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Abstract: Sufficient conditions for invariance of limit point case (limit circle case) for the Sturm-Liouville differential operator
2

T=— ;7 + q at a singular point under perturbation have been determined. In particular it is proved that under bounded below

perturbation limit point case (limit circle case) for the Sturm-Liouville differential operator at a singular point remains invariant.
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I. INTRODUCTION

We study the Sturm — Liouville differential operator is of the form

d?u(x)

dx?

ux) = — +g(x)u(x) in(a,b),

—o<a<b<om,

where q is real-valued measurable functions on (a, b) and locally integrable in (a, b).
Theorem 1.1 (Weyl’s alternative). Let t be real (i.e. T has real coefficients). Then either
a) Forevery A € C all solutions of ('c— k)u = 0 lie right in L, (a, b), or
b) Forevery A € C\R there exists a unique (up to a multiplicative constant) solution u of (r— x)u = 0 which lies right in
L,(a,b).
The same result holds for “left in L, (a, b)".
Definition 1.2 We say that 7 is in the limit circle case (l.c.c.) at b, if for every A € C all solutions of (r- A)u =0liein Ly(c,b)

for every ¢ € (a,b), t is in the limit point case (l.p.c.) at b, if for every A € C there is at least one solution of (r— A)u =0,

which does not belong to L, (c, b) for some c € (a, b).

Theorem 1.3[13] Let
2

d
t=—ﬁ+q on (0, b).

a) Ifthere exists a C € R such that
31
qx) =C+ iz for x close to 0,

then 1 is in the limit point case at 0.
b) If there exists an € > 0 such that
3 1
[ax)| < (Z —€ ) ) for x close to 0,
then tis in limit circle case at 0.
c) If gisnon-decreasing close to 0, then t is in the limit circle case at 0.

Theorem 1.4 [10] Let
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d?u(x)
u®) =-—r7ta®ul on(OD).

a) If |qx)| < qo(x) for x close to 0 and tyu(x) = —u"(x) + qo(x)u(x) is in the limit circle case at 0, then tu(x) =
—u'(x) + q(x)u(x) is in the limit circle case at 0.

b) If q(x) = qo(x) =0 for x close to 0 and 1y u(x) = —u"(x) + qo(x)u(x) is in the limit point case at 0, then tu(x) =
—u'(x) + q(x)u(x) is in the limit point case at 0.

Il. GENERAL PERTURBATION RESULTS

Theorem 2.1 Let tu(x) := —u'(x) + q(x)u(x) and tu(x) :== —u'(x) + (q(x) + k)u(x), k € R be Sturm-Liouville differential
operators in (a,b). Then t is in the limit point case at b if and only if t’is in the limit point case at b.

Proof. Suppose tu(x) = —u’'(x) + q(x)u(x) is in the limit point case at b. Let c € (a, b). By definition ¥ A € C, there exists at
least one solution of (t —A)u = 0 which does not lie in L,(c,b). For A € C, consider the differential equation (r - X)u =0
where A" = & — k. Then by assumption the differential equation has a solution u which does not lie in L, (c,b). But (t — % )u =
0 ifand only if —u" +qu—Au =0 ifandonly if —u" + (g + k)u = Au

i.e., Tu(x) = Au(x).

Thus (t — A)u(x) = 0 has a solution which does not lie in L, (c, b).
Therefore tu(x) == —u'(x) + (q(x) + k)u(x) is in the limit point case at b.
Conversely,

if T is in limit point case at b, since q(x) + k) + (—k) = q(x) , we get that t is in the limit point case at b.
Theorem 2.2 If tu(x) = —u"(x) + q(x)u(x) or tu(x) = —u'(x) + q; (X)u(x) is in the limit point case at singular point b, then
Tu(x) = —u'®) + (q(x) + q; (x))u(x) is in the limit point case at singular point b, where q(x) and g, (x) are bounded below.
Proof. Since q; (x) is bounded below, for some k4, q; (x) = k; for all x € (a,b).
Since q(x) is bounded below, for some k, q(x) = k for all x € (a, b).
qx) —k = 0forall x € (a,b).

