ISSN (Print) :2320-9798

‘ 1JIRCCE ISSN (Online): 2320 — 9801
International Journal of Innovative Research in Computer and Communication Engineering

Vol. 1, Issue 3, may 2013

Porting Android on Arm Based Platform

Kalpik M. Patel', Chirag K. Patel®
Student, VLSI & Embedded System, U.V.Patel college of Engineering and Technology, Ahmedabad, India*
Student, VLSI & Embedded System, VLSI, U.V.Patel college of Engineering and Technology, Ahmedabad, India’

ABSTRACT: Today Android operating system (OS) is HOT in market for entertainment devices like mobile phones and tablet
and TV and industry is exploring the ability of Android within other embedded platforms. Some industries replace with exiting
operating system with Android because main reason is open source operating system (OS). Today industries select Android OS
reason behind this big application market and easy to available to application development tools and also available many on-line
group to resolve your issue. In this paper, we will explain the concept of porting android to any arm based devices. We will
explain the basics of kernel, how to make android specific, how to compile kernel for ARM. In Android section, we will explain
architecture of Android, how to compile android for specific board. For understanding, we will use Linux 2.6.32 kernel version
and android 2.3.7 (Gingerbread). We will port android to d2plug board which is product of Marvell Semiconductor.

Keywords: porting android, porting kernel, compile kernel, compile android.

I. INTRODUCTION
First android is open source. Android has binder ipc, lowmemorykiller, pmem driver etc which is used for mobile
platform (Arm based platform).This feature increasing the performance of arm based device. Android also provide tools for
creating apps. Also user uses thousand of application from android market apps. Android easily porting on any arm based
devices with minimum changes. So android is better than the other Embedded OS. So, today Most of the people uses devices
like mobiles, tablets which has android OS.

The term port means portare and its meaning is "to carry" when code is not compatible with specific architecture, the code
must be "carried" to the new platform without major change. Here we define steps for android porting on any arm base devices.
We will take a Linux 2.6.32 kernel for kernel porting and for android we will take a android 2.3.7(gingerbread).we will take a
d2plug which is Marvell developing board for understanding whole porting process.

Il. PREREQUIREMENTS FOR PORTING
A. First Download the kernel from www.kernel.org. it is generic for all platform like omap.dove etc. For d2plug, download
the kernel from www.plugcomputer.org/downloads/d2plug/ which has a already d2plug support and don’t need to more
changes.
Download the android Source code from http://source.android.com/source/downloading.html .
Extract Android source code.
Make kernel folder in android directory and extract kernel in kernel folder like <android directory>/kernel.

Cow

I11. PORTING

Android porting is divided into two steps:
A) Kernel porting

1) First understand basic information of kernel and its important files.

2) Add the android features in kernel.

3) Compile the kernel.
B) Android porting

1) System requirement for build android.

2) Add new platform support in android.

3) Compile android.
4) Booting from USB.

A) Kernel Porting

Copyright to IJIRCCE Www.ijircce.com 513

http://www.ijircce.com/

ISSN (Print) :2320-9798
ISSN (Online): 2320 — 9801

International Journal of Innovative Research in Computer and Communication Engineering
Vol. 1, Issue 3, may 2013

1) Basic information of kernel:

The starting point here is that you have set up your kernel source tree with the ARM patches. This description covers
the 2.6 series kernels, specifically 2.6.32. The ARM-specific files are in linux/arch/arm (code), and linux/include/asm-arm
(header files). Within the ARM-specific directories your new or changed files go in appropriate linux/arch/arm/mach-dove and
linux/include/asm-arm/arch-arm/mach-dove and dove directories e.g. linux/arch/arm/mach-dove and linux/include/asm-
arm/arch-dove. After configuration your headers directory linux/include/asm-arm/arch-dove appears as linux/include/asm-
arm/arch so that the correct machine header files can be included by using this path.

The other directories in linux/arch/arm/ contain the generic ARM code.
kernel - core kernel code.
mm - memory management code.
lib - ARM-specific or optimised internal library functions (backtrace, memcpy, io functions, bit-twiddling etc).
nwfpe and fastfpe - two different floating-point implementations.
boot - the directory in which the final compiled kernel is left and contains stuff for generating compressed kernels.
tools - has scripts for auto generating files, such as mach-types (see section Registering a Machine ID) .
configs - contains the default configuration files for each machine.
non machine-specific directories in linux/include/asm-arm are:
arch - the link to the configured machine headers sub-directory arch-XXX.
hardware - headers for ARM-specific companion chips or devices.
mach - generic interface definitions for things used by many machines (irq, dma, pci) and the machine description
macros.

