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ABSTRACT: Deconvolution is an ill-posed inverse problem, it can be solved by imposing some form of 

regularization(prior knowledge) on the unknown blur and original image. This formulation allows both frame-based or 

total-variation regularization. In several imaging inverse problems, ADMM is an efficient optimization tool that 

achieves state-of-the-art speed, by splitting the underlying problem into simpler, efficiently solvable sub-problems. In 

deonvolution the observation operator is circulant under periodic boundary conditions, one of these sub-problems 

requires a matrix inversion, which can be efficiently computable(via the FFT). we show that the resulting algorithms 

inherit the convergence guarantees of ADMM. These methods are experimentally illustrated using frame-based 

regularization; the results show the advantage of our approach over the use of the ―edge taper‖ function (in terms of 

improvement in SNR). 

 

KEYWORDS: Image deconvolution, alternating direction method of multipliers (ADMM), boundary conditions, 

periodic deconvolution, in painting, frames. 

 

I. INTRODUCTION 

 

Deconvolution is an inverse problem where the observed image is modeled as resulting from the convolution with a 

blurring filter, possibly followed by noise, and the goal is to estimate both the underlying image and the blurring 

filter.In deconvolution , the pixels located near the boundary of the observed image depend on pixels (of the unknown 

image) located outside of its domain. The typical way to formalize this issue is to adopt a so-called boundary condition 

(BC). 

 

 The periodic BC refers to the image repeats in all directions. Its matrix representation can be implemented via the 

FFT. 

 The zero BC assumes a black boundary, so that pixels outside the boarders of the image have zero value, thus the 

matrix representing the convolution is block-Toeplitz, with Toeplitz blocks. 

 Inreflexive and anti-reflexive BCs, the pixels outside the image domain are a mirror image of those near the 

boundary, using even or odd symmetry, respectively. 

 

For the sake of simplicity and computational convenience, most fast deconvolution algorithms assume periodic BC, 

which has the advantage of allowing convolutions to be efficiently carried out using the FFT. However, as illustrated in 

Fig. 1, these BC are notaccurate and are quite unnatural models of most imaging systems. Deconvolution algorithms 

that ignore this mismatch and wrongly assume periodic BC lead to the well known boundaryartifacts. A better 

assumption about the image boundaries is simply they are unobserved/unknown,which models well a canonical 

imaging system where an image sensor captures the cental part of the image projected by the lens.The 

assumptions(unnatural) of periodic boundary conditions as illustrated in Fig 1. 

 

    In quadratic regularization, image deconvolution with periodic BC corresponds to a linear system, wherethe 

corresponding matrix can be efficiently inverted in the DFTdomain using the FFT.The technique to 
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deconvolutionunder frame-based analysisnon-smooth regularization;  that work proposes an algorithmbased on variable 

splitting and quadratic penalization, using the method  to solve the linear system at each iteration.That method is related 

to, but it is not ADMM, thus has no guarantees of converge to a minimizer of the original objective function. Although  

mentions the possibility of using the method within ADMM, that option was not explored. 

 

 
 Fig. 1. Illustration of the (unnatural) assumptions underlying the periodic, reflexive, and zero boundary conditions. 

 

 The image deconvolution under frame based analysis non-smooth regularization using ADMM inherit all the desirable 

properties of previous ADMM-based deconvolution methods: all the update equations (includingthe matrix inversion) 

can be computed efficiently without using inner iterations; convergence is formally guaranteed. 

 

II. RELATED WORK 

 

Iterative Shrinkage Thresholding algorithm: 

Consider common form of algorithms for linear inverse problems in imaging, 

 

 
1

2x
𝑚𝑖𝑛 ∥ Ax − y ∥2

2+ 𝜏𝜙(x)         ----------------------                                                                 (1) 

 

Where A=BW, B is the matrix representation of the direct operator, i.e., x = W𝛽, where 𝛽 ∈ ℝ𝑑 , and the columns of 

the 𝑛 × 𝑑matrix W are the elementsof a wavelet1 frame. 

Arguably, the standard algorithm for solving problems of the form (1) is the so-called iterative 

shrinkage/thresholding (IST)algorithm. IST can be derived as an expectation-maximization (EM) algorithm, as a 

majorization-minimization (MM) method, or as a forward-backward splitting technique. A key ingredient of IST 

algorithms isthe so-called shrinkage/thresholding function, also known as the Moreau proximal mapping or the 

denoising function, associated to the regularizer, which provides the solutionof the corresponding pure denoising 

problem. Formally, thisfunction is denoted asΨ𝜏𝜙 : ℝ𝑚 → ℝ𝑚and defined as 

 

Ψ𝜏𝜙  𝑦 =  
1

2x
𝑚𝑖𝑛 ∥ x = y ∥2

2+ 𝜏𝜙(x)  ----------                                                                     (2) 

IST may be quite slow, specially when 𝜏 is very small and/or the matrix A is very ill-conditioned. This observation has 

stimulated work on faster variants of IST, which we will briefly review in the next paragraphs. 

