
Volume 3, No. 6, June 2012

Journal of Global Research in Computer Science

REVIEW ARTICLE

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 28

PERFORMANCE EVALUATION OF AQM ALGORITHMS FOR PGM BASED

GROUP COMMUNICATION IN DVMRP MULTICASTING NETWORK

Shaveta
*1

, Harsh K Verma
2
 andAshish Kumar

3

*1Computer Science, NIT Jalandhar, Jalandhar, Punjab, India

shaveta.146@gmail.com
2Computer Science, NIT Jalandhar, Jalandhar, Punjab, India

vermah@nitj.ac.in

3Computer Science, NIT Jalandhar, Jalandhar, Punjab, India

shish.ashish@gmail.com

Abstract: Queue management schemes at the routers and congestion avoidance schemes at the end points cooperate to provide good congestion

solutions in computer networks. While queue management schemes are still being developed, research on congestion avoidance has come a long way
to serve the bandwidth requirement of the networks. Because of considerable lack on the evaluation research work, there is no consensus on the
choice of the queue management algorithms over these networks. Evaluation of queue management schemes such as RED, RIO, SFB, SRR and
BLUE are presented for high speed network testbed. Performance results are presented for several important metrics of interests such as Delay,
Packet drop rate, and Throughput. The presented work supports further research work on the design and deployment issues of queue management
schemes for high speed networks.

Keyword: Congestion Control, SRR, RED, RIO, BLUE, SFB.

INTRODUCTION

AQM (Active Queue Management) techniques are used to

improve the performance of network to transfer less

congestion or congestion free data from sender to receiver.

The basic idea behind an Active Queue Management

algorithm is to convey congestion notification early to end

points so they can reduce their transmission rates before

queue overflow and packet loss occur [1].Research in this
area was inspired by the proposal of RED algorithm in

1993[2]. These schemes are called active because they drop

packets implicitly if the queue exceeds its limit or

dynamically by sending congestion signal to sources [3].

This is in contrast to Drop-Tail queuing algorithm which is

passive: packets are dropped if and only if, the queue is full

[4]. On the basis of Drop probability many algorithms have

been developed. Design goals of the various schemes, a wide

range of network scenarios and performance metrics have

been used to evaluate and compare AQM schemes. The

challenge is to evaluate the various schemes proposed in a
consistent and unbiased fashion. In this paper five AQM

schemes are selected for detailed evaluation. The evaluation

is carried out using a specially developed framework which

uses the NS2 simulator [5]. A consistent evaluation of

schemes using the chosen performance metrics facilitates an

unbiased comparison which highlights their similarities and

differences. The simulation results show better performances

on packet loss rate, delay and throughput.

Multicasting is a widely used service in today’s computer

networking system; it is mostly used in Streaming media,

Internet television, video conferencing and net meeting etc.

Routers involved in multicasting packets need a better

management over stacking system of packets to be multicast
[6].The paper is organized as follows. Section 2 describes

system topology, multicasting, DVMRP and the descriptions

of the different queue management algorithms like SRR,

RED, RIO, SFB, and BLUE. Section 3 describes the

simulation results of all queue algorithms. Section 4

summarizes the dynamic queue algorithm and reports other

approaches. Finally, section 5 concludes a future work.

SYSTEM DESCRIPTION

Topology:

A network of thirteen nodes is created with two senders and
eight receivers. PGM and UDP are used as Transport layer

protocols. PGM uses constant bit rate (CBR) traffic and

UDP uses Pareto traffic. There are two sources i.e. senders;

Node 1 and Node 2 in the network. Node 5, 6, 7, 8, 9, 10, 11

and 12 are the receiver nodes in the group communication.

Node 5, 6, 9 and 10 are PGM receivers and node 7, 8, 11

and 12 are UDP receivers. Bandwidth is 1.544Mbps

between node (3 – 4), 1 Mbps between node (2 – 3) and

node (1 – 3), and all other links have a bandwidth of 2Mbps.