S VVYVVVVVYYVY

@D

T

YV VY

> Registering a Machine Id:
Each device is identified in the kernel tree by a machine ID. These are allocated by the kernel maintainer to keep the
huge number of ARM device variants manageable in the source trees.

The first thing you need to do in your port is register your new machine with the kernel maintainer to get a number for
it. This is not actually necessary to begin work, but you'll need to do this eventually so it's best to do it at the beginning and not
have to change your machine name or ID later.

You register a new architecture by mailing <rmk@arm.linux.org.uk>, or filling in an on-line form at
http://www.armlinux.org.uk/developer/machines/.

machine_is_xxx CONFIG_xxx MACH_TYPE_xxx machine_ID
dove_d2plug MACH_DOVE_D2PLUG DOVE_D2PLUG 3245
htcquartz MACH_HTCQUARTZ HTCQUARTZ 2547
davinci_dm6467tevm MACH_DAVINCI_DM6467TEVM DAVINCI_DM6467TEVM 2548
c3ax03 MACH_C3AX03 C3AX03 2549
mxt_td6o MACH_MXT_TD60 MXT_TD60 2550
esyx MACH_ESYX ESYX 2551
videoplug MACH_DOVE_VIDEOPLUG DOVE_VIDEOPLUG 2552
bulldog MACH_BULLDOG BULLDOG 2553
dove avng v3 MACH_DOVE_RD_AVNG V3 DOVE_RD_AVNG_V3 3013
MACH_DOVE _D2PLUG DOVE_D2PLUG

Fig. 1 Add Machine ID in Mach-types

Then you need to add the info to linux/arch/arm/tools/mach-types with a line like this or go to:
http://www.arm.linux.org.uk/developer/machines/ where you can download the latest version of mach-types.

» Def-config file:

Add a new config file in linux/arch/arm/configs/ named <machine-name>, containing the default configuration options for
your machine or you can select specification as per board using “make menuconfig” .When you will fire “make <machine-
name>_defconfig” e.g. “make dove_d2plug_android__USB_defconfig” command, it is copied out of linux/arch/arm/defconfigs/
to linux/.config.

Here we list the most important files, and describe their purpose and the sort of things you should put in them. It looks
daunting to start with but most of what is required is just a matter of filling in the numbers appropriate to your hardware. Now

Copyright to IJIRCCE Www.ijircce.com 514

http://www.ijircce.com/

ISSN (Print) :2320-9798
ISSN (Online): 2320 — 9801

International Journal of Innovative Research in Computer and Communication Engineering
Vol. 1, Issue 3, may 2013

that so many different machines are supported it is rare that you have to write much new code - nearly everything can be taken
from a suitable donor machine. This is easier to do if you know which machines have a similar architecture to your own .

» arch/arm/Makefile:
Insert the following to this file (replace dove with your machine name):

For D2plug:
machine-$ (CONFIG_ARCH BCMRING) = bemring
machine—§ (CONFIG_ARRCH CLPST11X) = clp=sT7llx
machine—5 (CONFIG ARCH DAVINCI) = dawvinci

[machine—% (CONFIG RRCH DOVE) := dove |

machine—-5 (CONFIG ARCH EBSA110) = eb=allld
machine—5 (CONFIG ARCH EP5S3XX) = ep93xx
machine—5 (CONFIG ARCH GEMINTI) = gemini

Fig. 2 Makefile

» arch/arm/kernel/entry-armv.S:

Machine-specific IRQ functions. You provide the assembly macros disable_fig, get_irgnr_and_base, and irq_prio_table
here. disable_fiq and irq_prio_table is usually empty, but get_irgnr_and_base must be implemented carefully: you should use
the zero flag to indicate the presence of interrupts,and put the correct IRQ number in irgnr.

» arch/arm/kernel/debug.S:

These are the low-level debug functions, which talk to a serial port without relying on interrupts or any other kernel
functionality. You'll need to use these functions if it won't boot. The functions you need to implement are addruart, senduart and
waituart, using ARM assembly. They give you the address of the debug UART, send a byte to the debug UART, and wait for
the debug UART, respectively.