 

Two-step IST (TwIST):  

In the two-step IST (TwIST) algorithm [1], each iterate depends on the two previous iterates, rather than only on the 

previous one (as in IST). This algorithm may be seen as a non-linear version of the so-called two-step methods for 

linear problems [2]. TwIST was shown to be considerably faster than IST on a variety of wavelet-based and TV-based 

image restoration problems; the speed gains can reach up to two orders of magnitude in typical benchmark problems.  

 

Fast IST (FISTA): 

Another two-step variant of IST, named fast IST algorithm (FISTA), was recently proposed and also shown to clearly 

outperform IST in terms of speed. FISTA is a non-smooth variant of Nesterov’s optimal gradient-based algorithm for 

smooth convex problems. 
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 Standing for sparse reconstruction by seperable approximation (SpaRSA): 

A strategy recently proposed to obtain faster variants ofIST consists in relaxing the condition𝛾 > 𝛾𝑚𝑖𝑛 ≡
∥ A ∥2

2/2. Inthe SpaRSA (standing for sparse reconstruction by separableapproximation) framework, a different𝛾𝑡 is 

used ineach iteration (which may be smaller than𝛾𝑚𝑖𝑛 , meaning largerstep sizes). It clearly outperforms standard IST 

and a convergence result for SpaRSA. 

 

Finally, when the slowness is caused by the use of a small value of the regularization parameter, continuation 

schemes have been found quite effective in speeding up the algorithm. The key observation is that IST algorithm 

benefits significantly from warm-starting, i.e., from being initialized near a minimumof the objective function. This 

suggests that we can use the solution of (1), for a given value of𝜏, to initialize IST in solving the same problem for a 

nearby value of 𝜏. Thiswarm-starting property underlies continuation schemes. The idea is to use IST to solve (1) for a 

larger valueof 𝜏(which is usually fast), then decrease 𝜏in steps toward itsdesired value, running IST with warm-start for 

each successivevalue of 𝜏. 

III. IMAGE DECONVOLUTION WITH PERIODIC BC USING ADMM 

 

The ADMM: 

The application of ADMM to our particular problem involves solving a linear system with the size of the 

unknown image or with the size of its representation. Although this seems like an unsurmountable obstacle, we show 

that it is not the case. In many problems, such as (circular) deconvolution, reproduction of missing samples, or 

reconstruction from partial Fourier observations, this system can be solved very quickly in closed form (with O(n) or 

O(n log n) cost). For problems of the form (1), we show how exploiting the fact that W is a tight Parseval frame, this 

system can still be solved efficiently (typically with O(n log n) cost. 

 

We report results on a set of benchmark problems, including image deconvolution, recovery of missing pixels, 

and reconstruction from partial Fourier transform, using both frame-based regularization. In all the experiments, the 

resulting algorithm is consistently and considerably faster than the previous state of the art methods FISTA, TwIST, 

and SpaRSA. 

Consider a generalization of an unconstrained optimization problem 

 

  𝑔𝑗 ((𝐻𝑗 𝑧)),𝐽
𝑗 =1𝑧∈ℝ𝑑

𝑚𝑖𝑛      ------------------------                                                                                (3) 

 

Where 𝐻𝑗 ∈ ℝ𝑝𝑗×𝑑  are arbitary matrices, and 𝑔𝑗 : ℝ𝑝𝑗 → ℝ are convex functions.The instance of ADMM proposed in 

to so1lve(1) is presented in Algorithm 1, where𝜁 ∈ ℝ𝑝𝑗 ×𝑑𝜁(𝑗 ) ∈ ℝ𝑝𝑗 denotes the j-th block of ζ in the following 

partition 

𝜁 =  
𝜁(1)

⋮
𝜁(𝐽)

  , 

and a similar notation is used for 𝑢𝑘and 𝑑𝑘 . 