The delay of link between nodes (3 – 4) is 20ms and 10ms

for all the other links. Node 1 and node 2 starts transmission
at 0.4s and 0.0s respectively; receiver nodes 5, 6, 9 and 10

will be effective at 0.5s, 0.9s, 0.0s, and 2.0s respectively;

node 7, 8, 11 and 12 will be effective at 0.3s, 0.5s, 1.0s, and

0.0s respectively.

Shaveta et al, Journal of Global Research in Computer Science, 3 (6), June 2012, 28-32

© JGRCS 2010, All Rights Reserved 29

Figure 1. Topology Design

#Topology

$ns duplex-link $n0 $n1 2Mb 10ms DropTail

$ns duplex-link $n0 $n2 2Mb 10ms DropTail

$ns duplex-link $n0 $n3 2Mb 10ms DropTail

$ns duplex-link $n3 $n1 1Mb 10ms DropTail

$ns duplex-link $n3 $n2 1Mb 10ms DropTail

$ns duplex-link $n3 $n4 1.544Mb 20ms Blue

$ns duplex-link $n4 $n5 2Mb 10ms DropTail
$ns duplex-link $n5 $n6 2Mb 10ms DropTail

$ns duplex-link $n5 $n8 2Mb 10ms DropTail

$ns duplex-link $n6 $n7 2Mb 10ms DropTail

$ns duplex-link $n7 $n8 2Mb 10ms DropTail

$ns duplex-link $n7 $n10 2Mb 10ms DropTail

$ns duplex-link $n8 $n9 2Mb 10ms DropTail

$ns duplex-link $n9 $n10 2Mb 10ms DropTail

$ns duplex-link $n11 $n8 2Mb 10ms DropTail

$ns duplex-link $n11 $n12 2Mb 10ms DropTail

$ns duplex-link $n12 $n9 2Mb 10ms DropTail

$ns duplex-link $n12 $n4 2Mb 10ms DropTail

Group Events

$ns at 0.5 "$n5 join-group $pgm1 $group1"

$ns at 0.9 "$n6 join-group $pgm2 $group1"

$ns at 2.0 "$n10 join-group $pgm3 $group1"

$ns at 9.0 "$n5 leave-group $pgm1 $group1"

$ns at 8.7 "$n6 leave-group $pgm2 $group1"

$ns at 9.5 "$n10 leave-group $pgm3 $group1"

$ns at 9.6 "$n9 leave-group $pgmsink0 $group1"

$ns at 0.3 "$n7 join-group $udp1 $group2"

$ns at 0.5 "$n8 join-group $udp2 $group2"

$ns at 1.0 "$n11 join-group $udp3 $group2"
$ns at 8.0 "$n7 leave-group $udp1 $group2"

$ns at 8.0 "$n8 leave-group $udp2 $group2"

$ns at 9.5 "$n11 leave-group $udp3 $group2"

$ns at 0.0 "$n12 join-group $udpsink0 $group2"

 $ns at 9.7 "$n12 leave-group $udpsink0 $group2"

Node 5, 6 and 10 will leave the group communication at

9.0s, 8.7s and 9.5s respectively whereas node 9 stays active

throughout the communication period as PGM receiver.

Node 7, 8 and 11 will leave the group communication at

8.0s, 8.0s and 9.5s respectively but node 12 stays active

throughout the communication period as UDP receiver. Data

rate for both senders is 832Kb. Queuing technique used on

all the link except (3 – 4) is Drop Tail. The network is

simulated for 10s.

DVMRP (Distance Vector Multicast Routing Protocol)

The DVMRP constructs source -based multicast trees using

the Reverse- Path Multicast (RPM) algorithm [5]. DVMRP

maintains parent-child relationships among nodes to reduce

the number of links over which data packets are broadcast

[6].