» arch/arm/mach-dove/Makefile:
You need to add a target for your machine, listing the object files in this directory. That will be at least the following:
0bj-$(CONFIG_MACH_DOVE_D2PLUG) += dove-d2plug-setup.o

» arch/arm/mach-dove/dove-d2plug-setup.c:

The setup for your machine is done with a set of macros, starting with MACHINE_START. The parameters you give are
filled in to a data structure machine_desc describing the machine. One of the items is the fixup function which, if specified, will
be called to fill in or adjust entries dynamically at boot time. This is useful for detecting optional items needed at boot-time
(e.0.VRAM in a Risc PC).

For Example:
MACHINE_START(DOVE_D2PLUG, "Marvell MV88AP510 D2Plug")
.phys_io = DOVE_SB_REGS_PHYS_BASE,
.i0_pg_offst ((DOVE_SB_REGS_VIRT_BASE) >> 18) & @xfffc,

.boot_params
.init_machine

0x00000100,
dove_d2plug_init,

.map_1io dove_map_io,
.init_irq dove_init_irq,
.timer = &dove_timer,
/* reserve memory for VMETA and GPU */
. Fixup = dove_tag_fixup_mem32,
MACHINE_|END

Fig. 3 Dove-d2plug-setup.c

2) Add Android Configuration in defconfig :

Copyright to IJIRCCE Www.ijircce.com 515

http://www.ijircce.com/

ISSN (Print) :2320-9798

(Umm‘ ISSN (Online): 2320 — 9801
International Journal of Innovative Research in Computer and Communication Engineering
Vol. 1, Issue 3, may 2013

In kernel, Android drivers is in driver/staging folder like lowmemory killer,binder etc.For d2plug Android driver is in
driver/staging folder, just add in d2plug defconfig shown in fig. 4.

CONFIG_BLK_DEV_INITRD=y

CONFIG_INITRAMFS_SOURCE="root"

CONFIG_INITRAMFS_ROOT_UID=0

CONFIG_INITRAMFS_ROOT_GID=0

CONFIG_ASHMEM=y

CONFIG_ARM_THUMB=y

CONFIG_ANDROID_RAM_CONSOLE=y
CONFIG_ANDROID_RAM_CONSOLE_ENABLE_VERBOSE=y
CONFIG_ANDROID_POWER=y
CONFIG_ANDROID_POWER_ALARM=y
CONFIG_ANDROID_POWER_STAT=y
CONFIG_ANDROID_LOGGER=y
CONFIG_ANDROID_TIMED_GPIO=y
CONFIG_ANDROID_BINDER_IPC=y
CONFIG_ANDROID_PARANOID_NETWORK=y

Fig. 4 Android Driver Configuration

3) Compile Kernel:

> first set the toolchain path then set architecture and tool chain prefix . we use android toolchain which is in prebuilt folder.
Then export a ARCH and CROSSCOMIPLE environment variable. Here we are using toolchain which is in
<android_directory>/prebuilt folder because kernel and file system both are compile using same toolchain.

mukund@localhost:~/android 2.3.7/kernel$ export PATH=/home/mukund/android 2.3.7/prebuilt/linux-x86/toolchain/arm-eabi-4.4.3/bin/:$PATH
mukund@localhost:~/android 2.3.7/kernel$ export ARCH=arm

mukund@localhost:~/android 2.3.7/kernel$ export CROSS_COMPILE=/home/mukund/android 2.3.7/prebuilt/1linux-x86/toolchain/arm-eabi-4.4.3/bin/arm-eabi-
mukund@localhost:~/android 2.3.7/kernels []

Fig. 5 Tool-chain environment
Set the environment in kernel directory and type command as shown in fig 5.

» When you will type “ make dove_d2plug_android__USB_defconfig” command in consol, its copy in .config file.

