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ABSTRACT: Harmonic resonance has become a major hurdle for performing power factor compensation in 
commercial power systems, due to the proliferation of harmonic producing-loads. This paper presents an intelligent 
controller for power factor compensation that can perform power factor correction under varying demand conditions 
without exciting harmonic resonance. Practical and robust control algorithms are proposed using micro-controller. The 
controller relies on common low cost sensing devices and hence can be constructed as a retrofitting device to replace 
existing power factor correction controllers. 
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I. INTRODUCTION 
 

Energy efficiency is an important factor to commercial areas. The application of power factor (PF) compensation as a 
necessary step to improve the efficiency of these low voltage electrical installations[1]–[2]. This is usually attained by 
installing capacitors at the entrance point of the facility downstream to the supply transformer. As the demand for VAR 
compensation of the building load fluctuates, such capacitor units are switched in and out of circuits. Capacitors can 
improve the performance of distribution circuits, by providing the reactive current locally, less power needs to be 
provided by the distribution network resulting in lower losses, improved line voltage, and, lower billing charges. 
However, these PF correction capacitor banks are subjected to frequent failures or trips. One main reason is the 
proliferation of harmonic-producing loads. Though these devices do not generate harmonics, they provide a network 
path for local or parallel resonance conditions. In case of resonance, this current may be very high and may damage the 
capacitors. Therefore, the consideration of PF compensation capacitor installation at the design stage [1]–[2] should 
also include harmonic resonance analysis . Possible solution to avoid harmonics include the following:  
1) adding a filter capacitor;  
2) adding a reactor to an existing bank;  
3) ungrounding grounded-wye capacitors;  
4) changing capacitor bank  locations and sizes; and  
5) In order to avoid resonance, controlling the capacitor switching scheme.  
 
This paper covers the fifth approach and consists of improving a robust and practical control algorithm for the capacitor 
bank switching scheme which is capable of attaining both power factor correction and avoid resonance. Previously 
proposed optimization algorithms for the same purpose are time-consuming and not guaranteed that they converge to 
the optimal solution under time-varying load and system impedance conditions. More recent works have focused on 
installation of active and passive harmonic filters. This approach may be complex and costly. Other solution is to add 
reactors in series with existing capacitor banks. However, the system parameters vary dynamically with the power 
system configurations and loads. Therefore, the harmonic resonance can be achieved even if a combination of 
capacitors are connected in series with reactors. Reference [4] proposes replacing reactors with power electronics 
inverters. Under varying demand conditions the resonance varies for different operating conditions, it is not safe and 
intelligent to decide the suitable number of switched capacitors units assuming constant system impedance. In order to 
solve the same, the proposed controller uses pre- and post disturbance steady-state waveforms to estimate the harmonic 
system impedance of the voltages and currents at the interface point. It is highlighted that the proposed controller relies 
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on common low cost sensing devices. As a result, with little effort the controller can be constructed to replace existing 
power factor correction controllers. 
 

II. RELATED WORK 
 

Though correction of power factor is old practice,we have considered the work done in the last 25 years in our survey, 
starting from 1983. Jones and Blackwell proposed a technique for maintaining a synchronous motor at unity power 
factor from no-load to full load assuring peak efficiency. Sharkawi proposed an adaptive power factor controller for 
three-phase induction generators. Nalbant proposed the calculations and measurements of power factor correction and 
distortion reduction using the peak current programmed boost topology. Fuld proposed a combined buck and boost 
power factor controller for three phase input. Mandal proposed a laboratory model of a micro computer based power 
factor controller for compensating reactive power. Ayres and Barbi proposed conventional integrated circuits for PWM 
and power factor controllers. Machmoum proposed a 3-phase switching converter, acted as a PWM rectifier and as an 
active power filter. Barsoum proposed the programming of PIC microcontroller for power factor correction.   
 

III. COMMON REACTIVE POWER COMPENSATION SCHEME 
 

In commercial facilities, the traditional approach for power factor compensation consists of capacitor banks in parallel 
with the load offsetting the inductive loading of the equipments at the entrance point of the facility. Fig. 1 shows a 
common power factor compensation arrangement used in commercial power systems.  
 

 
  

Fig. 1. Typical power factor compensation arrangement for commercial powersystems. 
 