 

Lines 4 and 6 of this algorithm are the main steps and those that can pose computational challenges. These steps, 

however, wereshown to have fast closed-form solutions in several cases of interest. In particular, the matrix inversion 

in line 4 cansometimes (e.g., in periodic deconvolution problems) be computedcheaply, by exploiting the matrix 

inversion lemma, the FFT and otherfast transforms (see [1, 13]), while line 6 corresponds to a so-calledMoreau 

proximity operator (MPO), defined as 

 

prox𝑓 𝑦 = 𝑎𝑟𝑔  
1

2X
𝑚𝑖𝑛 ∥ 𝑦 − Ax ∥2

2+ 𝑓 𝑥 ;---------                                                                           (4) 

for several choices of f, prox𝑓has a simple closed form. 
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Algorithm 1: 

1    Initialization: set k=0, choose 𝜇1 …𝜇𝐽 >, u0, d0. 

2    repeat 

3    𝜁 ← 𝑢𝑘 + 𝑑𝑘   

4    𝜁 ←   𝜇𝑗
𝐽
𝑗=1  𝐻 𝑗   

∗
𝐻 𝑗   

−1
 𝜇𝑗

𝐽
𝑗=1  𝐻 𝑗   

∗
𝜁 𝑗   

5     for j=1 to J do 

6     u𝑘+1
(𝑗 )

← prox𝑔𝑗  / 𝜇 𝑗
(𝐻 𝑗  z𝑘+1 − d𝑘

(𝑗 )
) 

7     d𝑘+1
(𝑗 )

= d𝑘
(𝑗 )

− (𝐻 𝑗  z𝑘+1 − u𝑘+1
 𝑗  

) 

8      end 

9      𝑘 ← 𝑘 + 1 

10    until ending criterion is satisfied 

 

Under the condition that (1) has a solution, Algorithm 1 inherits the convergence guarantees of ADMM given in [11]. 

For our formulation, sufficient conditions for Algorithm 1 to converge to a solution of 1 are: 𝜇1 …𝜇𝐽>0; all functions 

𝑔𝑗 are proper, closed, and convex; the matrix 𝐺 =   H(1) 
∗
… H(𝐽 ) 

∗
 
∗
∈ ℝ𝑝×𝑑has full column rank (where()∗denotes 

matrix/vector conjugate transpose,and 𝑝 =  𝑝𝑗𝑗 ). 

 

Image deconvolution with periodic BC:This section reviews the ADMM-based approach to image deconvolution 

with periodic BC, using the frame-based formulations, the standard regularizers for this class of imaging inverse 

problems. We begin by considering the usual observation model used in image deconvolution with periodic BC:  

 

             y = Ax + w,---------------                                                                                             (5) 

 

where x ∈ ℝ𝑛and x ∈ ℝ𝑛are vectors containing all pixels (lexicographically ordered) of the original and the observed 

images, respectively, w denotes white Gaussian noise, and A ∈ ℝ𝑛×𝑛 is the matrix representing the (periodic) 

convolution with some filter. In the frame-based analysis approach, the estimated image,x ∈ ℝ𝑛 ,is obtained as 

 

x  =  arg  
1

2𝑋∈𝑅𝑛
𝑚𝑖𝑛 ∥ 𝑦 − Ax ∥2

2+ 𝜆𝜙 Px   -------------                                                                     (6) 

 

Where P ∈ ℝ𝑞×𝑛 (𝑞 ≥ 𝑛) is the analysis operator of some frame (e.g., a redundant wavelet frame or a curvelet frame), 

𝜙is a regularizer encouraging the vector of frame analysis coefficients to be sparse, and 𝜆 > 0is the regularization 

parameter. A typical choice for 𝜙, herein adopted, is  

𝜙(z) =∥ z ∥1=  |𝑧𝑖|

𝑖

 

Problem (6) can be written in the form (3), with J = 2 and 

𝑔1: 𝑅𝑛 → 𝑅,𝑔1 v =
1

2
∥ 𝑦 − v ∥2

2,    -----------------                                                                 (7) 

𝑔2: 𝑅𝑞 → 𝑅,𝑔2 v =∥ 𝑧 ∥2
2     -------------------------                                                                 (8) 

H(1) ∈ ℝ𝑛×𝑛 , H 1 = A,      ---------------------------                                                                (9) 

 

H(2) ∈ ℝ𝑞×𝑛 ,H 2 = P,        ---------------------------                                                              (10) 

 

The operators of 𝑔1and 𝑔2, simple expressions of key components of Algorithm 1 (line 6),  

 

prox𝑔1×𝜇1
 v =

𝑌+𝜇1V

1+𝜇1
 ,         ------------------------                                                                 (11) 

prox𝑔2×𝜇2
 z = soft(z,

𝜆

𝜇2
),    -----------------------                                                                 (12) 

 

where ―soft‖ denotes the well-known soft-threshold function 
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soft v, 𝛾 = sign(v)⨀max  v − 𝜏, 0    ----------                                                                     (13) 

