
Volume 1, No. 5, December 2010

Journal of Global Research in Computer ScienceJournal of Global Research in Computer ScienceJournal of Global Research in Computer ScienceJournal of Global Research in Computer Science

RESEARCH PAPER

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 7

PREMATURE CONVERGENCE AND GENETIC ALGORITHM UNDER

OPERATING SYSTEM PROCESS SCHEDULING PROBLEM

Er.Rajiv Kumar*1 and Er. Ashwani Kaushik2

 1PhD. Scholar, Singhania University Jhunjhunu, Rajasthan, India

rajivkumargill1@rediffmail.com

2Lecturer,Mechanical Engg Deptt.

N.C.College of Engineering Israna, Panipat INDIA

ashwanikrkaushik@rediffmail.com

Abstract: An important assumption to maximize the performance of genetic algorithm is to study the convergence state of genetic algorithm. Genetic algorithm is

a Mata-heuristic search technique; this technique is based on the Darwin theory of Natural Selection. The important property of this algorithm is that it has worked

on multiple state of solution. This algorithm is work with some finite set of population. The population contains set of individual, which represent the solution.

Each member of the population is represented by a string written over fixed alphabets and also each member has a merit value associated with it, which represent

its suitability for the problem under consideration. There are many coding techniques have been implemented for genetic algorithm. In this paper we study the

effect of crossover and inversion probability on the convergence of genetic algorithm .The convergence of genetic algorithm is depends upon the parameter setting

of genetic algorithm.

Keywords: Genetic algorithm, NP-hard, Process, Scheduling, Inversion probability.

INTRODUCTION

The work outline in this paper involve the optimization of

scheduling problem by using genetic algorithm. The

efficiency of the scheduler depends upon the algorithm used

to develop the scheduler. The genetic algorithm is a robust

algorithm . so it is better to understand the parameter setting

of genetic algorithm. our mean abut the parameter setting is

concern with the probability of operators , population size,

selection techniques etc. The main aim of any scheduling

technique is to find out the optimal solution with limited no.

of constraint to be adopted. The Scheduling problem is

consider to be the NP-hard problem. For literature on this

area , see [1][2][7]. It is well known that scheduling

problems are a subclass of combinatorial problems that arise

every where. Genetic algorithms(Gas) are adaptive methods

which may be used to solve search and optimization

problems. Genetic algorithms (GAs) were first proposed by

the John Holland[3] in the 1960s.The performance of the

genetic algorithm is limited by some problem, typically

premature convergence. This happens simply because of the

accumulation of stochastic errors. If by chance , a gene

becomes predominant in the population , then it just as likely

to become more predominant in the next generation as it is

to become less he predominant. If an increase in

predominance is sustained over several successive

generation and population is finite, then a gene can be

spread to all members of the population. Once gene has

converged in this way, it is fixed then crossover cannot

introduce new gene values. This produces a ratchet effect, so

that as generations go by , each gene eventually becomes

fixed. This diverse effect can be minimize by applying the

inversion operator with suitable probability. Here we

consider the operating system process scheduling for

simulation

 THE OPERATING SYSTEM PROCESS SCHEDULING

PROBLEM FOR ANALYSIS

The performance of the operating system is greatly depends

upon the proper process scheduling .Process scheduling in

the operating system is the way by which the operating

system allocate the CPU to the ready process in the ready

queue[4]. Let us consider batch processing system in which

there are 1,2,3…N process and these process has their given

service time. This problem is concern to find out optimal

sequence schedule which has minimum turn around time .In

this paper turn around time is used to find out the fitness of

the individual in the population. There is a pool of ready

processes waiting for the allocation of CPU .These processes

are independent and compete for the allocation of resources.

The best approach is the maximum utilization of CPU and

minimum turn around time.

