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Abstract:  An important assumption to maximize the performance of genetic algorithm is to study the convergence state of genetic algorithm. Genetic algorithm is 

a Mata-heuristic search technique; this technique is based on the Darwin theory of Natural Selection. The important property of this algorithm is that it has worked 

on multiple state of solution. This algorithm is work with some finite set of population. The population contains set of individual, which represent the solution. 

Each member of the population is represented by a string written over fixed alphabets and also each member has a merit value associated with it, which represent 

its suitability for the problem under consideration. There are many coding techniques have been implemented for genetic algorithm. In this paper we study the 

effect of crossover and inversion probability on the convergence of genetic algorithm .The convergence of genetic algorithm is depends upon the parameter setting 

of genetic algorithm.  
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INTRODUCTION 

The work outline in this paper involve the optimization of 

scheduling problem by using genetic algorithm. The 

efficiency of the scheduler depends upon the  algorithm used 

to develop the scheduler. The genetic algorithm is a robust 

algorithm . so it is better to understand the parameter setting 

of genetic algorithm. our mean abut the parameter setting is 

concern with the probability of operators , population size, 

selection techniques etc.   The main aim of any scheduling 

technique is to find out the optimal solution with limited  no. 

of constraint to be adopted. The Scheduling problem is 

consider to be the NP-hard problem. For literature on this 

area , see [1][2][7]. It is well known that scheduling 

problems are a subclass of combinatorial problems that arise 

every where. Genetic algorithms(Gas) are adaptive methods 

which may be used to solve search and optimization 

problems. Genetic algorithms (GAs) were first proposed by 

the John Holland[3] in the 1960s.The performance of the 

genetic algorithm is limited by some problem, typically 

premature convergence. This happens simply because of the 

accumulation of stochastic errors. If by chance , a gene 

becomes predominant in the population , then it just as likely 

to become more predominant in the next generation as it is 

to become less he predominant. If  an increase in 

predominance is sustained over several successive 

generation and population is finite, then a gene can be 

spread to all members of the population. Once gene has 

converged in this way, it is fixed then crossover cannot  

introduce new gene values. This produces a ratchet effect, so 

that as generations go by , each gene eventually becomes 

fixed. This diverse effect can be minimize by applying the 

inversion operator with suitable probability. Here we 

consider the operating system   process scheduling for 

simulation 

 

 THE OPERATING SYSTEM PROCESS SCHEDULING 

PROBLEM  FOR ANALYSIS 

 

The performance of the operating system is greatly depends 

upon the proper process scheduling .Process scheduling in 

the operating system is the way by which the operating 

system allocate the CPU to the ready process in the ready 

queue[4]. Let us consider batch processing system in which   

there are 1,2,3…N process and these process has their given 

service time. This problem is concern to find out optimal 

sequence schedule which has minimum turn around time .In 

this paper turn around time is used to find out the fitness of 

the individual in the population. There is a pool of ready 

processes waiting for the allocation of CPU .These processes 

are independent and compete for the allocation of resources. 

The best approach is the maximum utilization of CPU and 

minimum  turn around time. 

 

SCOPE OF PAPER 

 

The major part of this paper, contained in section 2, will 

explain working of genetic algorithm and their application in 

process scheduling problem. The GA is robust techniques 

and it has no. of operators which have their own properties 

.The parameter setting in the genetic algorithm is concerned  

with the setting of applicable static values of the operators 

used. Ie crossover probability , inversion rate , population 

size etc. Accessible introduction can be found in the books 

by Davis [5] and Goldberg[6] .Section 3 describe the 
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proposed structure of genetic algorithm. Section 4 explain 

the experimental setup for  analysis  and section 5 is 

conclusion . 

 

INTRODUCTION OF  GENETIC ALGORITHM 

 
OVERVIEW  

The evaluation function, or objective function, provides a 

measure of performance with respect to a particular set of 

parameters. The fitness function transforms that measure of 

performance into an allocation of reproductive opportunities. 

The evaluation of a string representing a set of parameters is 

independent of the evaluation of any other string. The fitness 

of that string, however, is always defined with respect to 

other members of the current population. In the genetic 

algorithm, fitness is defined by: fi /fA where fi is the 

evaluation associated with string i and fA is the average 

evaluation of all the strings in the population. Fitness can 

also be assigned based on a string's rank in the population or 

by sampling  methods, such as tournament selection. The 

execution of the genetic algorithm is a two-stage process. It 

starts with the  current population. Selection is applied to the 

current population to create an intermediate population. 