Choose N large positive such that k; + N > 0.
Now q(x) —k+q;(x)+N=>q;(x)+N==k; +N=>0. Since tu(x) = —u'(x) + q;(x)u(x) is in the limit point case at
singular point b, so is T"u(x) = —u" (%) + (q; (%) + N)u(x) at singular point b, by theorem 2.1.
Now since (q(x) —k) +q;(x) + N> q;(x) + N > 0 and " is in the limit point case at singular point b, we get by Theorem
1.4 (b), —u" (%) + (q(x) — k + q;(x) + N)u(x) is in the limit point case at singular point b.
Now by theorem 2.1, t'u(x) = —u"(x) + (q(x) + q; (x))u(x) is in the limit point case at singular point b.
By interchanging the roles of q(x) and q;(x), we get that if tu(x) = —u’'(x) + q(x)u(x) in the limit point case at singular
point b then t'u(x) = —u"(x) + (q(x) + g, (x))u(x) is in the limit point case at singular point b.
Corollary 2.3 With the same above assumption on q(x) , q; (x), if T'u(x) = —u’(x) + (q(x) + q; (x))u(x) is in the limit circle
case at singular point b, then tu(x) = —u'(x) + q(x)u(x) as well as tu(x) = —u’(x) + q; (X)u(x) is in the limit circle case at
singular point b.
Proof. Contrapositive of theorem 2.2 gives the proof of this result.
Theorem 2.4 If q(x) = qo(x) for x close to singular point b, qo(x) is bounded below and 1, u(x) = —u’"(x) + qo(x)u(x) is in
the limit point case at b, then tu(x) = —u’'(x) + q(®)u(x) is in the limit point case at b.
Proof. Since q,(x) is bounded below, there is k € R, qo(x) = k for all x near b. Choose N so large positive number such that
k+N=>0.

qx)+N=qyx)+N=k+N=0

Since T, is in limit point case at b, s0 is T ju(x) = —u"(x) + (qo(x) + N)u(x) by theorem 2.1 and by theorem 1.4(b) © ju(x) =
—u'(x) + (qx) + N)u(x) is in limit point case at b. Again by theorem 2.1, tu(x) = —u'(x) + q(x)u(x) is in the limit point
case at b.
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Remark 2.5 The differential operator t'u(x) = —u’(x) + (g1 (%) + q(x))u(x) may have limit circle case/limit point case at
singular point, where tTu(x) = —u’'(x) + q; (X)u(x), tu(x) = —u’(x) + q(x)u(x) may have opposite status. But if q(x) and
q; (x) are bounded below and 1, T have limit point case at singular point then t" is always in limit point case at singular point.
The illustrations are given in section 3.
Corollary 2.6 Let tju(x) = —u'(x) + q;(x)u(x) and tux) = —u'(x) + (q:(x) + q(x))u(x) be the singular differential
operators at b. Assume q(x) is bounded and q, is bounded below. Then 1, is in the limit point case (limit circle case) at singular
point b if and only if 1, is in the limit point case (limit circle case) at b.
Proof. Since q(x) is bounded, for some m,M € R, m < q(x) < M, which implies that 0 < q—m <M —m. Since q;(x) is
bounded below, for some k, q; (x) =k, which implies that q; (x) —k = 0.
Case (i) Suppose 14 is in the limit point case at singular point b.
Now q(x) —m = 0
91 (%) + (q(x) —m) = q; (%)

() -k+(@x)-m)=2qx)-k=0

a0 +q00) — (k+m) 2 q() —k=0
Since 14 is in the limit point case at singular point b, then by theorem 2.1, t3u(x) = —u (x) + (q; (x) — K)u(x) is in the limit
point case at b. By theorem 1.4(b), t,u(x) = —u’(x) + {(q; () + q(x)) — (k + m)}u(x) is in the limit point case at b. Again
applying theorem 2.1, t,u(x) = —u’(x) + (q; (%) + q(x))u(x) is in the limit point case at b.
Case (ii) Suppose t; is in the limit circle case at singular point b.

la:(x) —k+qx)| < |g:(x) — k| + [q(x)]

=q;(x) —k+[q®)|
<q(®)-k+M;
=M; -k +q: ()

Therefore |q; (x) + q(xX) — k| < q; (%) + (M; — k).
Since tyu(x) = —u"(x) + gy (x)u(x) is in the limit circle case at b then by theorem 2.1, t3u(x) = —u' (%) + (q; (x) + (M; —
k)u(x) is in the limit circle case at b. By theorem 1.4(a), t4ux=—u"x+qlx+qgx—ku(x) is in the limit circle case at b. Again by
applying theorem 2.1, 1yu(x) = —u"(x) + (q; (%) + q(x))u(x) is in the limit circle case at b.
Converse: Contrapositive of case (i) and (ii) gives the proof of this result.