SCOPE OF PAPER

The major part of this paper, contained in section 2, will

explain working of genetic algorithm and their application in

process scheduling problem. The GA is robust techniques

and it has no. of operators which have their own properties

.The parameter setting in the genetic algorithm is concerned

with the setting of applicable static values of the operators

used. Ie crossover probability , inversion rate , population

size etc. Accessible introduction can be found in the books

by Davis [5] and Goldberg[6] .Section 3 describe the

Rajiv Kumar et al, Journal of Global Research in Computer Science1 (5),December 2010, 07-11

© JGRCS 2010, All Rights Reserved
 8

proposed structure of genetic algorithm. Section 4 explain

the experimental setup for analysis and section 5 is

conclusion .

INTRODUCTION OF GENETIC ALGORITHM

OVERVIEW

The evaluation function, or objective function, provides a

measure of performance with respect to a particular set of

parameters. The fitness function transforms that measure of

performance into an allocation of reproductive opportunities.

The evaluation of a string representing a set of parameters is

independent of the evaluation of any other string. The fitness

of that string, however, is always defined with respect to

other members of the current population. In the genetic

algorithm, fitness is defined by: fi /fA where fi is the

evaluation associated with string i and fA is the average

evaluation of all the strings in the population. Fitness can

also be assigned based on a string's rank in the population or

by sampling methods, such as tournament selection. The

execution of the genetic algorithm is a two-stage process. It

starts with the current population. Selection is applied to the

current population to create an intermediate population.

Then recombination and mutation are applied to the

intermediate population to create the next population. The

process of going from the current population to the next

population constitutes one generation in the execution of a

genetic algorithm. In the first generation the current

population is also the initial population. After calculating fi

/fA for all the strings in the current population, selection is

carried out. The probability that strings in the current

population are copied (i.e. duplicated) and placed in the

intermediate generation is in proportion to their fitness.

CODING

Before a GA can be run, a suitable coding (or

representation) for the problem must be devised. We also

require a fitness function, which assigns a figure of merit to

each coded solution. During the run, parents must be

selected for reproduction, and recombined to generate

offspring. It is assumed that a potential solution to a problem

may be represented as a set of parameters (for example, the

parameters that optimize a neural network). These

parameters (known as genes) are joined together to form a

string of values (often referred to as a chromosome. For

example, if our problem is to maximize a function of three

variables, F(x; y; z), we might represent each variable by a

10-bit binary number (suitably scaled). Our chromosome

would therefore contain three genes, and consist of 30 binary

digits. The set of parameters represented by a particular

chromosome is referred to as a genotype. The genotype

contains the information required to construct an organism

which is referred to as the phenotype. For example, in a

bridge design task, the set of parameters specifying a

particular design is the genotype, while the finished

construction is the phenotype.

 The fitness of an individual depends on the

performance of the phenotype. This can be inferred from the

genotype, i.e. it can be computed from the chromosome,

using the fitness function. Assuming the interaction between

parameters is nonlinear, the size of the search space is

related to the number of bits used in the problem encoding.

For a bit string encoding of length L; the size of the search

space is 2L and forms a hypercube. The genetic algorithm

samples the corners of this L-dimensional hypercube.

Generally, most test functions are at least 30 bits in length;

anything much smaller represents a space which can be

enumerated. Obviously, the expression 2L grows

exponentially. As long as the number of "good solutions" to

a problem are sparse with respect to the size of the search

space, then random search

 or search by enumeration of a large search space is not a

practical form of problem solving. On the other hand, any

search other than random search imposes some bias in terms

of how it looks for better solutions and where it looks in the

search space. A genetic algorithm belongs to the class of

methods known as "weak methods" because it makes

relatively few assumptions about the problem that is being

solved. Genetic algorithms are often described as a global

search method that does not use gradient information. Thus,

non differentiable functions as well as functions with

multiple local optima represent classes of problems to which

genetic algorithms might be applied. Genetic algorithms, as

a weak method, are robust but very general.