The method of enabling centralised multicast routing in a

simulation is:

DM set CacheMissMode dvmrp

set mproto DM
all nodes will contain multicast protocol agents;

set mrthandle [$ns mrtproto $mproto]

set group1 [Node allocaddr]

set group2 [Node allocaddr]

PGM (Pragmetic Genreal Multicast)

Pragmatic General Multicast (PGM) [9] is a reliable
multicast transport protocol for applications that require

multicast data delivery from a single source to multiple

receivers. PGM runs over a best effort datagram service,

such as IP multicast. PGM guarantees that a receiver in the

group either receives all data packets from transmissions

and repairs, or is able to detect (rare) unrecoverable data

packet loss. It obtains scalability via hierarchy, forward

error correction, NAK (negative acknowledgement)

elimination, and NAK suppression. PGM uses a hybrid

scheme including suppression, NAK elimination,

constrained forwarding, and FEC to achieve scalability.
Hierarchy is constructed using PGM-capable network

elements (NEs), typically routers enhanced to support PGM

in addition to IP multicast.

#PGM agent

set pgm0 [new Agent/PGM/Sender]

$pgm0 set dst_addr_ $group1

$ns attach-agent $n1 $pgm0

QUEUE MANAGEMENT ALGORITHMS

In this section, we focus on RED, RIO, BLUE, SFB and

SRR, and briefly explain them in each of the sub section.

The main idea of this work is to compare these typical

dynamic queuing algorithms instead of exhaustively

reviewing the existing ones. This will be used in

performance comparison.

RED:

The RED algorithm [9] detects congestion and measures the

traffic load level in the queue using the average queue size

avg. This is calculated using an exponentially weighted

moving average filter and can be expressed as

avg ¨ (1 – wq) ◊ avg + wq ◊ q,

Shaveta et al, Journal of Global Research in Computer Science, 3 (6), June 2012, 28-32

© JGRCS 2010, All Rights Reserved 30

Where wq is filter weight. When the average queue size is

smaller than a minimum threshold minth, no packets are

dropped. When the average queue size exceeds the minimum

threshold, the router randomly drops arriving packets with a

given drop probability. If the average queue size is larger

than a maximum threshold maxth, all arriving packets are

dropped. It is shown in [10] that the average queue length

avg increases with the number of active connections N

(actually proportional to N2/3) in the system until maxth is

reached when all incoming packets are dropped. We also

observe that there is always an N where maxth will be
exceeded. Since most existing routers operate with limited

amounts of buffering, maxth is small and can easily be

exceeded even with small N.

RIO:

The RIO algorithm [11] allows two traffic classes within the
same queue to be treated differently by applying a drop

preference to one of the classes. RIO is an extension of RED,

"RED with In and Out". For OUT packets, as long as the

average queue size is below minth_out no packets are

dropped. If the average queue size exceeds this, arriving

packets are dropped with a probability that increases linearly

from 0 to maxp_out. If the average queue size exceeds

maxth_out, all OUT packets are dropped. For IN packets, the

average queue size is based on the number of IN packets

present in the queue and the parameters are set differently in

orders to start dropping OUTs well before any INs are

discarded. If we choose proper parameters for IN and OUT,
Traffic can be controlled before the queue reaches to the

point that any IN traffic is dropped.

BLUE:

BLUE [12] is an active queue management algorithm to

manage congestion control by packet loss and link utilization
instead of queue occupancy. BLUE maintains a single

probability, Pm, to mark (or drop) packets. If the queue is

continually dropping packets due to buffer overflow, BLUE

increases Pm, thus increasing the rate at which it sends back

congestion notification or dropping packets. Conversely, if

the queue becomes empty or if the link is idle, BLUE

decreases its marking probability. This effectively allows

BLUE to “learn” the correct rate it needs to send back

congestion notification or dropping packets.

The typical parameters of BLUE are d1, d2, and freeze_time.