Then recombination and mutation are applied to the 

intermediate population to create the next population. The 

process of going from the current population to the next 

population constitutes one generation in the execution of a 

genetic algorithm. In the first generation the current 

population is also the initial population. After calculating fi 

/fA for all the strings in the current population, selection is 

carried out. The probability that strings in the current 

population are copied (i.e. duplicated) and placed in the 

intermediate generation is in proportion to their fitness. 

 

CODING 
         

Before a GA can be run, a suitable coding (or 

representation) for the problem must be devised. We also 

require a fitness function, which assigns a figure of merit to 

each coded solution. During the run, parents must be 

selected for reproduction, and recombined to generate 

offspring. It is assumed that a potential solution to a problem 

may be represented as a set of parameters (for example, the 

parameters that optimize a neural network). These 

parameters (known as genes) are joined together to form a 

string of values (often referred to as a chromosome. For 

example, if our problem is to maximize a function of three 

variables, F(x; y; z), we might represent each variable by a 

10-bit binary number (suitably scaled). Our chromosome 

would therefore contain three genes, and consist of 30 binary 

digits. The set of parameters represented by a particular 

chromosome is referred to as a genotype. The genotype 

contains the information required to construct an organism 

which is referred to as the phenotype. For example, in a 

bridge design task, the set of parameters specifying a 

particular design is the genotype, while the finished 

construction is the phenotype. 

 

        The fitness of an individual depends on the 

performance of the phenotype. This can be inferred from the 

genotype, i.e. it can be computed from the chromosome, 

using the fitness function. Assuming the interaction between 

parameters is nonlinear, the size of the search space is 

related to the number of bits used in the problem encoding. 

For a bit string encoding of length L; the size of the search 

space is 2L and forms a hypercube. The genetic algorithm 

samples the corners of this L-dimensional hypercube. 

Generally, most test functions are at least 30 bits in length; 

anything much smaller represents a space which can be 

enumerated. Obviously, the expression 2L grows 

exponentially. As long as the number of "good solutions" to 

a problem are sparse with respect to the size of the search 

space, then random search 

 or search by enumeration of a large search space is not a 

practical form of problem solving. On the other hand, any 

search other than random search imposes some bias in terms 

of how it looks for better solutions and where it looks in the 

search space. A genetic algorithm belongs to the class of 

methods known as "weak methods" because it makes 

relatively few assumptions about the problem that is being 

solved. Genetic algorithms are often described as a global 

search method that does not use gradient information. Thus, 

non differentiable functions as well as functions with 

multiple local optima represent classes of problems to which 

genetic algorithms might be applied. Genetic algorithms, as 

a weak method, are robust but very general. 

 

FITNESS FUNCTION 

  

A fitness function must be devised for each problem to be 

solved. Given a particular chromosome, the fitness function 

returns a single numerical "fitness," or "figure of merit," 

which is supposed to be proportional to the "utility" or 

"ability" of the individual which that chromosome 

represents. For many problems, particularly function 

optimization, the fitness function should simply measure the 

value of the function. 

 
 

SELECTION 

 

Individuals are chosen using "stochastic sampling with 

replacement" to fill the intermediate population. A selection 

process that will more closely match the expected fitness 

values is "remainder stochastic sampling." For each string i 

where fi/fA is greater than 1.0, the integer portion of this 

number indicates how many copies of that string are directly 

placed in the intermediate population. All strings (including 

those with fi/fA less than 1.0) then place additional copies in 

the intermediate population with a probability corresponding 

to the fractional portion of fi/fA. For example, a string with 

fi/fA = 1:36 places 1 copy in the  intermediate population, 

and then receives a 0:36 chance of placing a second copy. A 

string 

with a fitness of fi/fA = 0:54 has a 0:54 chance of placing 

one string in the intermediate population. Remainder 

stochastic sampling is most efficiently implemented using a 

method known as stochastic universal sampling. Assume 

that the population is laid out in random order as in a pie 
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graph, where each individual is assigned space on the pie 

graph in proportion to fitness. An outer roulette wheel is 

placed around the pie with N equally-spaced pointers. A 

single spin of the roulette wheel will now simultaneously 

pick all N members of the intermediate population. 

 

REPRODUCTION 

 

After selection has been carried out the construction of the 

intermediate population is complete and recombination can 

occur. This can be viewed as creating the next population 

from the intermediate population.  

