
Volume 5, No. 3, March 2014

Journal of Global Research in Computer Science

REVIEW ARTICLE

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 20

Prime Factor Attribute on Entity to increase the performance of read-only statements

in Many-to-Many relationship

M.S. Vasantharaju

Software Enginner
Email:vasa.v03@gmail.com

Abstract: It is very common to encounter many-to-many relationship where an entity will resolve into a Lookup or Reference Table while

designing relational database. And using an associative entity [4] is not always a better solution as it involves a separate table and joins reduce

the performance of the SQL-Data statements. This paper discusses about how adding a prime factor attribute on an entity instead of adding an

associative entity improves the performance of SQL-Data statements if at least one entity in man-to-many relationship will resolve into Lookup

table and number of entity-occurrence is less than 20 for best optimization

Keywords: Many-to-Many, Database Design, Performance Tuning, Mathematical-based Data Modelling

INTRODUCTION

Database Design plays a critical role in developing software, as

any risk caused by a flaw in Database Design persistent till the

release of software involves huge cost to mitigate. A

considerable amount of time and knowledge is involved in

creating a Database Model. This paper will discuss about an

alternate solution to specific problem that is common in

relational data model thereby increasing scalability and

performance of database. The solution is completely based on

prime numbers and prime factors and nothing more though it

needs a shift in paradigm and tries it. Again the solution is

optimized for a very specific problem.

MANY-TO-MANY RELATIONSHIP

It is a common type of cardinality that refers to the relationship
between two entities where two entities are children of each
other. Let us take a classic example where students enroll for
classes, we employ ER model to better explain relationship
between Student and Course

 Figure 1. Many-to-Many Relation Model

COMMON APPROACH

Since it is not possible to express Many-to-Many relationship in
logical data model an associative entity is introduced such a
way that the associative entity will have parent-children
relationship with each other entity. As in previous example a

new entity called Enroll which will become a child entity for
both Student and Course Entity.

Figure 2.ER Modlel for M:N reolved with an Associative Enity[4]

PRACTICAL PROBLEM

Let us take a more practical situation for M:N relation problem.
Assume that we are building a simple web application which
requires authentication to login and authorization to access
control resources. And focus on authorization framework where
User and Permission are entities which have M:N relationship.
A Junction Table called User-Permission will be used to resolve
M: N and subsequent insertion of Users will make an entry in
UserPermission table to map UserId and PermId.

User

UserId UserName

1 EndUser

2 Guest

3 Admin

 Table 1. User Table : Set(U)

 Table 2. Permission Table : Set(P)

 Table 3. Junction Table : Set(UP)

Now, to determine what permissions are granted for a user after

authentication we need to perform an operation, [6].

Permission

PermId PermName

1 Dashboard_View

2 Add_Or_Update_Users

3 Delete_Users

4 Admin_Screen_View

5 Manage_Configuration

UserPermission

UserId PermId

1 1

1 2

1 3

2 1

http://en.wikipedia.org/wiki/Cardinality_%28data_modeling%29
http://en.wikipedia.org/wiki/Entity

M.S.Vasantharaju , Journal of Global Research in Computer Science, 5 (3), March 2014, 20-22

© JGRCS 2010, All Rights Reserved 21

R=πPermName ((

 (U UserId = UserId UserName=? UP))
 PermId = PermId P))

It is evident that the operation involves multiple joins and also
growth of UserPermission table is directly proportional to
relation between User and Permission tables.

PRIME FACTOR APPROACH

The basic idea behind the approach is that the prime factors of
a positive integer is always a unique set of prime numbers.
 For example

 30 = 2 x 3 x 5 5
 1155 = 3 x 5 x 7 x 11
So we leverage this idea to represent the relationship by
calculating the product of prime factors. This approach is a
three step process and discussed in detail further.

Adding a Surrogate key

Prime Factor approach involves adding a surrogate key which
is an unique prime number greater than one to Permissions
Lookup Table, best way is to start with 2 and progress along
3,5,7,11 and further for each tuple.

 Table 3. Permission Table with Surrogate Key

Calculate Prime Factor

Instead of adding a Junction table a prime factor attribute can be
added to User table called PermSet.
For every insertion or updating the relation of User table
calculate the prime factor which is a product of surrogate keys
for each Permission

User

UserId UserName PermSet

1 EndUser 30

2 Guest 2

3 Admin 1155

Table 5. User Table with PermSet column

So PermSet of 30 includes Dashboard_View,
Add_Or_Update_Users and Delete_Users permissions.
Now the Database Model will become

 Figure 1. ER Model of M:N after Prime Factor Approach

Decode

There are many ways to decode the prime factor coposite in to
entity-occurrences . Considering the previous example let us
take a simple solution wherein a function will be created in
database server side which accepts a composite number C and
returns entity occrurences after performing an operation.