Copyright to IJIRCCE Www.ijircce.com 516

http://www.ijircce.com/

ISSN (Print) :2320-9798
ISSN (Online): 2320 — 9801

International Journal of Innovative Research in Computer and Communication Engineering
Vol. 1, Issue 3, may 2013

mukund@localhost:~/new _kernel/d2plug-linux-2.6.32.y$ make dove d2plug_android USB defconfig
HOSTCC scripts/basic/fixdep
HOSTCC scripts/basic/docproc
HOSTCC scripts/basic/hash
HOSTCC scripts/kconfig/conf.o
scripts/kconfig/conf.c: In function ‘conf_sym’
scripts/kconfig/conf.c:159:6: warning: variable ‘type’ set but not used [-Wunused-but-set-variable]
scripts/kconfig/conf.c: In function ‘conf_choice’:
scripts/kconfig/conf.c:231:6: warning: variable ‘type’ set but not used [-Wunused-but-set-variable]
HOSTCC scripts/kconfig/kxgettext.o
HOSTCC scripts/kconfig/zconf.tab.o
HOSTLD scripts/kconfig/conf Ei
net/rfkill/Kconfig:38:warning: type of 'RFKILL_INPUT' redefined from 'tristate' to 'boolean’
arch/arm/mach-integrator/Kcenfig:12:warning: defaults for choice values not supported
arch/arm/mach-integrator/Kconfig:18:warning: defaults for choice values not supported
arch/arm/mach-integrator/Kconfig:24:warning: defaults for choice values not supported
arch/arm/mm/Kconfig:869:warning: defaults for choice values not supported
arch/arm/mm/Kconfig:876:warning: defaults for choice values not supported
#
configuration written to .config
#
mukund@localhost:~/new kernel/d2plug-linux-2.6.32.y$ []

Fig. 6 compile configuration

» Then finally type command “make ulmage” for making ulmage .

mukund@localhost:~/new kernel/d2plug-linux-2.6.32.y$ make ulmage
scripts/kconfig/conf -s arch/arm/Kconfig
net/rfkill/Kconfig:38:warning: type of 'RFKILL INPUT' redefined from 'tristate' to 'boolean’
arch/arm/mach-integrator/Kconfig:12:warning: defaults for choice values not supported
arch/arm/mach-integrator/Kconfig:18:warning: defaults for choice values not supported
arch/arm/mach-integrator/Kconfig:24:warning: defaults for choice values not supported
arch/arm/mm/Kconfig:869:warning: defaults for choice wvalues not supported
arch/arm/mm/Kconfig:876:warning: defaults for choice values not supported

CHK include/linux/version.h
P$ke[1]: “include/asm-arm/mach-types.h' is up to date.

Fig. 7 make ulmage

» After the compilation, ulmage is generated which is in arch/arm/boot directory shown in fig. 8.

Image Name: Linux-z.6.32.9jdnue-5.4.2-g39dee

Created: Tue May 14 11:15:55 2013 %
Image Type: ARM Linux Kernel Image (uncompressed)
Data Size: 3361928 Bytes = 3283.13 kB = 3.21 MB

Load Address: 00088088
Entry Point: 00808800

Image arch/arm/boot/ulmage is ready
mukund@localhost:~/new kernel/d2plug-linux-2.6.32.y$ l

Fig. 8 : ulmage location

B. Android Porting:
1) System Requirements:

» ARM Processor base development board

» Host PC with operating system Ubuntu 10.04 with minimum 12 GB free space.
Setup Ubuntu 10.04 for Android Compilation

Below for list of package are required to build android
1. $ sudo apt-get install liblzo2-dev

2. $ sudo apt-get install bison
3. $ sudo apt-get install uuid-dev

4. $ sudo apt-get install libncurses5-dev
5. $ sudo apt-get install sun-java6-jdk
6. $ sudo apt-get install libglib2.0-dev

Copyright to IJIRCCE Www.ijircce.com

http://www.ijircce.com/

ISSN (Print) :2320-9798

‘ 1JIRCCE ISSN (Online): 2320 — 9801

International Journal of Innovative Research in Computer and Communication Engineering
Vol. 1, Issue 3, may 2013

7. $ sudo apt-get install flex

8. $ sudo apt-get install g++

9. $ sudo apt-get install libz-dev

10. $ sudo apt-get install gperf

11 .$ sudo apt-get install libx11-dev

Note: If we build Android Version below 2.3 we require java5-jdk So we refers all the above package exception sudo apt-get
install sun-java6-jdk. And we refer sudo apt-get install sun-java5-jdk.
Below Snapshot of the downloaded directory of <android directory>.

nukund@localhost:~/android 2.3.75 s
Makefile
nukund@localhost :~/android 2.3.73 []

Fig. 9 Android Directory
Android has defined a framework to add a new platform in the source code. Any platform specific configuration can be added in
the ~/<android directory>/devices directory.
Under devices directory vendor names are mentioned and each vendor can have different types of platforms.

