate, and Throughput. The presented work supports further research work on the design and deployment issues of queue management 
schemes for high speed networks. 
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INTRODUCTION 

AQM (Active Queue Management) techniques are used to 

improve the performance of network to transfer less 

congestion or congestion free data from sender to receiver. 

The basic idea behind an Active Queue Management 

algorithm is to convey congestion notification early to end 

points so they can reduce their transmission rates before 

queue overflow and packet loss occur [1].Research in this 
area was inspired by the proposal of RED algorithm in 

1993[2]. These schemes are called active because they drop 

packets implicitly if the queue exceeds its limit or 

dynamically by sending congestion signal to sources [3]. 

This is in contrast to Drop-Tail queuing algorithm which is 

passive: packets are dropped if and only if, the queue is full 

[4]. On the basis of Drop probability many algorithms have 

been developed. Design goals of the various schemes, a wide 

range of network scenarios and performance metrics have 

been used to evaluate and compare AQM schemes. The 

challenge is to evaluate the various schemes proposed in a 
consistent and unbiased fashion. In this paper five AQM 

schemes are selected for detailed evaluation. The evaluation 

is carried out using a specially developed framework which 

uses the NS2 simulator [5]. A consistent evaluation of 

schemes using the chosen performance metrics facilitates an 

unbiased comparison which highlights their similarities and 

differences. The simulation results show better performances 

on packet loss rate, delay and throughput.  

 

Multicasting is a widely used service in today’s computer 

networking system; it is mostly used in Streaming media, 

 
 

 

Internet television, video conferencing and net meeting etc. 

Routers involved in multicasting packets need a better 

management over stacking system of packets to be multicast 
[6].The paper is organized as follows. Section 2 describes 

system topology, multicasting, DVMRP and the descriptions 

of the different queue management algorithms like SRR, 

RED, RIO, SFB, and BLUE. Section 3 describes the 

simulation results of all queue algorithms. Section 4 

summarizes the dynamic queue algorithm and reports other 

approaches. Finally, section 5 concludes a future work. 

SYSTEM DESCRIPTION 

Topology: 

A network of thirteen nodes is created with two senders and 
eight receivers. PGM and UDP are used as Transport layer 

protocols. PGM uses constant bit rate (CBR) traffic and 

UDP uses Pareto traffic. There are two sources i.e. senders; 

Node 1 and Node 2 in the network. Node 5, 6, 7, 8, 9, 10, 11 

and 12 are the receiver nodes in the group communication. 

Node 5, 6, 9 and 10 are PGM receivers and node 7, 8, 11 

and 12 are UDP receivers. Bandwidth is 1.544Mbps 

between node (3 – 4), 1 Mbps between node (2 – 3) and 

node (1 – 3), and all other links have a bandwidth of 2Mbps. 

The delay of link between nodes (3 – 4) is 20ms and 10ms 

for all the other links. Node 1 and node 2 starts transmission 
at 0.4s and 0.0s respectively; receiver nodes 5, 6, 9 and 10 

will be effective at 0.5s, 0.9s, 0.0s, and 2.0s respectively; 

node 7, 8, 11 and 12 will be effective at 0.3s, 0.5s, 1.0s, and 

0.0s respectively. 
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Figure 1. Topology Design 

#Topology 

$ns duplex-link $n0 $n1 2Mb 10ms DropTail 

$ns duplex-link $n0 $n2 2Mb 10ms DropTail 

$ns duplex-link $n0 $n3 2Mb 10ms DropTail 

$ns duplex-link $n3 $n1 1Mb 10ms DropTail 

$ns duplex-link $n3 $n2 1Mb 10ms DropTail 

$ns duplex-link $n3 $n4 1.544Mb 20ms Blue 

$ns duplex-link $n4 $n5 2Mb 10ms DropTail 
$ns duplex-link $n5 $n6 2Mb 10ms DropTail 

$ns duplex-link $n5 $n8 2Mb 10ms DropTail 

$ns duplex-link $n6 $n7 2Mb 10ms DropTail 

$ns duplex-link $n7 $n8 2Mb 10ms DropTail 

$ns duplex-link $n7 $n10 2Mb 10ms DropTail 

$ns duplex-link $n8 $n9 2Mb 10ms DropTail 

$ns duplex-link $n9 $n10 2Mb 10ms DropTail 

$ns duplex-link $n11 $n8 2Mb 10ms DropTail 

$ns duplex-link $n11 $n12 2Mb 10ms DropTail  

$ns duplex-link $n12 $n9 2Mb 10ms DropTail 

$ns duplex-link $n12 $n4 2Mb 10ms DropTail 

 
# Group Events 

$ns at 0.5 "$n5 join-group $pgm1 $group1" 