Based on those parameters the basic blue algorithms can be

summarized as following:

Upon link idle event:

if ((now-

last_update)>freeze_time)

Pm = Pm-d2;

Last_update = now;

Upon packet loss event:

if ((now–

last_updatte)>freeze_time)

Pm = Pm+d1;

last_update = now;

Figure 2: BLUE Algorithm

SFB:

Based on BLUE, Stochastic Fair Blue (SFB) [13] is a FIFO

queuing algorithm that identifies and rate-limits non-
responsive flows based on accounting mechanisms similar to

those used with BLUE. SFB maintains accounting bins. The

bins are organized in L levels with N bins in each level. In

addition, SFB maintains L independent hash functions, each

associated with one level of the accounting bins. Each hash

function maps a flow into one of the accounting bins in that

level. The accounting bins are used to keep track of queue

occupancy statistics of packets belonging to a particular bin.

As a packet arrives at the queue, it is hashed into one of the N

bins in each of the L levels. If the number of packets mapped

to a bin goes above a certain threshold (i.e., the size of the

bin), the packet dropping probability Pm for that bin is

increased. If the number of packets in that bin drops to zero,
Pm is decreased. The observation is that a non-responsive

flow quickly drives Pm to 1 in all of the L bins it is hashed

into. Responsive flows may share one or two bins with non-

responsive flows, however, unless the number of non-

responsive flows is extremely large compared to the number

of bins, a responsive flow is likely to be hashed into at least

one bin that is not polluted with non-responsive flows and

thus has a normal value. The decision to mark a packet is

based on Pmin the minimum Pm value of all bins to which the

flow is mapped into. If Pmin is 1, the packet is identified as

belonging to a non-responsive flow and is then rate-limited.

B[l][n]: L N array of bins(L levels, N bins per level)

Enque()

 Calculate hash function values h0,h1,…,hL-1;

 Update bins at each level

 For i =0 to L-1

 If(B[i][hi].QLen> bin_size)

 B[i][hi].Pm += delta;

 Drop packet;

 Else if (B[i][hi].Qlen ==0)

 B[i][hi].Pm - = delta;

 Pmin = min(B[0][h0].Pm…B[L][hL].Pm);

 If(Pmin==1)

 Ratelimit();

 Else

 Mark/drop with probability Pmin;

Figure 3: SFB Algorithm

The typical parameters of SFB algorithm are QLen, Bin_Size,

d1, d2, freeze_time, N, L, Boxtime, Hinterval. Bin_Size is the

buffer space of each bin. Qlen is the actual queue length of

each bin. For each bin, d1, d2 and freeze_time have the same

meaning as that in BLUE. Besides, N and L are related to the

size of the accounting bins, for the bins are organized in L

levels with N bins in each level. Boxtime is used by penalty

box of SFB as a time interval used to control how much

bandwidth those non-responsive flows could take from

bottleneck links. Hinterval is the time interval used to change
hashing functions in our implementation for the double

buffered moving hashing.

SRR:

Smoothed Round Robin, or SRR, is a work-conserving

packet scheduling algorithm that attempts to provide

maximum fairness while maintaining only O(1) time
complexity [14].

In SRR two novel data structures, the weightmatrix (WM)

and the weight spread sequence (WSS) are used to mitigate

the problems of packet burstiness and fairness associated to

Shaveta et al, Journal of Global Research in Computer Science, 3 (6), June 2012, 28-32

© JGRCS 2010, All Rights Reserved 31

ordinary RR-based schedulers with large number of sessions.

The WM stores the bitwise weight representation associated

to each backlogged session while the WSS provides the

sequence order of sessions to service. For each x in the WSS

visit the xth column of WM in a top-to-bottom manner and

service the session containing the element 1. At the

termination of WSS, repeat the servicing procedure by

beginning with the first element of WSS. This gives SRR its

O(1) time complexity [15].

RESULTS AND DISCUSSION

The bottle neck link (3 – 4) is configured with one of the

five queuing protocols discussed above each time. There are

three parameters used for comparison; Throughput, Drop of

Packets and End to End Delay.