3) Add New Platform support in Android:
In below Figure, Marvell is the vendor name and d2plug is the platform for which android is to be built. Same as Tl is

vendor and panda board as platform.
Vendor

v
v v
[MARVELL] [I]
v ¥
D2PLUG] [PANDBOARD]
v
Boardconfig.mk Boardconfig.mk
AndroidProduct.mk AndroidProduct.mk
d2plug.mk panda.mk
AndroidBoard.mk AndroidBoard.mk

Fig.10 Block Diagram of Add a new platform in Android

Following files Boardconfig.mk AndroidProduct.mk product.mk and AndroidBoard.mk are add under ~/<android
directory>/devices/<vendor>/<platform> directory.

For adding a files we list below snapshots for reference
> Boardconfig.mk
In this file we define the board configuration like which processor and also defined hardware component support like HDMI

Bluetooth, Wi-Fi Ethernet etc. So we define that component in this file.

Copyright to IJIRCCE Www.ijircce.com 518

http://www.ijircce.com/

I1JIRCCE

> AndroidProduct.mk

Vol. 1, Issue 3, may 2013

RGET CPU ABI := armeabi
TARGET NO BOOTLOADER := true
TARGET NO KERMEL := true
TARGET NO RADIOIMAGE := true
HAVE HTC AUDIO DRIVER := false
BOARD USES GEMERIC AUDIO := true
USE CAMERA STUB := true
BOARD HAVE BLUETOOTH := false
BOARD HAVE BLUETOOTH BCM := false
TARGET PROVIDES INIT RC := true
TARGET PROVIDE GRALLOC:= true
SURFACEFLINGER PMEM SIZE := 32*1824*16824
BOARD ENABLE HELIX := false
BOARD WPA SUPPLICANT DRIVER := none
USE MARVELL IPP OPENMAX := true
USE MARVELL IPP CODEC := true
USE MARVELL GCC PREBUILT := true
USE MARVELL MVED := false
USE MARVELL OVERLAY2 := false
USE MARVELL GCU := false
MRVL BGRA HACK:= true
MRVL SKIA OPT := true
BORAD HAVE GC300 := true
USE CUSTOM RUNTIME HEAP MAX := "128M"
BOARD ENABLE GSTREAMER := false

Fig. 11 Boardconfig.mk

ISSN (Print) :2320-9798
ISSN (Online): 2320 — 9801

International Journal of Innovative Research in Computer and Communication Engineering

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied
See the License for the specific language governing permissions and
limitations under the License.

R E LR

This file lists the product definition files that dewne
configurations which are actually buildable (e.g. through lunch)

TR

PRODUCT MAKEFILES := %\
$({LOCAL DIR)/d2plug.mk

Fig. 12 AndroidProduct.mk

In this file we including <product>.mk file.In above snapshot we include d2plug.mk for our product.

> AndroidBoard.mk

Copyright to IJIRCCE

make file for new hardware from
#
LOCAL PATH := $(call my-dir)
#
file := $(TARGET OUT KEYLAYOUT)/qwerty.kl

ALL PREBUILT += $(file)
$(file) $(LOCAL PATH)/prebuilt files/qwerty.kl | $(ACP)
$(transform-prebuilt-to-target)

#init.rc for this board

file := $(TARGET ROOT OUT)/init.rc

ALL PREBUILT += $(file)

$(file) $(LOCAL PATH)/prebuilt_files/init.rc | $(ACP)
$(transform-prebuilt-to-target) b

include $(CLEAR VARS)

Fig. 13 AndroidBoard.mk

Www.ijircce.com

519

http://www.ijircce.com/

ISSN (Print) :2320-9798
ISSN (Online): 2320 — 9801

International Journal of Innovative Research in Computer and Communication Engineering
Vol. 1, Issue 3, may 2013

In this file we define some hardware specific file like keyboard supported file for example above snapshot we add two specific
file gwerty.kl and init.rc so final build image including this thing . In init.rc file we define which services are start on boot time
or after boot for example Ethernet services is not require to start at boot time so we start this services after completion of
booting process.

