
Volume 4, No. 4, April 2013

Journal of Global Research in Computer Science

REVIEW ARTICLE

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 58

PERFORMANCE OPTIMIZATION UNDER A VIRTUALIZED ENVIRONMENT

Argha Roy*1
*1 M.Tech in CSE, Netaji Subhash Engineering College, Kolkata, West Bengal, India

arghacse@gmail.com1

Abstract: Virtualization technology has found a renewed interest owing to the need for cost-efficient operations, better manageability and

increased availability of systems. The increased use of physical resources introduces new bottlenecks in performance. This paper proposes

methods trying to eliminate these bottlenecks and achieve close to native performance for various guest OS. Here we try to address the following

two performance aspects –1. Additional I/O bottlenecks introduced due to virtualization 2. LIVE MIGRARTION support for each virtual

machine to ensure maximum uptime

Keywords: virtualization, hypervisor, device emulation, IOVM, live migration

INTRODUCTION

In computer terminologies, virtualization refers to a process

of decoupling the software from the physical hardware so

that the same piece of hardware can be shared by multiple

operating systems in a secured and managed manner. Here

multiple operating machines run in what is known as virtual

machines (VM), each with its own specifications. A virtual

machine monitor (VMM) is used to manage and securely run

these virtual machines. Virtualization can thus allow us to

allocate portions of a hardware resource as per requirements

to each virtual machine. Current generation processors have

evolved to a position where they have much more processing

power than what a single OS can utilize at a given instant.

Studies have revealed that on an average, less than 15 % [1]

of the actual processing power gets utilized under a single

OS per machine scenario. Currently companies support their

ever increasing requirement for business services by buying

multiple physical boxes. Compounding this cost is the added

overhead of an inflexible computing infrastructure, if the

demand changes, the system requirements also changes.

Enter virtualization. In its latest form, virtualization makes

use a hypervisor to achieve decoupling and a lot of research

has been going on this front lately [2]. In the discussion that

follows, we shall be using the terms VMM and hypervisor

interchangeably. Thus now the same physical box can be

utilized for providing multiple services which would have

previously required two or more physical machines.

Additional benefits include scalability, reduced power

consumptions, lower hardware support costs, and the same

level of isolation as different physical boxes and easier

management through consolidation.

Figure: 1

There are various approaches for virtualization, each with its

own advantages and disadvantages. However, running

multiple operating systems in virtual machines introduces

new challenges which affect performance under a virtualized

environment. There is a notable degradation in I/O

performance due to multiple context switches [3]. Further

running multiple virtual machines on the same physical box

makes all of them dependent on the same physical box for

dependability. A secure and feasible method needs to be

present to do appropriate hardware address re-mapping and

enable migration from one box to another in case of

hardware failures, without adversely affecting performance

during the hardware downtime.

CURRENT SITUATION

The x86architecture is the architecture of choice for most

servers and desktops, given its popularity and wide range of

applications built around it. With respect to virtualization,

we focus on the protection levels offered in various OSes

and of course, on the instruction set itself. There are a bunch

of privileged (or kernel mode) instructions and many

unprivileged (or user mode) instructions in the x86

instruction set. On the OS side, we have a hierarchical

protection security model being implemented in the form of

RINGs. A program running in RING 0 has access to the

entire instruction set (including the privileged one). User

mode applications run in the less privileged RING 3.

However, most virtualization software’s (except Para

virtualization) along with its virtual machines run in user

mode at RING 3. Running software (here guest OS) at a

privilege level other than what it was originally designed for

is called ring aliasing [4]. Now we have a problem (called

ring compression [4]) when a guest OS issues a privileged

instruction at RING 3. Thus the x86 instruction set is not a

fully virtualizable one as it violates the EQUIVALENCE

requirement [5] of POPEK and GOLDBERG virtualization

requirements. A variety of methods are adopted for

vitalizing the entire instruction set of x86, which ranges

from binary patching to modifying the guest OS itself. In

binary patching, the VMM “traps” the non- virtualizable

instructions [6] from the guest OS and does dynamic

runtime patching so that the guest OS is abstracted from the

Argha Roy et al, Journal of Global Research in Computer Science, 4 (4), April 2013, 58-61