$ns at 0.9 "$n6 join-group $pgm2 $group1" 

$ns at 2.0 "$n10 join-group $pgm3 $group1" 

$ns at 9.0 "$n5 leave-group $pgm1 $group1" 

$ns at 8.7 "$n6 leave-group $pgm2 $group1" 

$ns at 9.5 "$n10 leave-group $pgm3 $group1" 

$ns at 9.6 "$n9 leave-group $pgmsink0 $group1" 

$ns at 0.3 "$n7 join-group $udp1 $group2" 

$ns at 0.5 "$n8 join-group $udp2 $group2" 

$ns at 1.0 "$n11 join-group $udp3 $group2" 
$ns at 8.0 "$n7 leave-group $udp1 $group2" 

$ns at 8.0 "$n8 leave-group $udp2 $group2" 

$ns at 9.5 "$n11 leave-group $udp3 $group2" 

$ns at 0.0 "$n12 join-group $udpsink0 $group2" 

 $ns at 9.7 "$n12 leave-group $udpsink0 $group2" 

 

Node 5, 6 and 10 will leave the group communication at 

9.0s, 8.7s and 9.5s respectively whereas node 9 stays active 

throughout the communication period as PGM receiver. 

Node 7, 8 and 11 will leave the group communication at 

8.0s, 8.0s and 9.5s respectively but node 12 stays active 

throughout the communication period as UDP receiver. Data 

rate for both senders is 832Kb. Queuing technique used on 

all the link except (3 – 4) is Drop Tail. The network is 

simulated for 10s. 

DVMRP (Distance Vector Multicast Routing Protocol) 

The DVMRP constructs   source -based multicast trees using 

the Reverse- Path Multicast (RPM) algorithm [5]. DVMRP 

maintains parent-child relationships among nodes to reduce 

the number of links over which data packets are broadcast 

[6]. 

 

The method of enabling centralised multicast routing in a 

simulation is: 

DM set CacheMissMode dvmrp  

set mproto DM 
# all nodes will contain multicast protocol agents;  

set mrthandle [$ns mrtproto $mproto]  

set group1 [Node allocaddr] 

set group2 [Node allocaddr] 

PGM (Pragmetic Genreal Multicast) 

Pragmatic General Multicast (PGM) [9] is a reliable 
multicast transport protocol for applications that require 

multicast data delivery from a single source to multiple 

receivers. PGM runs over a best effort datagram service, 

such as IP multicast. PGM guarantees that a receiver in the 

group either receives all data packets from transmissions 

and repairs, or is able to detect (rare) unrecoverable data 

packet loss. It obtains scalability via hierarchy, forward 

error correction, NAK (negative acknowledgement) 

elimination, and NAK suppression. PGM uses a hybrid 

scheme including suppression, NAK elimination, 

constrained forwarding, and FEC to achieve scalability. 
Hierarchy is constructed using PGM-capable network 

elements (NEs), typically routers enhanced to support PGM 

in addition to IP multicast. 

#PGM agent 

set pgm0 [new Agent/PGM/Sender] 

$pgm0 set dst_addr_ $group1 

$ns attach-agent $n1 $pgm0 

QUEUE MANAGEMENT ALGORITHMS 

In this section, we focus on RED, RIO, BLUE, SFB and 

SRR, and briefly explain them in each of the sub section. 

The main idea of this work is to compare these typical 

dynamic queuing algorithms instead of exhaustively 

reviewing the existing ones. This will be used in 

performance comparison. 

RED: 

The RED algorithm [9] detects congestion and measures the 

traffic load level in the queue using the average queue size 

avg. This is calculated using an exponentially weighted 

moving average filter and can be expressed as  

avg ¨ (1 – wq) ◊ avg + wq ◊ q, 
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Where wq is filter weight. When the average queue size is 

smaller than a minimum threshold minth, no packets are 

dropped. When the average queue size exceeds the minimum 

threshold, the router randomly drops arriving packets with a 

given drop probability. If the average queue size is larger 

than a maximum threshold maxth, all arriving packets are 

dropped. It is shown in [10] that the average queue length 

avg increases with the number of active connections N 

(actually proportional to N2/3) in the system until maxth is 

reached when all incoming packets are dropped. We also 

observe that there is always an N where maxth will be 
exceeded. Since most existing routers operate with limited 

amounts of buffering, maxth is small and can easily be 

exceeded even with small N.   

