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Introduction
pH-sensitive drug delivery systems are an innovative approach in pharmaceutical 
science that exploit variations in pH within the body to achieve site-specific drug 
release. These systems are particularly useful for targeting tissues or cellular 
compartments with abnormal pH, such as tumors, inflamed tissues, or the 
gastrointestinal tract. By releasing drugs selectively at the intended site, pH-
sensitive formulations enhance therapeutic efficacy, minimize systemic side 
effects, and improve patient compliance [1].

Discussion
The principle of pH-sensitive drug delivery relies on materials that respond to 
changes in acidity or alkalinity. Polymers, liposomes, micelles, and nanoparticles 
can be engineered to remain stable at physiological pH (around 7.4) and undergo 
structural changes, swelling, or degradation in acidic or basic environments. For 
instance, many solid tumors exhibit a slightly acidic extracellular pH (6.5–7.0), 
and endosomal/lysosomal compartments within cells have a pH of 4.5–5.5. 
pH-responsive carriers exploit these differences to release encapsulated drugs 
precisely where needed [2].

Various strategies are used to design pH-sensitive systems. Polymers with 
acid-labile bonds, such as hydrazone or imine linkages, release drugs upon 
hydrolysis in acidic conditions. Polyelectrolyte-coated nanoparticles can swell 
or collapse in response to pH shifts, controlling drug diffusion. Liposomes 
with pH-sensitive phospholipids destabilize in acidic environments, facilitating 
intracellular drug delivery. These approaches have been successfully applied in 
anticancer therapy, gene delivery, and treatment of gastrointestinal disorders 
[3,4].

The advantages of pH-sensitive drug delivery include reduced off-target toxicity, enhanced bioavailability, and the ability to deliver 
sensitive molecules such as peptides, proteins, or nucleic acids. Moreover, combining pH sensitivity with other stimuli-responsive 
features, such as temperature or enzyme responsiveness, can create multifunctional delivery platforms for precision therapy. 
However, challenges remain, including ensuring stability during circulation, achieving rapid and complete drug release at the 
target site, and scaling up manufacturing for clinical use [5].

Conclusion
pH-sensitive drug delivery represents a promising strategy for targeted and controlled therapy. By exploiting natural pH variations 
in the body, these systems improve drug efficacy, reduce side effects, and enable precision treatment of complex diseases. 
Ongoing research on novel materials, carrier design, and combination strategies will continue to advance the clinical translation 
and effectiveness of pH-responsive drug delivery systems.
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