FITNESS FUNCTION

A fitness function must be devised for each problem to be

solved. Given a particular chromosome, the fitness function

returns a single numerical "fitness," or "figure of merit,"

which is supposed to be proportional to the "utility" or

"ability" of the individual which that chromosome

represents. For many problems, particularly function

optimization, the fitness function should simply measure the

value of the function.

SELECTION

Individuals are chosen using "stochastic sampling with

replacement" to fill the intermediate population. A selection

process that will more closely match the expected fitness

values is "remainder stochastic sampling." For each string i

where fi/fA is greater than 1.0, the integer portion of this

number indicates how many copies of that string are directly

placed in the intermediate population. All strings (including

those with fi/fA less than 1.0) then place additional copies in

the intermediate population with a probability corresponding

to the fractional portion of fi/fA. For example, a string with

fi/fA = 1:36 places 1 copy in the intermediate population,

and then receives a 0:36 chance of placing a second copy. A

string

with a fitness of fi/fA = 0:54 has a 0:54 chance of placing

one string in the intermediate population. Remainder

stochastic sampling is most efficiently implemented using a

method known as stochastic universal sampling. Assume

that the population is laid out in random order as in a pie

Fitness(Ta)

(C A)

N
j

i i

i 1

N

=

−

=

�

Rajiv Kumar et al, Journal of Global Research in Computer Science1 (5),December 2010, 07-11

© JGRCS 2010, All Rights Reserved
 9

graph, where each individual is assigned space on the pie

graph in proportion to fitness. An outer roulette wheel is

placed around the pie with N equally-spaced pointers. A

single spin of the roulette wheel will now simultaneously

pick all N members of the intermediate population.

REPRODUCTION

After selection has been carried out the construction of the

intermediate population is complete and recombination can

occur. This can be viewed as creating the next population

from the intermediate population.

Crossover is applied to randomly paired strings with a

probability denoted pc. (The population should already be

sufficiently shuffled by the random selection process.) Pick

a pair of strings. With probability pc "recombine" these

strings to form two new strings that are inserted into the next

population. In the proposed algorithm we use the modified

crossover operator.

Good individuals will probably be selected several times in a

generation; poor ones may not be at all. Having selected two

parents, their chromosomes are recombined, typically using

the mechanisms of crossover and

mutation. The previous crossover example is known as

single point crossover. Crossover is not usually applied to all

pairs of individuals selected for mating. A random choice is

made, where the likelihood of crossover being applied is

typically between 0.6 and 1.0. If crossover is not applied,

offspring are produced simply by duplicating the parents.

This gives each individual a chance of passing on its genes

without the disruption of crossover.

Mutation is applied to each child individually after

crossover. It randomly alters each gene with a small

probability. The next diagram shows the fifth gene of a

chromosome being mutated: The traditional view is that

crossover is the more important of the two techniques for

rapidly exploring a search space. Mutation provides a small

amount of random search, and helps ensure that no point in

the search has a zero probability of being examined.

CONVERGENCE

The fitness of the best and the average individual in each

generation increases towards a global optimum.

Convergence is the progression towards increasing

uniformity. A gene is said to have converged when 95% of

the population share the same value. The population is said

to have converged when all of the genes have converged. As

the population converges, the average fitness will approach

that of the best individual. A GA will always be subject to

stochastic errors. One such problem is that of genetic drift.

Even in the absence of any selection pressure (i.e. a constant

fitness function), members of the population will still

converge to some point in the solution space. This happens

simply because of the accumulation of stochastic errors. If,

by chance, a gene becomes predominant in the population,

then it is just as likely to become more predominant in the

next generation as it is to become less predominant.

If an increase in predominance is sustained over several

successive generations, and the population is finite, then a

gene can spread to all members of the population. Once o

gene has converged in this way, it is fixed; crossover cannot

introduce new gene values. This produces a ratchet effect, so

that as generations go by, each gene eventually becomes

fixed. The rate of genetic drift therefore provides a lower

bound on the rate at which a GA can converge towards the

correct solution. That is, if the GA is to exploit gradient

information in the fitness function, the fitness function must

provide a slope sufficiently large to counteract any genetic

drift. The rate of genetic drift can be reduced by increasing

the mutation rate. However, if the mutation rate is too high,

the search becomes effectively random, so once again

gradient information in the fitness function is not exploited.