RIO: 

The RIO algorithm [11] allows two traffic classes within the 
same queue to be treated differently by applying a drop 

preference to one of the classes. RIO is an extension of RED, 

"RED with In and Out". For OUT packets, as long as the 

average queue size is below minth_out no packets are 

dropped. If the average queue size exceeds this, arriving 

packets are dropped with a probability that increases linearly 

from 0 to maxp_out. If the average queue size exceeds 

maxth_out, all OUT packets are dropped. For IN packets, the 

average queue size is based on the number of IN packets 

present in the queue and the parameters are set differently in 

orders to start dropping OUTs well before any INs are 

discarded. If we choose proper parameters for IN and OUT, 
Traffic can be controlled before the queue reaches to the 

point that any IN traffic is dropped.  

BLUE: 

BLUE [12] is an active queue management algorithm to 

manage congestion control by packet loss and link utilization 
instead of queue occupancy. BLUE maintains a single 

probability, Pm, to mark (or drop) packets. If the queue is 

continually dropping packets due to buffer overflow, BLUE 

increases Pm, thus increasing the rate at which it sends back 

congestion notification or dropping packets. Conversely, if 

the queue becomes empty or if the link is idle, BLUE 

decreases its marking probability. This effectively allows 

BLUE to “learn” the correct rate it needs to send back 

congestion notification or dropping packets.   

The typical parameters of BLUE are d1, d2, and freeze_time. 

Based on those parameters the basic blue algorithms can be 

summarized as following: 
 

Upon link idle event: 

if ((now-

last_update)>freeze_time) 

Pm = Pm-d2; 

Last_update = now; 

Upon packet loss event: 

if ((now–

last_updatte)>freeze_time) 

Pm = Pm+d1; 

last_update = now; 

Figure 2: BLUE Algorithm 

SFB: 

Based on BLUE, Stochastic Fair Blue (SFB) [13] is a FIFO 

queuing algorithm that identifies and rate-limits non-
responsive flows based on accounting mechanisms similar to 

those used with BLUE. SFB maintains accounting bins. The 

bins are organized in L levels with N bins in each level. In 

addition, SFB maintains L independent hash functions, each 

associated with one level of the accounting bins. Each hash 

function maps a flow into one of the accounting bins in that 

level. The accounting bins are used to keep track of queue 

occupancy statistics of packets belonging to a particular bin. 

As a packet arrives at the queue, it is hashed into one of the N 

bins in each of the L levels. If the number of packets mapped 

to a bin goes above a certain threshold (i.e., the size of the 

bin), the packet dropping probability Pm for that bin is 

increased. If the number of packets in that bin drops to zero, 
Pm is decreased. The observation is that a non-responsive 

flow quickly drives Pm to 1 in all of the L bins it is hashed 

into. Responsive flows may share one or two bins with non-

responsive flows, however, unless the number of non-

responsive flows is extremely large compared to the number 

of bins, a responsive flow is likely to be hashed into at least 

one bin that is not polluted with non-responsive flows and 

thus has a normal value. The decision to mark a packet is 

based on Pmin the minimum Pm value of all bins to which the 

flow is mapped into. If Pmin is 1, the packet is identified as 

belonging to a non-responsive flow and is then rate-limited.  
 

B[l][n]: L  N array of bins(L levels, N bins per level) 

Enque() 

 Calculate hash function values h0,h1,…,hL-1; 

       Update bins at each level 

       For i =0 to L-1 

      If(B[i][hi].QLen> bin_size) 

      B[i][hi].Pm += delta; 

                Drop packet; 

             Else if (B[i][hi].Qlen ==0) 

     B[i][hi].Pm - = delta; 

        Pmin = min(B[0][h0].Pm…B[L][hL].Pm); 

 If(Pmin==1) 

  Ratelimit(); 

 Else 

  Mark/drop with probability Pmin; 

Figure 3: SFB Algorithm 

The typical parameters of SFB algorithm are QLen, Bin_Size, 

d1, d2, freeze_time, N, L, Boxtime, Hinterval. Bin_Size is the 

buffer space of each bin. Qlen is the actual queue length of 

each bin. For each bin, d1, d2 and freeze_time have the same 

meaning as that in BLUE. Besides, N and L are related to the 

size of the accounting bins, for the bins are organized in L 

levels with N bins in each level. Boxtime is used by penalty 

box of SFB as a time interval used to control how much 

bandwidth those non-responsive flows could take from 

bottleneck links. Hinterval is the time interval used to change 
hashing functions in our implementation for the double 

buffered moving hashing.  

SRR: 

Smoothed Round Robin, or SRR, is a work-conserving 

packet scheduling algorithm that attempts to provide 

maximum fairness while maintaining only O(1) time 
complexity [14]. 

 

In SRR two novel data structures, the weightmatrix (WM) 

and the weight spread sequence (WSS) are used to mitigate 

the problems of packet burstiness and fairness associated to 
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ordinary RR-based schedulers with large number of sessions. 

