

Plant Biology: Foundations of Life on Earth

Ayesha Rahman*

Department of Plant Science, Greenfield University, Australia

Review Article

Received: 02-Dec-2025, Manuscript No. jbs-25-177454; **Editor assigned:** 04-Dec-2025, PreQC No. jbs-25-177454 (PQ); **Reviewed:** 13-Dec-2025, QC No. jbs-25-177454; **Revised:** 20-Dec-2025, Manuscript No. JBS-24-125166(R); **Published:** 29-Dec-2025, DOI: 10.4172/2320-0189.14.5.001.

*For Correspondence

Ayesha Rahman, Department of Plant Science, Greenfield University, Australia, Phone: 00356 79546987

E-mail: info@maltawildplants.com

Citation: Ayesha Rahman, Plant Biology: Foundations of Life on Earth. RRJ Botanical Sci. 2025.14.001.

Copyright: © 2025 Ayesha Rahman, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

plant hormones such as auxins, gibberellins, cytokinins, ethylene, and abscisic acid. These chemical signals coordinate processes including cell elongation, flowering, fruit ripening, and responses to stress. Plants also exhibit remarkable plasticity, adjusting their growth patterns in response to light, gravity, water, and nutrient availability.

Ecologically, plants interact with a wide range of organisms. Mutualistic relationships, such as those between plants and pollinators or mycorrhizal fungi, enhance reproduction and nutrient uptake. Conversely, plants have evolved defense mechanisms—chemical compounds, physical barriers, and induced responses—to deter herbivores and pathogens. These interactions shape ecosystems and influence evolutionary processes.

Conclusion

Plant biology provides critical insights into how plants function, adapt, and sustain life on Earth. From cellular mechanisms to ecosystem dynamics, the study of plants underpins agriculture, forestry, medicine, and environmental management. As global pressures intensify, advances in plant biology—such as improving crop resilience and understanding plant responses to climate change—will be vital for building a sustainable future.

References

1. Bilen O, Ballantyne CM (2016) Bempedoic Acid (ETC-1002) An Investigational Inhibitor of ATP Citrate Lyase. *Curr Atheroscler*

Rep 18: 61.

2. Zagelbaum NK, Yandrapalli S, Nabors C, Frishman WH (2019) Bempedoic Acid (ETC-1002): ATP Citrate Lyase Inhibitor: Review of a First-in-Class Medication with Potential Benefit in Statin-Refactory Cases. *Cardiol Rev* 27: 49-56.
3. Benoit Viollet, Bruno Guigas, Nieves Sanz Garcia, Jocelyne Leclerc, Marc Foretz, et al. (2012) Cellular and molecular mechanisms of Bempedoic Acid. An overview, *Clinical Science (London)* 122: 253- 270.
4. Phan BA, Dayspring TD, Toth PP (2012) Ezetimibe therapy: mechanism of action and clinical update. *Vasc Health Risk Manag* 8:415-27.
5. Kosoglou T, Statkevich P, Johnson-Levonas AO, Paolini JF, Bergman AJ, et al. (2005) A review of its metabolism, pharmacokinetics and drug interactions. *Clin Pharmacokinet* 44: 467-94.