Theorem 2.7 Let

d?u(x)
dx?

tulx) = — +q(ulx) on(0,1)

If g(x) = qo(x) for x close to 0, g (x) is semi bounded and 7, u(x) = —u"(x) + go(x)u(x) is in limit point case at 0, then
tu(x) = —u"(x) + qg(x)u(x) is in limit point case at 0.
Proof. Since gy (x) is semi bounded.
Go(x) = a, Vx

& qo(0) —a 20

Now g (x) = qo(x)
q(x) —a =qy(x) —a =0

Since go(x) isin limit point case at 0, then by translation Theorem 2.1, q,(x) — « is in the limit point case at 0.
Now by Theorem 1.4, q(x) — « is in the limit point case at 0.
Therefore by Theorem 2.1, q(x) is in the limit point case at 0.

I11. APPLICATIONS of PERTURBATION RESULTS

Example 3.1 Iftyu(x) = —u'(x) + qo(x)u(x) is in the limit circle case at 0 and 1 u(x) = —u'(x) + q; ®)u(x) is in the
limit circle case at 0. Then tu(x) = —u'(x) + (qo(x) + q1(x))u(x) may be in the limit circle case at 0.
Sol. Take qo(x) = % . Then 1, is in the limit circle case at 0.

Take q;(x) = % . Then t; is in the limit circle case at 0.
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1/4 1/5 9/20
PUt q() = qo () + 01 () = 5 +5 =22
Since 1q(®)| = |90 (X) + g1 (¥)] < (Z - e) — for x close t0 0, for e = > — 2,
by theorem 1.3 (b), tu(x) = —u"(x) + (qo(x) + q; (x))u(x) is in the limit circle case at 0.

Example 3.2 If tou(x) = —u"(x) + qo(x)u(x) is in the limit circle case at 0 and t;u(x) = —u’(x) + q; (X)u(x) is in the
limit circle case at 0. Then tu(x) = —u"(x) + (qo(x) + q;(x))u(x) may be in the limit point case at 0.

Sol. Take qo(x) = % Then 1, is in the limit circle case at 0.
1/3

Take q;(x) = o Then 1, is in the limit circle case at 0.
1/2  1/3  5/6
Putgq=qo+q=—75+73=—7

Since q(x) = C+ %Xiz for x close to 0, for C =0,
by theorem 1.3 (), tu(x) = —u"(x) + (qo (%) + q; (x))u(x) is in the limit point case at 0.

Example 3.3 If tyu(x) = —u'(x) + qo(x)u(x) is in the limit circle case at 0 and t,u(x) = —u’(x) + q; (x)u(x) is in the limit
point case at 0. Then tu(x) = —u"(x) + (qo(x) + q; (%) )u(x) may be in the limit point case at 0.
Sol. Take qo(x) = ;—3 Then 1, is in the limit circle case at 0.

Take q;(x) = X% Then 14 is in the limit point case at 0.
-3 5 2
Putgq=qo+q1=Z+5=3

X X X

Since q(x) = C+ %Xiz for x close to 0, for C =0,
by theorem 1.3 (a), tu(x) = —u"(x) + (qo(x) + q; (x) )u(x) is in the limit point case at 0.

Example 3.4 If tou(x) = —u' (x) + qo(x)u(x) is in the limit circle case at 0 and t;u(x) = —u'(x) + gy (x)u(x) is in the
limit point case at 0. Then tu(x) = —u"(x) + (qo(x) + q; (x) )u(x) may be in the limit circle case at 0.

Sol. Take qo(x) = % . Then 1, is in the limit circle case at 0.

Take q;(x) = XZ—Z . Then t; is in the limit point case at 0.

PULG = Qg + 0y = 5=+ 5 = &

Since q(x) = %2/2 is non-decreasing close to 0

by theorem 1.3 (c), tu(x) = —u"(x) + (qo(x) + q; (x))u(x) is in the limit circle case at 0.

Example 3.5 If tou(x) = —u"(x) + qo(x)u(x) is in the limit point case at 0 and tu(x) = —u’(x) + q; (X)u(x) is in the limit
point case at 0. Then tu(x) = —u"(x) + (qo(x) + g1 (x))u(x) may be in the limit point case at 0.
Sol. Take qo(x) = Xiz . Then 1, is in the limit point case at 0.

Take q;(x) = %. Then 1, is in the limit point case at 0.

1 3/4 7/4
Putgq=qo+aq1=5+37=77%

X

Since q(x) = C + %xiz for x close to 0, for C =0,
by theorem 1.3(a), tu(x) = —u"(x) + (qo(x) + q; (x) )u(x) is in the limit point case at 0.
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