STRUCTURE OF PROPOSED GA-BASED

ALGORITHM

Algorithm MCGA (Modified crossover GA)

(1) Begin

(2) Initialize Population (randomly generated);

(3) Fitness Evaluation;

(4) Repeat

(5) Selection(Roulette wheel Selection) ;

(6) Modified crossover;

(7) Inversion();

(8) Fitness Evaluation;

(9) Elitism replacement with Filtration;

(10) Until the end condition is satisfied;

(11) Return the fittest solution found;

(12) End

EXPERIMENTAL SETUP

The Individual solutions are randomly generated to form an

initial population. Successive generations of reproduction

and crossover produce increasing numbers of individuals .

Modified crossover operator with crossover probability Cp

is 0.5 and 1.0 is taken. This operator is suitable for

permutation coding. Crossover operator exploited the

population or you can say that it can diversify the

population. But due to the genetic drift some time the

population is converge to the local optimal point, At that

time crossover operation can not diversify the population.

The inversion operator is explorative in nature ,it diversify

the population ,but in general the probability of inversion is

very low . so in our simulation We first have 0.01 inversion

probability then we proceed with .001,.0001. The parameter

© JGRCS 2010, All Rights Reserved

setting for proposed genetic algorithm is as shown in table

no .1.

Table 1: Para

Parameter / Strategy

Crossover Probability

Variable Inversion

Replacement strategy

Stopping Strategy

No. of process to be

Sr.No

1

2

3

4

5

6

7

8

9

10

JGRCS 2010, All Rights Reserved

setting for proposed genetic algorithm is as shown in table

no .1.

Table 1: Parameters and strategies used for

Parameter / Strategy

Population Size

Population Type

Initialization

Selection

Crossover

Crossover Probability

Variable Inversion

Probability

Replacement strategy

Stopping Strategy

No. of process to be

Schedule

Fitness criterion

Sr.No

J1

1 20

2 45

3 43

4 25

5 28

6 20

7 20

8 29

9 40

10 34

Total

Rajiv Kumar

JGRCS 2010, All Rights Reserved

setting for proposed genetic algorithm is as shown in table

meters and strategies used for

Parameter / Strategy

Population Size

Population Type

Initialization

 Two Parents, Modified

Crossover Probability

Variable Inversion

Probability

Replacement strategy

Stopping Strategy 85 % Population converge

No. of process to be

Fitness criterion Minimum Turn Around

Burst Time of

J2 J3

39 49

47 46

29 45

46 48

31 46

47 50

48 43

24 20

39 42

39 22

Total E T. =

Mean E T. .=

Rajiv Kumar et al, Journal of Global Research in Computer Science1 (5),December 2010, 07

setting for proposed genetic algorithm is as shown in table

meters and strategies used for proposed genetic algorithm

Setting

20

Generational

Random

Roulette wheel

Two Parents, Modified

crossover

0.5 and 1.0

0.1

0.01

0.001

Keep 95 % Best

85 % Population converge

5

Minimum Turn Around

Time

Burst Time of Jobs

J3 J4

49 45

46 44

45 47

48 33

46 54

50 32

43 41

20 44

42 24

22 47

ETi

i

i

=

=

�
1

10

ETi

i

i

=
=

=

�
1

10

10

Journal of Global Research in Computer Science1 (5),December 2010, 07

setting for proposed genetic algorithm is as shown in table

proposed genetic algorithm

Setting

Generational

Random

Roulette wheel

Two Parents, Modified

crossover

0.5 and 1.0

Keep 95 % Best

85 % Population converge

Minimum Turn Around

Table 2: Computation results

J5

43

27

30

42

24

48

21

48

44

40

Journal of Global Research in Computer Science1 (5),December 2010, 07

Computation results

GA c

Pi=0.01

E.T(sec.)