» d2plug.mk

[# This 1s a generic product that isn't specilalized for a specific device.
j# It includes the base Android platform.

PRODUCT_ PACKAGES := \
AccountAndsyncSettings
DeskClock
AlarmProvider
Bluetooth \
Calculator \
Calendar \

Camera
CertInstaller Y
DrmProvider %\
Email *\

Gallery3D %
LatinIME
Launcher2 Y

Mms

Music %\

Provision
Protips \
QuickSearchBox \
Settings

sync \ S
SystemUI \

Updater
CalendarProvider \
SyncProvider

$(inherit-product, $(SRC_TARGET_DIR)/product/core.mk)

PRODUCT_COPY_FILES := \

device/marvell/d2plug/prebuilt files/init.rc:$(TARGET ROOT OUT)/reet/init.rc \
device/marvell/d2plug/prebuilt files/qwerty.kl:$(TARGET ROOT OUT)/system/usr/keylayout/qwerty.kl
device/marvell/d2plug/prebuilt files/vold.fstab:$(TARGET ROOT OUT)/system/etc/vold.fstab \
device/marvell/d2plug/prebuilt files/dhcpcd.conf:$(TARGET ROOT OUT)/system/etc/dhcpcd/dhcped.conf

device/marvell/d2plug/prebuilt files/modules/bmm.ko:%(TARGET ROOT OUT)/system/lib/modules/bmm.ko *
device/marvell/d2plug/prebuilt files/modules/galcore.ko:s(TARGET ROOT OUT)/system/lib/modules/galcore.ko

PRODUCT BRAND := marvell

PRODUCT NAME := d2plug

PRODUCT DEVICE := d2plug

[hODUCT MODEL := Android on d2plug

Fig. 14 d2plug.mk
In this file we define which application package are including build for our product. For example If we remove the Calculator
application package in this file the final build images is without calculator application package in our product..

4) Android Source Code Compilation:
To build android images:

$ cd ~/ <android directory>

$. build/envsetup.sh

mukund@localhost:~/android 2.3.7% . build/envsetup.sh
including device/htc/passion/vendorsetup.sh

including device/marvell/d2plug/vendorsetup.sh
Including device/samsung/crespodg/vendorsetup.sh
including device/samsung/crespo/vendorsetup.sh

Fig. 15 build/envsetup

Above command is set environment of existing platform in source code.

Copyright to IJIRCCE Www.ijircce.com 520

http://www.ijircce.com/

ISSN (Print) :2320-9798
ISSN (Online): 2320 — 9801

I1JIRCCE

International Journal of Innovative Research in Computer and Communication Engineering
Vol. 1, Issue 3, may 2013

$ lunch

mukund@localhost:~/android 2.3.7S$ LlLunch
[You*"re building on Linux

Lunch menu... pick a combo:

1. generic-eng

2. simulator
. Tull passion-userdebug
. dZplLug-eng
. full crespod4g-userdebug
. full crespo-userdebug

ousw

Wwhich would you like? [generic-engl 4

PLATFORM VERSION CODENAME=REL
PLATFORM VERSION=2.3.7
TARGET PRODUCT=d2plug
[TARGET_ BUILD VARIANT=eng
[TARGET SIMULATOR=fTalse
[TARGET_ BUILD TYPE=release
[TARGET BUILD APPS=

[TARGET_ ARCH=aQrm

HOST ARCH=x86

HOST OS=1linux

HOST BUILD TYPE=release
BUILD ID=GWK74

Fig. 16 lunch
Above command execute in console and select your product. For example above snapshot we select 4 for our product d2plug.
Above command is list the existing product in the source code and also give the information about product name, target
architecture , platform version and host architecture etc.
$ make -j40
Above command will start to build android source code.
After successful build source code the following result should be generated under <android directory>/out /target /product

/<platform>.

