

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering
(An ISO 3297: 2007 Certified Organization)

 Vol.2, Special Issue 4, September 2014

Copyright to IJIRCCE www.ijircce.com 332

Periodically Predicting Client’s Bandwidth &
Cost Acknowledgements Sends to Cloud

Server to Optimize Resource Usage

1Prakash E J, 2 A.Nageswara Rao

1M.Tech Student, Department of Computer Science and Engineering, SV College of Engineering, Tirupati, Chittoor,

Andhra Pradesh, India
2 Professor & Head, Department of Computer Science Engineering, SV College of Engineering Tirupati, Chittoor,

Andhra Pradesh, India

ABSTRACT: Cloud computing provides users to store their data remotely and enjoy the on demand high quality
services and offers it as usage based pricing. Here, bandwidth reduction is an important issue in this paper. Cloud
service providers (CSP) are trying to reduce this bandwidth and also applying the judicious use of cloud resources by
deploying a TRE system to end-to-end clients. Generally cloud server maintains the client mobility and server
migration to cloud elasticity along with this it also maintaining the continuous client’s status of data transferring, traffic
reduction, it is again a burden to server, So in order to reduce the overhead to server in this paper TRE system is
receiver based, by maintaining a chunk store and allowing the client to use newly received chunks to identify
previously received chunk chains which in turn sends a predictor message for the subsequent chunks. When
redundancy is detected the sender then sends only ACK to the prediction instead of sending data.

KEYWORDS: caching, cloud computing, network optimization, traffic redundancy elimination.

I. INTRODUCTION

 The recent surge in cloud computing arises from its ability to provide software, infrastructure, and platform services
without requiring large investments or expenses to manage and operate them. Cloud computing characteristics include
a ubiquitous (network-based) access channel; resource pooling; multitenancy; automatic and elastic provisioning and
release of computing capabilities; and metering of resource Usage (typically on a pay-per-use basis). Cloud customers
pay only for the actual use of computing resources, storage, and bandwidth, according to their changing needs, utilizing
the cloud’s scalable and elastic computational capabilities.

 Consequently, cloud customers, applying a judicious use of the cloud’s resources, are motivated to use various traffic
reduction techniques, in particular traffic redundancy elimination (TRE), for reducing bandwidth costs Traffic
redundancy stems from common end-users’ activities, such as repeatedly accessing, downloading, uploading (i.e.,
backup), distributing, and modifying the same or similar information items (documents, data, Web, and video). TRE is
used to eliminate the transmission of redundant content and, therefore, to significantly reduce the network cost.

 In most common TRE solutions, both the sender and the receiver examine and compare signatures of data chunks,
parsed according to the data content, prior to their transmission. When redundant chunks are detected, the sender
replaces the transmission of each redundant chunk with its strong signature. Commercial TRE solutions are popular at
enterprise networks, and involve the deployment of two or more proprietary-protocol, state synchronized middle-boxes
at both the intranet entry points of data centers and branch offices, eliminating repetitive traffic between them while
proprietary middle-boxes are popular point solutions within enterprises, they are not as attractive in a cloud
environment. The rise of “on-demand” work spaces, meeting rooms, and work-from-home solutions detaches the
workers from their offices. In such a dynamic work environment, fixed-point solutions that require a client-side and a
server-side middle-box pair become ineffective. On the other hand, cloud-side elasticity motivates work distribution

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering
(An ISO 3297: 2007 Certified Organization)

 Vol.2, Special Issue 4, September 2014

Copyright to IJIRCCE www.ijircce.com 333

among servers and migration among data centers. Therefore, it is commonly agreed that a universal, software-based,
end-to-end TRE is crucial in today’s pervasive environment. This enables the use of a standard protocol stack and
makes a TRE within end-to-end secured traffic (e.g., SSL) possible. Current end-to-end TRE solutions are sender-based.
In the case where the cloud server is the sender, these solutions require that the server continuously maintain clients’
status.

 We show here that cloud elasticity calls for a new TRE solution. First, cloud load balancing and power optimizations
may lead to a server-side process and data migration environment, in which TRE solutions that require full
synchronization between the server and the client are hard to accomplish or may lose efficiency due to lost
synchronization. Second, the popularity of rich media that consume high bandwidth motivates content distribution
network (CDN) solutions, in which the service point for fixed and mobile users may change dynamically according to
the relative service point locations and loads. Moreover, if an end-to-end solution is employed, its additional
computational and storage costs at the cloud side should be weighed against its bandwidth saving gains. Clearly, a TRE
solution that puts most of its computational effort on the cloud side may turn to be less cost-effective than the one that
leverages the combined client-side capabilities.