2

3

2

2

6

2

6

2

2

1

28

2.8

Journal of Global Research in Computer Science1 (5),December 2010, 07

Figure 1. No. of schedules vs exec. time

 Figure 2: No. of schedules vs No. of

Computation results

GA cp=0.5

Pi=0.001

E.T(sec.)

2

3

2

2

2

2

3

2

2

3

23

2.3

Journal of Global Research in Computer Science1 (5),December 2010, 07-11

Figure 1. No. of schedules vs exec. time

2: No. of schedules vs No. of

Pi=0.001

E.T(sec.)

Pi=0.01

E.T(sec.)

1

2

1

2

2

2

2

2

1

2

17

1.7

11

Figure 1. No. of schedules vs exec. time

2: No. of schedules vs No. of iteration

GAcp=1.0

Pi=0.01

E.T(sec.)

Pi=0.001

E.T(sec.)

1

2

1

2

2

2

2

2

1

2

17

1.7

 10

Pi=0.001

E.T(sec.)

2

2

2

2

2

1

2

4

2

2

21

2.1

Rajiv Kumar et al, Journal of Global Research in Computer Science1 (5),December 2010, 07-11

© JGRCS 2010, All Rights Reserved
 11

Table 3. Computation results

Sr.No Burst Time of Jobs GA cp=0.5 GAcp=1.0

J1 J2 J3 J4 J5 Pi=0.01

No.Itr.

Pi=0.001

No.Itr.

Pi=0.01

No.Itr.

Pi=0.001

No.Itr.

1 20 39 49 45 43 15 16 10 10

2 45 47 46 44 27 19 17 9 9

3 43 29 45 47 30 13 14 8 9

4 25 46 48 33 42 13 17 10 11

5 28 31 46 54 24 45 16 10 10

6 20 47 50 32 48 21 14 8 10

7 20 48 43 41 21 42 21 12 13

8 29 24 20 44 48 16 17 10 25

9 40 39 42 24 44 16 17 10 9

10 34 39 22 47 40 15 25 10 13

215 174 97 119

� �������
���

	

21.5 17.4 9.7 11.9

CONCLUSION

The experiment result shows that the convergence of the

genetic algorithm is depend upon the parameter setting of

the genetic algorithm. When cross over probability is set to

Cp =1.0 and inversion probability is set pi=0.01 then

convergence Time of GA is reduced considerably. But when

Cp=0.5 and Pi=0.01 the convergence time of GA increased.

Same result is getting when iteration is consider. So it is

clear that the convergence of genetic algorithm is depends

upon the parameter setting of getting algorithm. At a

particular parameter setting we get optimal convergence

state.

REFERENCES

[1] M. Pinedo,, (2001), Scheduling – Theory, Algorithms

and Systems, 2ª edição, Prentice-Hall.

[2] Brucker, P. (2001). Scheduling Algorithms, Springer,

3rd edition, New York.

[3] Holland, J.H., 1975. “Adaptations in natural and artificial

systems”, Ann Arbor: The University of Michigan

Press
[4] R.Kumar,(2010),”Genetic algorithm approach to

operating system process scheduling problem”,
International journal of Engineering science and
Technology, pp 4248-4253

[5] L.Davis. Job-shop scheduling with genetic algorithms.
Van Nostrand Reinhold,1990

[6] David E.Goldberg, Genetic Algorithms in Search

Optimization & Machine learning, Second Reprint,

Pearson Education Asia pte. Ltd.,2000.
[7] M.Srininivas and L.M.Patnaik,”Genetic Algorithms: A

Survey”, IEEE computer Magazine, pp.17-26, June
1994.

Total NT NTi

i

i

=

=

=

�
1

10

Mean

NTi

i

i

=
=

=

�
1

10

10