|mukund@localhost:~/android_2.3.7/out/target/product/d2p1u9$ 1s -1

total 214784

-rw-rw-r--. 1 mukund mukund 13 May 3 15:03 android-info.txt
-rw-rw-r--. 1 mukund mukund 4129 May 3 18:09 clean steps.mk
drwxrwxr-x. 3 mukund mukund 4096 May 3 15:05 data

drwxrwxr-x. 2 mukund mukund 4096 May 3 15:41 internal_storage
-rw-rw-r--. 1 mukund mukund 3354624 May 3 15:41 internal storage ubifs.img
-rw-rw-r--. 1 mukund mukund 3932160 May 3 15:41 internal storage ubi.img
drwxrwxr-x. 15 mukund mukund 4096 May 3 15:41 obj

-rw-rw-r--. 1 mukund mukund 49 May 3 18:09 previous build config.mk
drwxrwxr-x. 8 mukund mukund 4096 May 10 15:57 root

drwxrwxr-x. 5 mukund mukund 4096 May 3 15:41 symbols

drwxrwxr-x. 10 mukund mukund 4096 May 3 15:24 system

-TW------- 1 mukund mukund 80688960 May 3 15:41 system.img

-rw-rw-r--. 1 mukund mukund 57286656 May 3 15:41 system ubifs.img
-rw-rw-r--. 1 mukund mukund 58720256 May 3 15:41 system ubi.img
“TW-=====~ 1 mukund mukund 3691776 May 3 15:41 userdata.img

-rw-rw-r--. 1 mukund mukund 5677056 May 3 15:41 userdata ubifs.img
-rw-rw-r--. 1 mukund mukund 6291456 May 3 15:41 userdata ubi.img
drwxrwxr-x. 2 mukund mukund 4096 May 3 15:41 utilities
Imukund@localhost:~/androidA2.3.7/out/target/product/d2p1u9$ |:|

Fig. 17 build result
system.img :- It is a partition image that will be mounted as / and thus contains all system binaries.
userdata.img:- It is a partition image that can be mounted as /data and thus contains all application-specific and
user-specific data.

» To Build Single Module in Android Repo:

Copyright to IJIRCCE Www.ijircce.com 521

http://www.ijircce.com/

ISSN (Print) :2320-9798

(,n,,m ISSN (Online): 2320 — 9801
International Journal of Innovative Research in Computer and Communication Engineering
Vol. 1, Issue 3, may 2013

If you build some of the defined functions or module in part of the <android directory>.Use the 'mm' or 'mmm’' commands to do
this.

The 'mm' command makes stuff in the current directory.

<android directory> <module directory path > mm

The ‘mmm’ command, you specify a path of directory.

<android directory> mmm <module directory path>

The ‘make snod” command is use to rebuild system images to changes with current binaries

<android directory> make snod

Advantage of ‘make snod’ command is to avoid the whole build process of latest system images with changes from android
soruce code.

5) Booting android from USB drive:
Setup USB drive with two Partitions using GParted, FDISK or any disk Partition utility.
Partitionl is size of 100MB and remaining space for partition2.
Format Partitionl as FAT32 and Partition2 as EXT4.
copy ~/<kernel directory>/arm/arm/boot/ulmage in partitionl
Copy ~/<android directory>/out/target/product/<platform>/root/*
~/<android directory>/out/target/product/<platform>/data and
~/<android directory>/out/target/product/<platform>/system folder in Partition2.

YVVVYY

IV.CONCLUSION
In this paper explain easily android porting on any arm based platform .Here understood the kernel architecture and its most
important files, set environment variables, compile the kernel ,add new arm based platform support in android, compiling
the Android, booting from USB .

ACKNOWLEDGMENT
We have taken efforts in this project. However, it would not have been possible without the kind support and help of many
individuals and organizations. We would like to extend my sincere thanks to all of them. We highly indebted to Mr. Mukund
Ubhadiya, Tech lead in PES division at e-Infochips for their guidance and constant supervision as well as for providing
necessary information regarding the project & also for their support in completing the project.

REFERENCES
[1]. Wookey and Tak-Shing : Porting the Linux Kernel to a New ARM Platform in alphaone (volume 4,summer 2002).
[2]. systique. : Android Porting Guide for Embedded Platforms (march-2009).
[3]. http://www.plugcomputer.org/downloads/d2plug/.
[4]. http://source.android.com/download/using-repo.
[5]. Karim Yaghmour.:Porting Android to New Hardware in android builder summit (14" April 2011).

Copyright to IJIRCCE Www.ijircce.com 522

http://www.ijircce.com/