 Given an end-to-end solution, we have found through our experiments that sender-based end-to-end TRE solutions
add a considerable load to the servers, which may eradicate the cloud cost saving addressed by the TRE in the first
place. Our experiments further show that current end-to-end solutions also suffer from the requirement to maintain end-
to-end synchronization that may result in degraded TRE efficiency.

 In this paper, we present a novel receiver-based end-to-end TRE solution that relies on the power of predictions to
eliminate redundant traffic between the cloud and its end-users. In this solution, each receiver observes the incoming
stream and tries to match its chunks with a previously received chunk chain or a chunk chain of a local file. Using the
long-term chunks’ metadata information kept locally, the receiver sends to the server predictions that include chunks’
signatures and easy-to-verify hints of the sender’s future data. The sender first examines the hint and performs the TRE
operation only on a hint-match. The purpose of this procedure is to avoid the expensive TRE computation at the sender
side in the absence of traffic redundancy. When redundancy is detected, the sender then sends to the receiver only the
ACKs to the predictions, instead of sending the data.

II. RELATED WORK

 Several TRE techniques are there, independent TRE, packet-level TRE. These have combined the sender-based TRE
ideas of with the algorithmic and implementation approach of along with protocol specific optimizations for middle-
boxes solutions. In particular, describes how to get away with three-way handshake between the sender and the receiver
if a full state synchronization is maintained. Some papers present redundancy-aware routing algorithm. These papers
assume that the routers are equipped with data caches, and that they search those routes that make a better use of the
cached data.

 In existing system they formally describe the design of SmartRE, architecture for redundancy elimination that draws
on the principles of spatially decoupling encoding and decoding responsibilities, and coordinating the actions of RE
devices for maximum efficiency. Our description focuses on SmartRE as applied to an ISP network. SmartRE
synthesizes two ideas: packet caches for redundancy elimination and cSamp. SmartRE leverages ideas from cSamp to
split caching (and decoding) responsibilities across multiple router hops in a network. It specifies the caching
responsibility of each RE device in terms of a hash-range per path per device. Each device is responsible for caching
Spackets such that the hash of the packet header falls in its assigned ranges. By using the same hash function across the
network and assigning non overlapping hash ranges across devices on the same path, SmartRE leverages the memory
resources efficiently without requiring expensive cache coordination protocols.

 Here in this design of three key elements ingress nodes, interior nodes, and a central configuration module. Ingress
and interior nodes maintain caches storing a subset of packets they observe.

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering
(An ISO 3297: 2007 Certified Organization)

 Vol.2, Special Issue 4, September 2014

Copyright to IJIRCCE www.ijircce.com 334

1. Ingress nodes encode packets. They search for redundant content in incoming packets and encode them with
respect to previously seen packets using some mechanism. In this sense, the role of an ingress node is identical in the
naive hop-by hop approach and SmartRE.
2. First, interior elements need not store all packets in their packet cache – they only store a subset as specified
by a caching manifest produced by the configuration module. Second, they have no encoding responsibilities. Interior
nodes only decode packets, i.e., expand encoded regions specified by the ingresses using packets in their local packet
cache.
3. The configuration module computes the caching manifests to optimize the ISP objective(s), while operating
within the memory and packet processing constraints of network elements. Similar to other proposals for centralized
network management we assume that this module will be at the network operations center (NOC), and has access to the
network’s traffic matrix, routing policies, and the resource configurations of the network elements.
Algorithm1: PROCESSPACKETINGRESS (pkt, ingress)
1 egress ← FINDEGRESS (pkt)
2 pathid ← GETPATHID (ingress, egress)
3 candidates ← GETCANDIDATES (pathid)
4 encodedpkt ← ENCODE (pkt, candidates)
5 coveredrange ← GETCOVEREDRANGE (pathid)
6 h ← HASH (pkt.header)
7 if (h ∈ coveredrange) then ADDPKTTOSTORE (pkt, pathid, h)
8 FORWARD (encodedpkt)

Pseudo code for ingress node.