Throughput:

Figure 4 show the throughput graph for PGM traffic of link

(3 – 4). RED provides average maximum throughput of

764.0608Kb/s whereas maximum throughput in case of RED

queuing technique is 802.752Kb/s. SRR queuing algorithm

provides minimum average throughput of 685.4128K/s.
806.368Kb/s is the maximum throughput value in case of

Blue algorithm, 712.352Kb/s in case of RIO and

725.008Kb/s in case of SFB, and 712.352Kb/s in SRR

queuing algorithm. We can analyze from that all the

algorithms initially start with lesser throughput of about

550Kb/s. The required throughput is 832Kb/s which is

closely achieved in case of RED queuing algorithm.

Figure 4: Throughput of bottleneck link (3–4) for PGM Traffic

Figure 5 show the throughput graph for Pareto traffic of link

(3 – 4). SRR provides average maximum throughput of

804.216Kb/s whereas maximum throughput in case of SRR
queuing technique is 833.28Kb/s. RED queuing algorithm

provides minimum average throughput of 725.592K/s.

813.12Kb/s is the maximum throughput value in case of Blue

algorithm, 750.96Kb/s in case of RED and 833.28Kb/s in

case of RIO, and 823.2Kb/s in SFB queuing algorithm. We

can analyze from that all the algorithms initially start with

lesser throughput of about 420Kb/s. The required throughput

is 832Kb/s which can be closely achieved by SRR queuing

algorithm.

Figure 5: Throughput of bottleneck link (3–4) for Pareto Traffic

Drop of Packets:

 Figure 6 shows For PGM Traffic Maximum Drop of packets

is 927 given by SRR queuing algorithm while Minimum

Drop of packets is 621 by BLUE. For Pareto Traffic

Maximum Drop of Packets is 488 for RED while Minimum

Drop of Packets is 0 for RIO and SRR. RED and BLUE

drops significantly same amount of Packets for PGM and
Pareto Traffic.

Figure 6: Number of Dropped packets at Node 3

End to End Delay:

Figure 7 shows the end to end delay graph for PGM and

Pareto Traffic. Graph has been plotted against Type of

Traffic on x-axis and average end to end Delay on y-axis.

RIO shows maximum average end to end delay for PGM

and Pareto i.e. 0.108887s and 0.096361s respectively. SFB

shows minimum average end to end delay for PGM and

Pareto Traffic i.e. 0.060989s and 0.04891s respectively.

Figure 7: Average end-to-end delay for PGM and Pareto traffic

Shaveta et al, Journal of Global Research in Computer Science, 3 (6), June 2012, 28-32

© JGRCS 2010, All Rights Reserved 32

Table 1 shows the average end to end delay for BLUE,

RED, RIO, SFB and SRR queuing algorithms.

Table 1. Average end-to-end delay for PGM and Pareto

AQM
Delay(s)

PGM(Node 9) PARETO(Node 12)

BLUE 0.104546 0.091964

RED 0.068822 0.056579

RIO 0.108887 0.096361

SFB 0.060989 0.04891

SRR 0.107865 0.095342

CONCLUSION

We have compared the performance of BLUE, RED, RIO,

SFB and SRR with a standard parameter setting such as

bandwidth for source to receiver link is 1.544 Mb/s.

Performance metrics are Throughput, average queuing delay

and the Packet Drop.

RED provides maximum throughput for PGM traffic while

SRR provides maximum throughput for Pareto Traffic. RIO

and SRR shows significantly lesser number of Drop of

Packets for Pareto Traffic while BLUE shows minimum

Drop of Packets for PGM Traffic. These AQM techniques

are best suited because users are sensitive for delay. SFB

shows minimum average end to end Delay for PGM and

Pareto Traffic.