© JGRCS 2010, All Rights Reserved 59

fact that it’s running under a virtualized environment. This

method consumes a significant amount of processing power,

given the multiple number of context switches that takes

place inside the processor. In the second approach, called

Para-virtualization, the guest OS itself is modified to make it

virtualization “aware” and let it know that it’s sharing the

hardware platform with others. Latest hardware support in

the form of Intel VT [4] or AMD Pacifica [7] technology

addresses the problem of executing privileged instructions at

RING 3. These techniques provide a privileged RING 1

(called VMX root mode in Intel [4]) for guest OS and

hypervisor to run in. However, these technologies provide

no support for I/O of the VMs.

The largest number of context switches takes place during

I/O instructions as these are the most common type of

instructions issued by the guest OSes. A single context

switch in a Pentium 4 (P4 2.8 GHz) costs 995 ns (= 2598

CPU cycles) + software context switch delays![8] So we

shall be focusing on I/O instructions more intensely and

propose methods for reducing the number of context

switches that occur during issuing of these instructions and

thus improve on the amount of time processor spends

processing instructions rather than sitting idle doing

switching. Before we proceed further, we need to

understand the different types of virtualization. Here we

shall only give a top level idea of the various approaches

and propose ideas to increase overall performance. The

position and mode of operation of the hypervisor depends on

type of implementation adopted. Each of these methods has

their own way of vitalizing the platform hardware so as to

enable hardware sharing among guests.

Figure: 2

PARA-VIRTUALIZATION

In this approach, the guest OS is modified, preferably at the

kernel level, to directly interact with the VMM for various

operations, including I/O and interrupt handling. Here the

mode of operation of the guest OS is itself modified so as to

bring about tighter coupling between the guest and the

hypervisor. This makes Linux and other open source OS

ideal candidates for Para virtualization.

OS-HOSTED VIRTUALIZATION

In this mode of virtualization, the hypervisor runs on top of

an operating system which acts as the host, for other guest

operating systems. The biggest advantage of this type of

virtualization is that the hypervisor can leverage the existing

drivers of the host OS for its operations.

VIRTUALIZING I/O HARDWARE

Every operating system needs some dedicated hardware to

run upon. However in virtualization, we only have a fixed

number of instances of a given hardware and many guest

OSes run on top on this fixed hardware. Thus we need to

ensure that no two guest’s issues conflicting commands and

also that results of an operation are properly routed back to

the guest from whom a given command was issued, so as to

enable sharing of hardware. Thus all hardware, starting from

the processor to the physical hard disk must be virtualized

for virtualization to function properly. Varieties of methods

are used for the same and are discussed below.

COMPLETE EMULATION

Emulation refers to implementation of the complete

hardware in term of software. Emulation offers us the

advantage of complete portability of the guest- the guest is

totally unaware of the underlying physical hardware. The

guest only knows of the emulated device being presented to

it. Also, since emulation presents an OS with an exact

interface of some existing hardware device, the guest OS is

not affected if the underlying hardware changes altogether.

However, emulation as a method of I/O virtualization

suffers from poor performance because of the tremendous

overheads of emulating a complete hardware device in

software.

PARA-VIRTUALIZATION APPROACH

As already discussed, in Para-virtualization, the guest OS is

made “virtualization aware” by modifying the operating

system to be virtualized. Although this method promises

lesser code traversal path from guest to actual hardware, the

primary limitation is the non-availability of Para-virtualized

drivers for an acceptable range of hardware platforms.

Further, complete para-virtualization optimization cannot be

carried out on proprietary OS like Windows.