Algorithm 2: PROCESSPACKETINTERIOR (encodedpkt, r)
1 mymatches ← PROCESSHIM (encodedpkt .shim)
2 decodedpkt ← DECODE (encodedpkt, mymatches)
3 pathid ← GETPATHID (encodedpkt)
4 myrange ← GETRANGE (pathid, r)
5 h ← HASH (pkt .header)
6 if (h ∈ myrange) then ADDPKTTOSTORE (decodedpkt, pathid, h)
7 FORWARD (decodedpkt)

Pseudo code for ingress node.

III. PROBLEM DEFINITION

 In this paper we describe the basic receiver driven operation of the PACK protocol. The stream of data received at
the PACK receiver is parsed to a sequence of variable-size, content-based signed chunks. The chunks are then
compared to the receiver local storage, termed chunk store. If a matching chunk is found in the local chunk store, the
receiver retrieves the sequence of subsequent chunks, referred to as a chain, by traversing the sequence of LRU chunk
pointers that are included in the chunks’ metadata. Using the constructed chain, the receiver sends a prediction to the
sender for the subsequent data. Part of each chunk’s prediction, termed a hint, is an easy-to-compute function with a
small-enough false-positive value, such as the value of the last byte in the predicted data or a byte-wide XOR checksum
of all or selected bytes. The prediction sent by the receiver includes the range of the predicted data, the hint, and the
signature of the chunk. The sender identifies the predicted range in its buffered data and verifies the hint for that range.
If the result matches the received hint, it continues to perform the more computationally intensive SHA-1 signature
operation. Upon a signature match, the sender sends a confirmation message to the receiver, enabling it to copy the
matched data from its local storage.

 Receiver chunk store:

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering
(An ISO 3297: 2007 Certified Organization)

 Vol.2, Special Issue 4, September 2014

Copyright to IJIRCCE www.ijircce.com 335

 The system uses a new chains scheme, described in Fig. 1, in which chunks are linked to other chunks according to
their last received order. The PACK receiver maintains a chunk store, which is a large size cache of chunks and their
associated metadata. Chunk’s metadata includes the chunk’s signature and a (single) pointer to the successive chunk in
the last received stream containing this chunk. Caching and indexing techniques are employed to efficiently maintain
and retrieve the stored chunks, their signatures, and the chains formed by traversing the chunk pointers.

 When the new data are received and parsed to chunks, the receiver computes each chunk’s signature using SHA-1.
At this point, the chunk and its signature are added to the chunk store. In addition, the metadata of the previously
received chunk in the same stream is updated to point to the current chunk

 The network redundant traffic, not only consuming network bandwidth, but also reducing the efficiency of the
Internet, exists abundantly in the course of exchanging Internet data. In the context, protocol-independent redundancy
elimination, which can remove duplicate strings from within arbitrary network flows, has emerged as a powerful
technique to improve the efficiency of network links in the face of repeated data and has been widely used.
Redundancy elimination middle-boxes are being widely deployed to improve the effective bandwidth of network
access links of enterprises and data centers alike, and for improving link loads in small ISP networks.

Fig 2: sender algorithms. (a)Filling the prediction queue (b) processing the prediction queue and sending PRED-ACK
or raw data.

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering
(An ISO 3297: 2007 Certified Organization)

 Vol.2, Special Issue 4, September 2014

Copyright to IJIRCCE www.ijircce.com 336

The utilization of a small chunk size presents better redundancy elimination when data modifications are fine-grained,
such as sporadic changes in an HTML page. On the other hand, the use of smaller chunks increases the storage index
size, memory usage, and magnetic disk seeks. It also increases the transmission overhead of the virtual data exchanged
between the client and the server.

IV. ALGORITHMS

When a new data arrived, then the receiver computes the respective signature for each chunk and looks for a match in
its local chunk store. If the chunk’s signature is found, the receiver determines whether it is a part of a formerly
received chain, using the chunks’ metadata. If affirmative, the receiver sends a prediction to the sender for several next
expected chain chunks. The prediction carries a starting point in the byte stream (i.e., offset) and the identity of several
subsequent chunks (PRED command).Upon a successful prediction, the sender responds with a PRED-ACK
confirmation message. Once the PRED-ACK message is received and processed, the receiver copies the corresponding
data from the chunk store to its TCP input buffers, placing it according to the corresponding sequence numbers. At this
point, the receiver sends a normal TCP ACK with the next expected TCP sequence number. In case the prediction is
false, or one or more predicted chunks are already sent, the sender continues with normal operation, e.g., sending the
raw data, without sending a PRED-ACK message.