 

where the sign, max, and absolute value functions are componentwise, and⨀denotes the component-wise product.Line 

4 of Algorithm 1 (the other key component) has the form 

𝑧𝑘+1 =  A∗A +
𝜇2

𝜇1
I 

−1

(A∗ζ
(1) +

𝜇2

𝜇1
P∗ζ

(2)I) -----                                                                      (14) 

 

Assuming that P corresponds to a Parseval1 frame (i.e., P∗P = I,although possibly PP∗ ≠ I, the matrix inverse in (14) is 

simplycomputed in the DFT domain 

 

 A∗A +
𝜇2

𝜇1
I 

−1

= U∗( ᴧ 2 +
𝜇2

𝜇1
I)−1U    -----------                                                                   (15) 

 

in which U and U∗are the unitary matrices representing the DFT and its inverse, and Λ is the diagonal matrix of the 

DFT coefficients of the convolution kernel (i.e., A = U∗ΛU). 

 

 The inversion in (15) has O(n log n) cost, since matrix ( ᴧ 2 +
𝜇2

𝜇1
I) is diagonal and the products by U and U∗can be 

computed using the FFT. The leading cost of each application of (14) (line 4 of Algorithm 1) is thus either the O(n log 

n) cost associated with (15) or the cost of the products byP∗. For most tight frames used in image restoration, this 

product has fast O(n log n) algorithms.  

 

 We conclude that, under periodic BC and for a large class of frames, each iteration of Algorithm 1 for solving (5) has 

O(n log n) cost. Finally, this instance of ADMM has convergence guarantees, since: (1) 𝑔2 is coercive, so is the 

objective function in (5), thus its set of minimizers is not empty, (2) 𝑔1 and 𝑔2 are proper, closed,convex functions; (3) 

matrix H(2) = Iobviously has full column rank, which implies that G = [A∗I∗]also has full column rank. 

 

 In the experiments herein reported, we use the benchmark Lena image(of size 256 × 256), with different blurs (out-

of-focus and  uniform), all of size 19 × 19(i.e., 2𝑙 + 1 × (2𝑙 + 1), with 𝑙 = 9), at four different BSNRs (blurred 

signal to noise ratio): 40dB, 50dB, and 60dB. The reason why we concentrate on large blurs is that the effect of the 

boundary conditions is very evident in this case. 

 

 On each degraded image, the algorithm proposed in Section3.2 was run, as well as the periodic version (Section 3.1), 

with and without pre-processing the observed image with the ―edgetapper‖ MATLAB function. The algorithms are 

stopped when∥ 𝑧𝑘 − 𝑧𝑘−1 ∥2/∥ 𝑧𝑘 ∥2< 10−3 and λ was adjusted to yield the highest SNR of the reconstructed image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. ISNR values achieved by the 2 tested approaches (see text). 

 

 

Deconvolution Method 

Blur BSNR FA-BC FA-ET 

uniform 60dB -2.52 3.06 

Out-of-focus 60dB -1.52 5.04 

uniform 50dB -2.53 3.06 

Out-of-focus 50dB -1.50 5.02 

uniform 40dB -2.54 3.05 

Out-of-focus 40dB -1.50 4.88 

Average - -2.50 4.01 
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    original (256 × 256)                  observed (238 × 238) 

                                              
Fig. 2. Results obtained on the Lena image, degraded by a uniform19×19 blur at 60dB BSNR, by the two algorithms 

considered(seetext). Notice that the algorithms tha tassume periodic BC(inadditionto huge artifacts) produce 238×238 

images. 

 

Table 1 shows, for each blur and BSNR, the ISNR (improvement in SNR) values obtained with the two algorithms 

mentioned in the previous paragraph. The huge impact of wrongly assuming periodic BC is clear in these results, as 

well as in the example shown in Fig. 2. 

 

IV. DECONVOLUTION WITH UNKNOWN BOUNDARIES  

 

 The observation model 

To handle images with unknown boundaries, we model the boundary pixels as unobserved, which is achieved my 

modifying(5) into    

              y = MAx + w---------------                                                                                                    (16) 

whereM ∈  {0, 1}m×n (with m <w) is a masking matrix, i.e., 

A is replaced by MA, in line 8, while in line 6, A_ is replaced by A*M*and K is redefined (instead of (33)) as the 

inverse of the matrix in convolution represented by A is irrelevant, and we may adopt periodic BCs, for computational 

convenience. 