 R1=πPermName (C % PrimeSurr = 0 P) .

ANALYSIS

The operation for getting Permission for a User will now
become,

 R=πPermName (U UserName=? and PermSet % PrimeSurr =0 P)

A simple sub query or a sql with join like above can also be
used instead of using a separate function. Now it is evident that
we have reduced a joint which will result in a significant gain
in performance if the volume of data is huge.

Pros of Prime Factor Method
1. Scalable solution as Junction Table is no more used.

Database growth is independent on relationship between
Entities

2. Can be used as a De-Normalization tool if we need to
increase performance if analytical reads supersedes
insertion

3. Increased performance of SELECT queries
4. Much simpler to implement.
5. Size of Data Representation is reduced, so PermSet

number is enough to represent all the
permissions of a User.

Cons of Prime Factor Method:
1. Optimized for very small number of entity-occurrence this

is huge trade off which needs a research to arrive a max for
entity-occurrence which involves features data types etc.
offered by Database Management Systems.

2. Prime factor calculation overhead is involved with each
insertion so this is preferable only if read supersedes
insertion.

3. Performance of read statements depends on algorithm used
to decode Prime Factor to entity occurrence.

CONCLUSION AND RECOMMENDATIONS
Acknowledging the fact that de-normalization is more prevalent
for sql performance consideration Prime Factor Attribute
technique can be used as a tool to de-normalize data. In fact the
same motivation led to the development of this technique.
Caching the lookup table and implementing an algorithm to
decode Prime Factor to entity-occurrence in application server

Permissions

PrimeSurr PermName

2 Dashboard_View

3 Add_Or_Update_Users

5 Delete_Users

7 Admin_Screen_View

11 Manage_Configuration

http://en.wikipedia.org/wiki/Integer

M.S.Vasantharaju , Journal of Global Research in Computer Science, 5 (3), March 2014, 20-22

© JGRCS 2010, All Rights Reserved 22

side will help the performance further. Also cache the Prime
Factor – Entity Occurrences map using Least Recently Used
mechanism to enhance the performance of the system.

REFERENCES

[1] (2000-10-18) Mike Gahan , "An introduction to

databases", Celtic Inscribed Stones Project (CISP) UCL ,
http://www.ucl.ac.uk/archaeology/cisp/database/manual/n
ode1.html .

[2] "Conceptual Database Design - Entity Relationship(ER)
Modeling",
http://www.careerbless.com/db/rdbms/c1/design.php?sort
Option=O .

[3] (2014) Many-to-many (data model), Creative Commons
Attribution/Share-Alike License ,
http://en.wikipedia.org/wiki/Many-to-
many_%28data_model%29 (Article in Wikipedia).

[4] (2013) Associative entity, Creative Commons
Attribution/Share-Alike License ,
http://en.wikipedia.org/wiki/Associative_Entities (Article
in Wikipedia).

[5] (2012) Junction table, Creative Commons
Attribution/Share-Alike License ,
http://en.wikipedia.org/wiki/Junction_table (Article in
Wikipedia).

[6] Thomas Padron-McCarthy,"Lecture Notes: Relational
Algebra",Section of a web course on databases, June
2008, http://www.databasteknik.se/webbkursen/relalg-
lecture.

SHORT BIODATA OF THE AUTHOR

M.S.Vasantharaju graduated from National Institue of
Technology in the year 2007 under Metallurgy and
Materials Engineering discipline and currently employed
as Software Development Engineer in a security
technology company and posses expertise in the area of
software development , defensive programming and web
appplication vulnerabilities and risks.

http://www.ucl.ac.uk/archaeology/cisp/database/manual/node1.html
http://www.ucl.ac.uk/archaeology/cisp/database/manual/node1.html
http://www.careerbless.com/db/rdbms/c1/design.php?sortOption=O
http://www.careerbless.com/db/rdbms/c1/design.php?sortOption=O
http://en.wikipedia.org/wiki/Many-to-many_%28data_model%29
http://en.wikipedia.org/wiki/Many-to-many_%28data_model%29
http://en.wikipedia.org/wiki/Associative_Entities
http://en.wikipedia.org/wiki/Junction_table
http://www.databasteknik.se/webbkursen/relalg-lecture
http://www.databasteknik.se/webbkursen/relalg-lecture