 

Crossover  is applied to randomly paired strings with a 

probability denoted pc. (The population should already be 

sufficiently shuffled by the random selection process.) Pick 

a pair of strings. With probability pc "recombine" these 

strings to form two new strings that are inserted into the next 

population. In the proposed algorithm we use the modified 

crossover operator. 

Good individuals will probably be selected several times in a 

generation; poor ones may not be at all. Having selected two 

parents, their chromosomes are recombined, typically using 

the mechanisms of crossover and  

 

mutation. The previous crossover example is known as 

single point crossover. Crossover is not usually applied to all 

pairs of individuals selected for mating. A random choice is 

made, where the likelihood of crossover being applied is 

typically between 0.6 and 1.0. If crossover is not applied, 

offspring are produced simply by duplicating the parents. 

This gives each individual a chance of passing on its genes 

without the disruption of crossover.  

Mutation is applied to each child individually after 

crossover. It randomly alters each gene with a small 

probability. The next diagram shows the fifth gene of a 

chromosome being mutated: The traditional view is that 

crossover is the more important of the two techniques for 

rapidly exploring a search space. Mutation provides a small 

amount of random search, and helps ensure that no point in 

the search has a zero probability of being examined. 

 

CONVERGENCE 

      

The fitness of the best and the average individual in each 

generation increases towards a global optimum. 

Convergence is the progression towards increasing 

uniformity. A gene is said to have converged when 95% of 

the population share the same value. The population is said 

to have converged when all of the genes have converged. As 

the population converges, the average fitness will approach 

that of the best individual. A GA will always be subject to 

stochastic errors. One such problem is that of genetic drift. 

Even in the absence of any selection pressure (i.e. a constant 

fitness function), members of the population will still 

converge to some point in the solution space. This happens 

simply because of the accumulation of stochastic errors. If, 

by chance, a gene becomes predominant in the population, 

then it is just as likely to become more predominant in the 

next generation as it is to become less predominant.  

 

If an increase in predominance is sustained over several 

successive generations, and the population is finite, then a 

gene can spread to all members of the population. Once o 

gene has converged in this way, it is fixed; crossover cannot 

introduce new gene values. This produces a ratchet effect, so 

that as generations go by, each gene eventually becomes 

fixed. The rate of genetic drift therefore provides a lower 

bound on the rate at which a GA can converge towards the 

correct solution. That is, if the GA is to exploit gradient 

information in the fitness function, the fitness function must 

provide a slope sufficiently large to counteract any genetic 

drift. The rate of genetic drift can be reduced by increasing 

the mutation rate. However, if the mutation rate is too high, 

the search becomes effectively random, so once again 

gradient information in the fitness function is not exploited. 

 

STRUCTURE OF PROPOSED GA-BASED 

ALGORITHM 

 

Algorithm MCGA (Modified crossover GA) 

 

(1)  Begin 

 

(2)           Initialize Population (randomly generated); 

 

(3)         Fitness Evaluation; 

 

(4)    Repeat 

 

(5)     Selection( Roulette wheel Selection) ; 

 

(6)         Modified crossover; 

 

(7)         Inversion(); 

 

(8)         Fitness Evaluation; 

 

(9)      Elitism replacement with Filtration; 

 

(10)   Until the end condition is satisfied; 

 

(11)        Return the fittest solution found; 

 

(12)       End 

 

EXPERIMENTAL SETUP 

The Individual  solutions are randomly generated to form an 

initial population. Successive generations of reproduction 

and crossover produce increasing numbers of individuals . 

Modified crossover operator with crossover probability Cp 

is 0.5 and 1.0 is taken. This operator is suitable for 

permutation coding. Crossover operator exploited the 

population or  you can say that it can diversify the 

population. But due to the genetic drift some time the 

population is converge to the local optimal point, At that 

time crossover operation can not diversify the population. 

The inversion operator is  explorative in nature ,it diversify 

the population ,but in general the probability of inversion is 

very low . so in our simulation  We first have 0.01 inversion 

probability then we proceed with .001,.0001. The parameter 
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setting for proposed genetic algorithm is as shown in table 

no .1.

Table 1: Para

 

Parameter / Strategy

Crossover Probability

Variable Inversion 

Replacement strategy

Stopping Strategy

No. of process to be 

Sr.No

1

2

3

4

5

6

7

8

9

10
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setting for proposed genetic algorithm is as shown in table 

no .1. 