 If M = I, model (34) reduces to a standard periodic 

𝐾 =
1

µ1
(𝐶 − 𝐶𝐵∗ 𝐵𝐶𝐵∗ − 1 −1𝐵𝐶)---------------                                                                           (17) 

deconvolution problem. Conversely, if A = I, (34) becomes a pure inpainting problem. Moreover, the formulation (34) 

canbe used to model problems where not only the boundary, butalso other pixels, are missing, as in standard image 

Inpainting. 

 

Frame Based Deconvolution With Unknown Boundaries 

A. Frame-Based Analysis Formulation 

 Mask Decoupling (MD): The frame-based analysis formulation corresponding to observation model  is 

𝑋 = 𝑎𝑟𝑔 min𝑋∈𝑅𝑛
1

2
 𝑦 − 𝑀𝐴𝑋 2

2 + 𝜆 𝑃𝑋 1---------------                                                              (18) 

B. Frame-Based Synthesis Formulation 

Mask Decoupling (MD): Under observation model  the frame-based synthesis formulation changes to 

𝑧 = 𝑎𝑟𝑔 min𝑋∈𝑅𝑛
1

2
 𝑦 − 𝑀𝐴𝑊𝑍 2

2 + 𝜆 𝑍 1 --------------------                                                    (19) 

C.Frame Synthesis Conjugate Gradient 

 

(𝑊∗𝐴∗𝑀∗𝑀𝐴𝑊 + 𝛾𝐼)−1 = (𝑊∗𝐴∗𝐴𝑊 − 𝐵∗𝐵 + 𝛾𝐼)−1 = 𝐶 − 𝐶𝐵∗ 𝐵𝐶𝐵∗ − 1 −1𝐵𝐶----     (20) 
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where the second equality results from using the Sherman-Morrison-Woodbury matrix inversion identity, after 

defining  Since 𝐶 = (𝑊∗𝐴∗𝐴𝑊 + 𝛾𝐼)−1𝐴 is circulant, C can be efficiently computed via FFT, as (𝐵𝐶𝐵∗ − 𝐼)−1 

explained in the inversion. 

 

4.3 TV based deconvolution with unknown boundaries 

A.Mask Decoupling (MD): Given the observation model, TV-based deconvolution with unknown boundaries is 

formulated as 

𝑋 = 𝑎𝑟𝑔 min𝑋∈𝑅𝑛
1

2
 𝑦 − 𝑀𝐴𝑋 2

2 + 𝜆  𝐷𝑖𝑋 2
𝑛
𝑖=1 -----------------------                                                 (21) 

B.TV conjugate gradient 

 

The consequence is a simple modification of Algorithm , where 

𝐶 = (𝐴∗𝐴 + 𝛾(𝐷)∗𝐷 + 𝛾(𝐷𝑣)∗𝐷𝑣)−1  ----------------------------------                                                       (22) 

The circulant nature of A, Dh, and Dv allows computing C efficiently in the DFT domain. 

 

V. SIMULATION RESULTS 

 

  The simulation studies involve the output of the proposed method based on the ADMM is shown in the fig3. It 

includes the original image and the degraded image after performing the ADMM algorithm it will produce the 

estimated  image. The cost function will indicate the number of iterations to obtain the estimated image from the 

degraded image. The  ISNR values of the estimated image is tabulated in the table.2 based on frame analysis and total 

variation algorithms which are used in ADMM.  

 

 

 
Figure 3: Output Image based on ADMM 

         

Table.2 ISNR values obtained from frame analysis and total variation algorithm 

 

 

 

 

 

 

 

 

 

 

 

BLUR 

 

BSNR 

PROPOSED METHOD 

TV-CG TV-MD FA-CG FA-MD 

Uniform 90dB 12.16 12.20 10.00 9.95 

Out-of-focus 90dB 17.31 16.99 15.25 15.13 

Uniform 60dB 12.00 12.00 9.97 9.89 

Out-of-focus 60dB 16.57 16.39 9.89 14.09 

Uniform 40dB -1.34 -1.37 5.67 5.62 

Out-of-focus 40dB -2.40 -2.49 1.18 1.177 

Average -  9.05 8.95 8.66 9.3 
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VI. CONCLUSION  

 

  Presented a new strategy to extend recent fast image deconvolution algorithms, based on the alternating direction 

method of multipliers (ADMM), to problems with unknown boundary conditions. Considered frame based analysis 

formulation,and gave the convergence guarantees for the algorithms proposed. Experiments show the results in terms 

of  restoration quality.Ongoing and future work includes theinstead of adopting a standard BC or a boundary smoothing 

scheme, a more realistic model of actual imaging systems treats the external boundary pixels as unknown; i.e., the 

problem is seen as one of simultaneous deconvolution and inpainting, where the unobserved boundary pixels are 

estimated together with the deconvolved image. 
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