This scheme consists of one or more breaker switched capacitor units along with an intelligent control unit, current and 
voltage transformers, which areconnected at the low side of the supply transformer. These banks include 3 to 9 
capacitor units connected in different configurations. In practice, commercial installations employ switched capacitor 
banks, instead of fixed banks, in which the capacitors are switched on and off automatically to compensate for 
changing load conditions. Fig. 2 shows a typical kilovar demand over a 24 h period where the curve is determined 
byrecording kilovar meter and pf measurements.  
 
 

 
 

Fig. 2. Application of switched and fixed capacitors for a time varying kvar demand condition 
 
The fixed banks satisfy the base load requirements, and the switched banks compensate for the inductive kilovar peak 
during the heavier load periods. In order to calculate the capacitive kilovars one must subtract the inductive kvar of the 
corrected pf from the existing pf. The difference is the amount of capacitive kvar to be added. The following formula is 
a convenient way of doing this: 
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                                              (1) 
Where, kW is the system kilowatt load&kvar is the amount of capacitive kilovar to be added. 
The capacitor switching control scheme illustrated in Fig.1 is based on automatic controller. The control senses voltage 
and current, and uses either these parameters directly or a derived parameter like power factor to compare against a 
threshold. Fig. 3 shows a flowchart. 
 

 
  

Fig. 3. Conventional strategy for pf correctionthrough switched capacitor banks 
 

Based on the above considerations, automatic capacitor controllers have been developed&marketed for commercial 
power system designersand operators. While such controllers work well for traditional passive loads such as motors, 
more and more facility operators have reported frequent capacitor failures or trips. As a result, reactive power 
compensation cannot be achieved. This problem is caused by the parallel resonance between the capacitor and the 
upstream impedance. This resonance is excited by the harmonic currents produced by modern facility loads such as 
office electronics and variable frequency drives. Industrystrongly needs capacitor controllers that can perform power 
factor correction and  avoid harmonic resonance. In addition, the controller shall not require additional sensors or 
inputs and can retrofit current controllers with zero alteration to the existing facility.  
 

IV. HARMONIC RESONANCE PROBLEM 
 

There is always the risk of resonance with capacitor banks application. This is due to the interaction of the bank’s 
capacitance with the inductive reactance. Harmonic currents at or near the resonant frequency can create high harmonic 
voltages across the high parallel impedance and the capacitor may not be able to withstand the resonance voltage. In 
order to facilitate the description of the resonance problem, Fig. 4 is used to represent a harmonic-producing 
commercial facility with a shunt PF correction capacitor connected at the PCC with the distribution system. In this 
figure, the impedance and current source represent the linear andnonlinear loads of the facilities, respectively.  
 

 
 

Fig 4. Parallel resonance at a point of common coupling (PCC) 
 

Assume that the supply system can be represented by a Thevenin impedance of , where h is the harmonic 
order. The total impedance ( ) seen by the harmonic current source can be determined as 

                                                                                  (2) 
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The inductive reactance  of the supply system impedance increases and the capacitive reactance   decreases as 
the frequency increases, or as the harmonic order increases. There will be a crossover point where the inductive and 
capacitive reactances are equal ( = ) , at a given harmonic frequency. Consequently, the total impedance (

) approaches infinity and a very high voltage harmonic may result if the commercial facility harmonic current 
has a frequency close to 

                                                                                                                           (3) 

Where  is the system short-circuit level and  is capacitor size. The above frequency is called the 

resonance frequency. In this case, the resonant components and  are in parallel. The resulting resonance is called 
parallel resonance. The parallel resonance phenomenon can be visualized from a frequency scan plot,as shown in Fig. 
5.  

 

 
 

Fig. 5. Frequency response of the combinedsystem and capacitor impedances 
    

This figure illustrates how both system and capacitor reactances change with the frequency. At the resonance frequency 
both reactances are equal and total impedance seen from the capacitor location  will tend to a very large 
value.Consider a system fault level of 250 MVA and a capacitor bank rating of 10.8 Mvar. Substituting these numbers 
on (3) yields: 

 
The parallel resonance order of 4.83 is too close to the 5th harmonic order and if any magnitude of 5th harmonic 
current flows from the harmonic-producing loads into the power system at the capacitor bus, the capacitor may not be 
able to withstand the resonance voltage, leading to fuse blowing or capacitor damage. A practical (rule of thumb) way 
to find out whether parallel resonance should be a concern is to use (4), which shows how further away the resonance 
frequency  should be from any dominant harmonic frequency . 