DIRECT ASSIGNMENT

 In this approach, a given hardware is assigned directly to a

VM. The hardware is owned and controlled by the VM and

not by the hypervisor or the service OS. The biggest

advantage of this approach is that native performance can

be achieved using the VM’s native driver for the given

hardware. This also reduces the size of the VMM which no

longer has to include the device driver within it. However,

in direct assignment approach, the VMM can only assign as

many devices that are present in the platform physically.

Also, in the absence of proper hypervisor support for direct

assignment, this method too fails to reach its optimal

performance. Thus direct assignment offers us relatively

better performance, however as pointed out, we cannot

directly use this method for virtualization.

Argha Roy et al, Journal of Global Research in Computer Science, 4 (4), April 2013, 58-61

© JGRCS 2010, All Rights Reserved 60

OUR OBJECTIVES

From the above discussion we conclude that the while Para

virtualization may be a good solution for vitalizing

applications which needs higher throughput, its application

is limited due to the limited number of Para virtualized

drivers available in the market. Even writing new drivers

compatible with newer firmware of the same hardware is a

challenging task, leave alone optimizing it. Additionally,

there is the problem of executing a very large amount of

codes in RING 0 .On the other side, in OS hosted

hypervisor, we note that there is a substantial performance

penalty while carrying out full device emulation, to achieve

portability across a wide spectrum of hardware devices. In

the following section, we propose a hypervisor design,

keeping the following requirements in our mind –

a) The system should be scalable, performance

oriented and fault tolerant.

b) Improve security by running less code in privileged

RING 0 i.e. to maintain a lower trusted computing

base (TCB).

c) Felicitate migration of guest OS running on a given

physical box to another in case of hardware failures

on a given box.

We now move on to propose a hypervisor design which tries

to comply with our above stated requirements.

THE HYPERVISOR DESIGN

A major emerging trend among hypervisor designers is to

decompose the hypervisor. The current concept of a

centralized driver domain within the hypervisor is in

question here. The primary problem with this design is that

any optimization of the centralized driver domain for a

particular device may not satisfy the conflicting needs of

other devices being maintained by the hypervisor, given the

different usage patterns of different hardware components.

Thus if we move the required operation onto a separate

domain and optimize that domain, better performance can be

achieved. Following this trend, we move from a monolithic

general purpose hypervisor to a thin privileged “micro-

hypervisor” to be run in RING 0 on top of the platform

hardware along with the host OS and some of the other

subsystems and services of the VMM being run in a separate

VM that are de- privileged at RING 3. In the process we get

to ensure lower TCB at RING 0. Now these de-privileged

components of the VMM which are to be run in a virtual

machine specially optimized for its job, becomes our center

of attention.

We can now have a small, lightweight VM specifically

designed and optimized for a specific job of the hypervisor.

Since system memory is nowadays relatively plentiful,

running these small VMs will not be as taxing, given the

performance benefits they offer. We note here that the guest

OSes and these small VMs are now to be treated together as

one entity, though the two execute as separate processes.

This is so as the guest needs these small VMs to get vital

functions done through them, functions which are no longer

been provided directly by the hypervisor. Of the various

functions that are to be “out-sourced” from the hypervisor to

these lightweight VMs, our center of attention turns to I/O

as a broad function which includes both the disk as well as

network I/O. We focus primarily on I/O as its one of the

biggest bottlenecks affecting the performance of a

virtualized guest OS.

IOVMs

An IOVM is a highly flexible, lightweight guest OS

dedicated to and optimized for the virtualization of a certain

device over which I/O operations can take place. Through

IOVMs, we try to move I/O virtualization work out of the

hypervisor or the service OS into a dedicated driver domain.

IOVM FUNCTIONING

The splitting up of the drivers into a frontend and backend

might seem to increase the path an instruction has to travel

from a guest OS to a physical I/O device, but this splitting

up enables us to employ already researched and practically

implemented stack optimization techniques to deliver better

performance than what we would have achieved without the

IOVM. Thus we may also label IOVMs as software based

solution to the problem of direct assignment of hardware.