The WM stores the bitwise weight representation associated 

to each backlogged session while the WSS provides the 

sequence order of sessions to service. For each x in the WSS 

visit the xth column of WM in a top-to-bottom manner and 

service the session containing the element 1. At the 

termination of WSS, repeat the servicing procedure by 

beginning with the first element of WSS. This gives SRR its 

O(1) time complexity [15]. 

RESULTS AND DISCUSSION  

The bottle neck link (3 – 4) is configured with one of the 

five queuing protocols discussed above each time. There are 

three parameters used for comparison; Throughput, Drop of 

Packets and End to End Delay. 

Throughput: 

Figure 4 show the throughput graph for PGM traffic of link 

(3 – 4). RED provides average maximum throughput of 

764.0608Kb/s whereas maximum throughput in case of RED 

queuing technique is 802.752Kb/s. SRR queuing algorithm 

provides minimum average throughput of 685.4128K/s. 
806.368Kb/s is the maximum throughput value in case of 

Blue algorithm, 712.352Kb/s in case of RIO and 

725.008Kb/s in case of SFB, and 712.352Kb/s in SRR 

queuing algorithm. We can analyze from that all the 

algorithms initially start with lesser throughput of about 

550Kb/s. The required throughput is 832Kb/s which is 

closely achieved in case of RED queuing algorithm. 
 

 

Figure 4: Throughput of bottleneck link (3–4) for PGM Traffic 

Figure 5 show the throughput graph for Pareto traffic of link 

(3 – 4). SRR provides average maximum throughput of 

804.216Kb/s whereas maximum throughput in case of SRR 
queuing technique is 833.28Kb/s. RED queuing algorithm 

provides minimum average throughput of 725.592K/s. 

813.12Kb/s is the maximum throughput value in case of Blue 

algorithm, 750.96Kb/s in case of RED and 833.28Kb/s in 

case of RIO, and 823.2Kb/s in SFB queuing algorithm. We 

can analyze from that all the algorithms initially start with 

lesser throughput of about 420Kb/s. The required throughput 

is 832Kb/s which can be closely achieved by SRR queuing 

algorithm. 
 

 

Figure 5: Throughput of bottleneck link (3–4) for Pareto Traffic 

Drop of Packets: 

 Figure 6 shows For PGM Traffic Maximum Drop of packets 

is 927 given by SRR queuing algorithm while Minimum 

Drop of packets is 621 by BLUE. For Pareto Traffic 

Maximum Drop of Packets is 488 for RED while Minimum 

Drop of Packets is 0 for RIO and SRR. RED and BLUE 

drops significantly same amount of Packets for PGM and 
Pareto Traffic. 

 

 
 

Figure 6: Number of Dropped packets at Node 3 

End to End Delay: 

Figure 7 shows the end to end delay graph for PGM and 

Pareto Traffic. Graph has been plotted against Type of 

Traffic on x-axis and average end to end Delay on y-axis. 

RIO shows maximum average end to end delay for PGM 

and Pareto i.e. 0.108887s and 0.096361s respectively. SFB 

shows minimum average end to end delay for PGM and 

Pareto Traffic i.e. 0.060989s and 0.04891s respectively.  
 

 

Figure 7: Average end-to-end delay for PGM and Pareto traffic 
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Table 1 shows the average end to end delay for BLUE, 

RED, RIO, SFB and SRR queuing algorithms. 

Table 1. Average end-to-end delay for PGM and Pareto 

AQM 
Delay(s) 

PGM(Node 9) PARETO(Node 12) 

BLUE 0.104546 0.091964 

RED 0.068822 0.056579 

RIO 0.108887 0.096361 

SFB 0.060989 0.04891 

SRR 0.107865 0.095342 

CONCLUSION 

We have compared the performance of BLUE, RED, RIO, 

SFB and SRR with a standard parameter setting such as 

bandwidth for source to receiver link is 1.544 Mb/s. 

Performance metrics are Throughput, average queuing delay 

and the Packet Drop.  

 
RED provides maximum throughput for PGM traffic while 

SRR provides maximum throughput for Pareto Traffic. RIO 

and SRR shows significantly lesser number of Drop of 

Packets for Pareto Traffic while BLUE shows minimum 

Drop of Packets for PGM Traffic. These AQM techniques 

are best suited because users are sensitive for delay. SFB 

shows minimum average end to end Delay for PGM and 

Pareto Traffic. 

 

SRR shows maximum throughput and minimum number of 

packet drops for Pareto Traffic and RED shows maximum 
throughput and minimum number of drops for Pareto 

Traffic. SRR and RED show significantly better 

performance above all other AQM techniques in case of 

DVMRP-PGM multicast network. 
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