Table 1: Parameters and strategies used for 

Parameter / Strategy

Population Size

Population Type

Initialization

Selection 

Crossover 

Crossover Probability

Variable Inversion 

Probability

Replacement strategy

Stopping Strategy

No. of process to be 

Schedule 

Fitness criterion

Sr.No 

J1 

1 20 

2 45 

3 43 

4 25 

5 28 

6 20 

7 20 

8 29 

9 40 

10 34 

    

        

Total
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JGRCS 2010, All Rights Reserved 

setting for proposed genetic algorithm is as shown in table 

meters and strategies used for 

Parameter / Strategy 

Population Size 

Population Type 

Initialization 

 

 Two Parents, Modified 

Crossover Probability 

Variable Inversion 

Probability 

Replacement strategy 

Stopping Strategy 85 % Population converge

No. of process to be 

 

Fitness criterion Minimum Turn Around  

 

Burst Time of 

J2 J3

39 49

47 46

29 45

46 48

31 46

47 50

48 43

24 20

39 42

39 22

        

Total E T. =

Mean E T. .=
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setting for proposed genetic algorithm is as shown in table 

meters and strategies used for proposed genetic algorithm

Setting

20 

Generational

Random

Roulette wheel

Two Parents, Modified 

crossover

0.5 and 1.0

0.1 

0.01 

0.001 

Keep 95 % Best

85 % Population converge

5 

Minimum Turn Around  

Time 

Burst Time of Jobs 

J3 J4 

49 45 

46 44 

45 47 

48 33 

46 54 

50 32 

43 41 

20 44 

42 24 

22 47 
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setting for proposed genetic algorithm is as shown in table 

proposed genetic algorithm 

Setting 

Generational 

Random 

Roulette wheel 

Two Parents, Modified 

crossover 

0.5 and 1.0 

 

 

Keep 95 % Best 

85 % Population converge 

Minimum Turn Around  

 

Table 2: Computation results

J5 

43 

27 

30 

42 

24 

48 

21 

48 

44 

40 
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Computation results

 

GA c

Pi=0.01 

E.T(sec.) 

2 

3 

2 

2 

6 

2 

6 

2 

2 

1 

28 

2.8 
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Figure 1. No. of schedules vs exec. time

 Figure 2: No. of schedules vs No. of 

Computation results 

GA cp=0.5   

Pi=0.001

E.T(sec.)

2 

3 

2 

2 

2 

2 

3 

2 

2 

3 

23 

2.3 
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2: No. of schedules vs No. of 

Pi=0.001 

E.T(sec.) 

Pi=0.01

E.T(sec.)

1

2

1

2

2

2

2

2

1

2

17

1.7
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Figure 1. No. of schedules vs exec. time 

2: No. of schedules vs No. of iteration 

GAcp=1.0 

Pi=0.01 

E.T(sec.) 

Pi=0.001

E.T(sec.)
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1 

2 

2 

2 

2 

2 

1 

2 

17 

1.7 
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Pi=0.001 

E.T(sec.) 

2 

2 

2 

2 

2 
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21 

2.1 
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Table 3. Computation results 

 

Sr.No Burst Time of Jobs GA cp=0.5 GAcp=1.0 

J1 J2 J3 J4 J5 Pi=0.01 

No.Itr. 

Pi=0.001 

No.Itr. 

Pi=0.01 

No.Itr. 

Pi=0.001 

No.Itr. 

1 20 39 49 45 43 15 16 10 10 

2 45 47 46 44 27 19 17 9 9 

3 43 29 45 47 30 13 14 8 9 

4 25 46 48 33 42 13 17 10 11 

5 28 31 46 54 24 45 16 10 10 

6 20 47 50 32 48 21 14 8 10 

7 20 48 43 41 21 42 21 12 13 

8 29 24 20 44 48 16 17 10 25 

9 40 39 42 24 44 16 17 10 9 

10 34 39 22 47 40 15 25 10 13 

 

215 174 97 119 

               
� �������
���

	

   

21.5 17.4 9.7 11.9 

 

CONCLUSION 

The experiment result shows that the convergence of the 

genetic algorithm is depend upon the parameter setting of 

the genetic algorithm. When cross over probability is set to 

Cp =1.0 and inversion probability is set pi=0.01 then 

convergence Time of GA is reduced considerably. But when 

Cp=0.5 and Pi=0.01 the convergence time of GA increased. 

Same result is getting when iteration is consider. So it is 

clear that the convergence of genetic algorithm is depends 

upon the parameter setting of getting algorithm. At a 

particular parameter setting we get optimal convergence 

state. 
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