                                                                                                                                 (4) 

However, the condition given by (4) is not sufficient because resonance frequency shift can occur due to capacitance 
deviation. Therefore, the final condition to decide if a certain combination of capacitors should be switched is to verify 
if the stress levels on the capacitors bank meet the limits defined in Table I. 
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TABLE I 
CAPACITOR LOADING LIMITS ESTABLISHED BY THE IEEE STANDARD 1036-1992 

 

 
 

When large levels of voltage and current harmonics are present, the ratings are quite often exceeded, resulting in 
failures. Therefore, the consideration of power capacitor installation should include harmonic resonance analysis at the 
design stage. The installation of filters can bring unacceptable additional operational and capital costs to the PF 
correction scheme and, furthermore, a detailed harmonic study must be conducted to ensure that the application of the 
filters will not cause other side effects on both the facility and the distribution power system, such as parallel resonance 
at harmonic frequencies other than the one targeted by the filter. We think that focusing on a more intelligent algorithm 
to control the capacitor switching scheme to achieve both power factor correction and avoid resonanceunder varying 
demand conditions. Employ an adaptive control to monitor the harmonic distortion and switch the capacitors to avoid 
resonance might be appropriate for commercial loads where there are numerous switched capacitors coming on and off 
line randomly. Basically, the idea is to develop a controller that relies on common low cost sensing devices. As a result, 
the controller can be constructed as a retrofitting device to replace existing power factor correction controllers with 
little effort. 
 

V. PROPOSED CONTROL ALGORITHM 
 

Based on the previous discussion, the problem to be solved is to determine the number of capacitor units to be switched 
that can yield the highest power factor for the facility without causing excessive harmonic stress on the capacitors. 
Since there are limited numbers of capacitor combinations, the simplest algorithm is to scan through these 
combinations and pick the best. Such an approach complicates the problem, it is not guaranteed to converge and it 
might be time-consuming. More importantly, they cannot be easily implemented into a micro-controller. In this paper, a 
practical, efficient, and robust algorithm is proposed. Easy implementation is one of the main consideration. It is 
important to note that the switching control algorithm is only one of the components of the controller. The algorithm 
needs the system impedance information as input. There is also a need to detect if a capacitor is being overstressed due 
to changing harmonic conditions. Therefore, the proposed controller actually has at least the following three major 
functions: 
 
A. Measurement of the System Impedance 
 
In the previous section, it was discussed that in order to detect a resonance condition, it is necessary to determine the 
system impedance. One important issue is that the system impedance is not constant, but varies due to loading and 
topological changes on the system. Therefore, the following issue must be solved, how the harmonic resonance 
condition can be determined for a time varying load demand and topology? A number of impedance measurement 
methods have been developed, which can be classified into two types: the transients-based methods and the steady-
state-based methods. The transients-based methods inject transient disturbances into the system. The frequency-
dependent network impedances are extracted from voltage and current transients. The main problems associated with 
these methods are the need for a high-speed data acquisition system and for the source of disturbances. The steady-
state-based methods use pre- and postdisturbance steady-state waveforms. Typical disturbances are harmonic current 
injections produced by an external source or switching of a network component. Since there are no transients involved, 
the methods can only determine network impedances at harmonic frequencies. Since there is no need for a high-speed 
data acquisition system, the steady-state method can be implemented with many common, low-cost power quality 
monitors and it relies on the common voltage and current transformer sensors illustrated on Fig. 1. The simplest form 
of the steady-state measurement method involves the switching of a network component at the location where the 
network impedance is to be measured. The basic idea of this method can be summarized as follows: 
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1) Record the steady-state waveforms of the capacitor voltages and currents. If the capacitor is not connected, its 
currents are treated as zero. 
2) Changes are then made to the status of the capacitor. For example, a capacitor unit can be switched on or off to meet 
the power factor requirement. 
3) The postdisturbance steady-state voltage and current waveforms are recorded. 
4) Discrete Fourier transform (DFT) is applied to the pre- and postdisturbance waveforms. For each harmonic, the 
following system equations can be developed: 

                                                                                                                                              (5) 

                                                                                                (6) 

Where  and  are the predisturbance hth harmonic voltage and current, and  and  are the 

post-disturbance hth harmonic voltage and current.  and   are the internal system voltage and system impedance, 
respectively. 