Algorithm. 3: Receiver Segment Processing
1. if segment carries payload data then
2. Calculate chunk
3. if reached chunk boundary then
4. activate predAttempt ()
5. end if
6. else if PRED-ACK segment then
7. ProcessPredAck ()
8. activate predAttempt ()
9. end if

Algorithm. 4: predAttempt ()
1. if received chunk matches one in chunk store then
2. if foundChain (chunk) then
3. Prepare PREDs
4. send single TCP ACK with PREDs according to
 Options free space
5. exit
6. end if
7. else
8. store chunk
9. link chunk to current chain

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering
(An ISO 3297: 2007 Certified Organization)

 Vol.2, Special Issue 4, September 2014

Copyright to IJIRCCE www.ijircce.com 337

10.end if
11. send TCP ACK only

Algorithm. 5: processPredAck ()
1. for all offset PRED-ACK do
2. read data from chunk store
3. put data in TCP input buffer
4. End for

 Fig 3, Shows the redundancy in each month, according to the e-mail message’s issue date. The total measured traffic
redundancy was 31.6%, which is roughly 350 MB. We found this redundancy to arise from large attachments that are
sent by multiple sources, e-mail correspondence with similar documents in development process, and replies with large
quoted text. This result is a conservative estimate of the amount of redundancy in cloud e-mail traffic because in
practice some messages are read and downloaded multiple times. For example, a Gmail user that reads the same
attachment for 10 times, directly from the Web browser, generates 90% redundant traffic.

FIG: 3 Traffic volume and detected redundancy E-mail one year gmail account by month.

Furthermore, this evaluations show that in videos and large files with a small amount of changes, redundant chunks are
likely to reside in very long chains that are efficiently handled by a receiver-based TRE.

V. CONCLUSION

 In cloud computing mainly traffic redundancy elimination (TRE) is the main issue to concern as the amount of Data
exchanged between the cloud and the users is increasing dramatically using middle-boxes in cloud environment are
inadequate. So, the increasing need for TRE solution that reduces the operational cost, user mobility and cloud
elasticity

 In this paper we have presented a novel receiver based cloud friendly end-to-end TR that is based on new principals
that reduce latency and cloud operational cost.

REFERENCES

[1] E. Zohar, I. Cidon, and O. Mokryn, “The power of prediction: Cloud bandwidth and cost reduction,” in Proc. SIGCOMM, 2011, pp. 86–97.
[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,R.Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of
cloud computing,” Commun. ACM, vol. 53, no. 4, pp. 50–58, 2010.
[3] U. Manber, “Finding similar files in a large file system,” in Proc. USENIX Winter Tech. Conf., 1994, pp. 1–10.
[4] N. T. Spring and D. Wetherall, “A protocol-independent technique for eliminating redundant network traffic,” in Proc. SIGCOMM, 2000, vol.
30, pp. 87–95.

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering
(An ISO 3297: 2007 Certified Organization)

 Vol.2, Special Issue 4, September 2014

Copyright to IJIRCCE www.ijircce.com 338

[5] A. Muthitacharoen, B. Chen, and D. Mazières, “A low-bandwidth network
file system,” in Proc. SOSP, 2001, pp. 174–187.
[6] E. Lev-Ran, I. Cidon, and I. Z. Ben-Shaul, “Method and apparatus for reducing network traffic over low bandwidth links,” US Patent
7636767, Nov. 2009.
[7] S.Mccanne andM. Demmer, “Content-based segmentation scheme for data compression in storage and transmission including hierarchical
segment representation,” US Patent 6828925, Dec. 2004.
[8] R. Williams, “Method for partitioning a block of data into subblocks and for storing and communicating such subblocks,” US Patent
5990810, Nov. 1999.

BIOGRAPHY

Prakash E J received B.Tech Degree from Chadalawada Ramanamma Engineering College, Tirupati.
He is currently pursuing M.Tech Degree in Computer Science Engineering specialization in SV
College of Engineering, Tirupati, Andhra Pradesh, India.

A.Nageswara Rao received B.Tech Degree from CBIT, Osmaniya university, Hyderabad. M.Tech
Degree in Computer Science at Central university, Hyderabad. He is currently working towards PhD
in Data Mining specialization at Rayalaseema University, Kurnool, Andhra Pradesh, India, and
working as professor & Head in the Dept. Of CSE, SV College of Engineering, Tirupati, Andhra
Pradesh, India. He presented many research papers in National & International Conferences.