SRR shows maximum throughput and minimum number of

packet drops for Pareto Traffic and RED shows maximum
throughput and minimum number of drops for Pareto

Traffic. SRR and RED show significantly better

performance above all other AQM techniques in case of

DVMRP-PGM multicast network.

REFERENCES

[1] Chengyu Zhu and Oliver W. W. Yang, “A Comparison of

Active Queue Management Algorithms Using the OPNET

Modeler”. IEEE Communications Magazine • June 2002

pp.158-167.

[2] S. Floyd and V. Jacobson, “Random Early Detection

Gateways for Congestion Avoidance,” IEEE/ACM Trans.

Net., vol. 1, no. 4, Aug. 1993, pp. 397–413.

[3] S. Floyd, “TCP and explicit congestion notification,” ACM

Computer Communication Review, vol. 24, no. 5, pp. 10–

23, 1994.

[4] Harish.H.Kenchannavar, Dr.U.P.Kulkarni “A Comparison

study of End-to-End Delay using different active queue

management algorithms”, IEEE 2008, pp 88-91.

[5] The ns Manual (formerly ns Notes and Documentation),

The VINT Project a Collaboration between researchers at

UC Berkeley, LBL, USC/ISI, and Xerox PARC. Kevin Fall

hkfall@ee.lbl.govi, Editor Kannan Varadhan

hkannan@catarina.usc.edui, Editor, May 9, 2010

[6] Ashish Kumar, Ajay K Sharma, Arun Singh, “Performance

Evaluation of Centralized Multicasting Network over

ICMP Ping Flood for DDoS,” International Journal of

Computer Applications (0975 – 8887) Volume 37– No.10,

January 2011.

[7] HUANG Shao-bin, WU, Yan-xia, and PIAO Xiu-feng

“Performance comparison of multicast routing protocols

based on NS-2”, Journal of Marine Science and

Application, Vol 4,Issue 4,pp.47-52,Dec 2005.

[8] The ns Manual (formerly ns Notes and Documentation),

The VINT Project A Collaboration between researchers at

UC Berkeley, LBL, USC/ISI, and Xerox PARC. Kevin Fall

hkfall@ee.lbl.govi, Editor Kannan Varadhan

hkannan@catarina.usc.edui, Editor, May 9, 2010.

[9] Jim Gemmell, Todd Montgomery , Tony Speakman, Nidhi

bhaskar , Jon Crowcroft “The PGM Reliable Multicast

Protocol” ,March 2003, ieee.org, University of Cambridge

http://research.microsoft.com/apps/pubs/default.aspx?id=6

8888).

[10] S. Floyd and V. Jacobson, “Random Early Detection

Gateways for Congestion Avoidance,” IEEE/ACM Trans.

Net., vol. 1, no. 4, Aug. 1993, pp. 397–413.

[11] R. Morris, “Scalable TCP Congestion Control,” Proc. IEEE

INFOCOM 2000, Tel Aviv, Israel, Mar. 26–30, 2000,

pp.1176–83.

[12] Wu-chang Feng Dilip D. Kandlur Debanjan Saha Kang G.

Shin “Stochastic Fair Blue: A Queue Management

Algorithm for Enforcing Fairness”.

[13] “Recommendations on Queue Management and

Congestion Avoidance in the Internet”

http://tools.ietf.org/html/draft-ibanez-diffserv-assured-eval-

00.

[14] “The BLUE Active Queue Management Algorithms” Wu-

chang Feng, Kang G. Shin, Fellow, IEEE, Dilip D.

Kandlur, Member, IEEE, and Debanjan Saha, Member,

IEEE

[15] “The Smoothed Round-Robin Scheduler Paul”

Southerington, Member, IEEE.

[16] “Hierarchical smoothed round robin scheduling in high-

speed networks” A.P. Boedihardjo, Y. Liang, Department

of Computer Science, Virginia Tech, VA 22043, USA,

Department of Computer and Information Science, Purdue

School of Science, Indiana University Purdue University

Indianapolis, IN 46202, USA .