5) The system harmonic impedances can be determined from the above equations as follows: 

                                                                                  (7) 

B. Detection of Resonance Condition 
 
As mentioned before, from the system impedance and the existing capacitor impedance, the resonance frequency can 
be calculated through (3). For a certain system impedance, the number of capacitor units that lead to a harmonic 
resonance frequency equal or close to the dominant harmonic frequencies. Fig. 6 illustrates, for a particular system 
impedance, how the harmonic resonance frequency changes as more and more capacitor units are switched on. For the 
figure, the system is represented by a transformer of 1600 kVA with reactance of 6.0% and each capacitor unit has a 
capacity of 50 kvar.  

 
Fig. 6. Relationship of the resonance frequency and number of switched shunt capacitorunits. 

 
From figure, it is clear that the resonance frequency can be shifted from a harmonic frequency by changing the number 
of switched capacitor units. A practical way to verify if  is too close to any harmonic frequency is to apply (4). 
From Fig. 6, if 11 capacitors are switched ON, the resonance frequency is too close to the 7th harmonic order(point 
A), therefore, the bank should be increased or decreased. If two more capacitor are switched (13 in total), is around 
6.4 (point B), which is further away from 5th and 7th harmonic orders. However, it is also necessary to evaluate for the 
current combination of capacitor units if its loading conditions meet the limits specified by Table I. One can also 
observe from Fig. 6 that more than one combination of capacitor units can be considered to avoid resonance. In this 
paper, each combination refers to a particular number of capacitors to be switched on to the circuit. 
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C. Determination of Capacitor Units 
 
The final step is to determine the number of capacitor units that can be switched without violating power factor and 
resonance constraints. From the previous subsection, it is possible to estimate, from the current system impedance, the 
combinations of capacitor units that can be switched so that the resonance frequency ( ) is further away from the 
harmonic frequencies. This can be done through the following steps: 
1) The system impedance  calculated from the last capacitor switching is used as input. 
2) Substituting (3) in (4) yields  (8),  from which it is possible to determine the combinations of capacitors  that 
can be switched. Normally, the dominant harmonic frequencies  are the odd harmonic orders from 3 to 29 

                                                                                                                     (8) 

3) Among the combinations found in step 2), it is possible to determine which combinations (kvar) lead to a power 
factor ( ) between utility lower ( ) and upper ( ) limits. This verification can be done as follows: 

                                                                                                 (9) 

4) From the combinations found in step 3), select the combination that lead to minimum switching relative to the 
current capacitor bank configuration. 
5) Calculate the anticipated loading for this combination using the indices present in Table I. 
6) If loading indices meet the standard limits, switch the combination, otherwise go back to step 4) to select a sub-
optimal solution. 
 

VI.RESULTS AND ANDVANTAGES OF PROPOSED ALGORITHM 
 

• It does not require additional measurements relying on common voltage and current transformer sensors. 
• The controller does not require the installation of reactors and filters. 
• The controller not only checks if the harmonic resonance frequency is further away from any harmonic frequency, but 
the capacitor stress levels are also verified to ensure the selection of the most appropriate combination of capacitor 
units. 
• The controller takes into account the time-varying system conditions to determine both the power factor and the 
resonance condition. 
• The proposed controller also preserves the objective of conventional controllers, which is to achieve the highest 
facility power factor.  
 

VII. CONCLUSION 
 

This paper presents a new control strategy for power factor compensation on distorted low voltage power systems. The 
proposed strategy can perform power factor correction without exciting harmonic resonance under varying demand 
conditions. Practical and robust control algorithms are proposed for the purpose of easy implementation in a micro-
controller. In addition, the controller relies on common low cost sensing devices and does not require additional 
hardware circuits. As a result, the proposed controller can be constructed as a retrofitting device to replace existing 
power factor correction controllers with little effort and low cost.  
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