HOW IT WORKS

We shall be using existing technology of live migration

here, and show how IOVMs are well adaptable in these

situations as well. We shall see how the design of having an

IOVM frontend and backend facilitates LIVE

MIGRATION. In the event of a hardware device failure,

first the agent notifies the hypervisor about the same and

stacks up instructions temporarily. The agent next updates

the multiplexer with consultation of the hypervisor and

reloads appropriate driver modules of another I/O device on

some other box in the network. At the same time a

temporary IOVM in the target machine is prepared by

linking its interface with the network. On the faulty

machine, the multiplexer is updated to redirect all traffic

over the network. Thus now we have a backend driver of

some other device although the I/O takes over the network

temporarily. Once this stable condition is established,

network bandwidth reservation is requested; following

which I/O operations are temporarily suspended again and

all requests are queued up in the stack and copying of the

entire IOVM and its associated VMs to the target box’s

memory (RAM) starts. The preloading of drivers of target

machine ensures immediate resumption of work as soon as

VMs with its associated IOVMs are transferred to the target

box. Once copying is over, the target box completely takes

over execution of the VMs. We note that this method

requires close communication of the hypervisors on both the

source and target machines, details of which will differ

according to the mode of implementation adopted. Thus we

see that IOVMs also offers us a scalable and reliable support

for live migration of virtual machines. Thus the multiplexing

split driver design of IOVMs helps facilitate live migration,

while abstracting guest OSes from hardware failures,

making them fault tolerant.

CONCLUSION

Virtualization technology is all set to revolutionize the way

we deploy and maintain servers, offering unmatched

scalability and savings. This paper proposes techniques for

Argha Roy et al, Journal of Global Research in Computer Science, 4 (4), April 2013, 58-61

© JGRCS 2010, All Rights Reserved 61

using IOVMs for scalable and high performance I/O

operations under a virtualized environment thereby allowing

guest OSes to deliver their close to native performance. The

paper also shows how IOVMs, by virtue of their structure,

assists in live migration, thereby ensuring maximum uptime

for a virtual machine.

REFERENCES

[1] Inside Xen 3.0 – A XenSource Whitepaper PDF, p2

http://xen.xensource.com/files/xensource_wp2.pdf

[2] The IBM research hypervisor project – for generic ideas

and goal determinations -

http://www.research.ibm.com/hypervisor/

[3] Intel Technology Journal – virtualization technology for

directed I/O:

http://www.intel.com/technology/itj/2006/v10i3/2-io/1-

abstract.htm

[4] Intel VT – Hardware support for efficient processor

utilization:

http://www.intel.com/technology/itj/2006/v10i3/1-

hardware/1-abstract.htm

[5] “Formal requirements for virtualizable third generation

architectures” by GJ Popek, RP Goldberg –

Communications of the ACM (July 1974)

[6] VMware and CPU Virtualization Technology:

http://download3.vmware.com/vmworld/2005/pac346.pdf

[7] AMD Pacifica overview:

http://www.theinquirer.net/en/inquirer/news/2005/06/06/a

mds-pacifica-revealed-in-full

[8] Performance reports at OsDev.org -

http://www.osdev.org/osfaq2/index.php/Context%20Switc

hing

[9] Xen/IOMMUs – Breaking new grounds:

http://www.xensource.com/files/xs0106_xen_iommu.pdf

VMotion Features, VMWare:

[10] Performance reports at OsDev.org -

http://www.osdev.org/osfaq2/index.php/Context%20Switc

hing

[11] Xen/IOMMUs – Breaking new grounds:

http://www.xensource.com/files/xs0106_xen_iommu.pdf

[12] VMotion Features, VMWare:

http://www.vmware.com/products/vi/vc/vmotion.html

Short Bio Data for the Author

Argha Roy received his B.Tech (Computer Science &

Engineering) degree from West Bengal University of

Technology, Kolkata in 2011 and pursuing his M.Tech

degree from same University. He has presented more than 6

papers in National and International Conferences also he

has many publications in refereed journals.His areas of

interests are Cloud Computing , Networking and Automata

Theory .

