
Volume 4, No. 11, November 2013

Journal of Global Research in Computer Science

RESEARCH PAPER

Available Online at www.jgrcs.info

© JGRCS 2013, All Rights Reserved 13

PRIVACY PRESERVING RANKED KEYWORD SEARCH OVER ENCRYPTED

CLOUD DATA

Dinesh Nepolean, I.Karthik, Mu.Preethi, Rahul Goyal and M.K. Vanethi

Amrita Vishwa Vidyapeetham, Coimbatore, Tamilnadu, India

{ smnepolean, karganesh93, mupreethi,

goyal.1234rahul, vanethikathirvel } @gmail.com

Abstract: We present a scheme that discusses secure rank based keyword search over an encrypted cloud data. The data that has to be

outsourced is encrypted using symmetric encryption algorithm for data confidentiality. The index file of the keyword set that has to be searched

is outsourced to the local trusted server where the keyword set that is generated from the data files is also stored. This is done so that any un-

trusted server cannot learn about the data with the help of the index formed. The index is created with the help of Aho-Corasick multiple strings

matching algorithm which matches the pre-defined set of keywords with information in the data files to index them and store relevant data in B+

trees. Whenever the user searches for a keyword, the request is sent to the local trusted server and the indexed data is referred. The files are listed

based on the certain relevance criteria. User requests for the required files to the un-trusted server. The parameters required for ranking is got

from the data stored while indexing. Based on the ranking, the files are retrieved from the un-trusted server and displayed to the user. The

proposed system can be extended to support Boolean search and Fuzzy keyword search techniques.

 Keywords: Symmetric Encryption algorithm, Rank based search, multiple string matching, relevance scoring, privacy preserving, and cloud

computing.

1. INTRODUCTION

Cloud Computing is the evolving technology that has

changed the way of computing in IT Enterprise. It brings the

software and data to the centralized data centers from where

a large community of users can access information on pay

per use basis. This poses security threats over the data

stored. Data confidentiality may be compromised which has

to be taken care of. So it becomes necessary to encrypt the

data before outsourcing it to the cloud server. This makes

data utilization a challenging task. Traditional searching

mechanisms provide Boolean search to search over

encrypted data, which is not applicable when the number of

users and the number of data files stored in the cloud is

large. They also impose two major issues, one being the

post-processing that has to be done by the users to find the

relevant document in need and the other is the network

traffic that is undesirable in present scenario when all the

files matching with keywords is retrieved. But this paper

proposes ranked keyword search that overcomes these

issues.

The paper is formulated as follows. The related work is

summarized in Section 2. The proposed system and

architecture diagram is covered in Section 3. The scheme is

split into encryption module, string matching module,

indexing module and ranking module which are also

discussed under Section 3. Section 4 gives the gist about

future ideas and proposals.

2.RELATED WORKS

It is an important research problem to enable the cloud

service provider to efficiently search for the keyword in

encrypted files and provide user with efficient search result

maintaining data privacy at the same time. We have

researched on the following papers.

2.1 Practical Technique for Search over

Encrypted Cloud Data

This paper discusses on sequential scanning search

technique [1] that searches over encrypted data stored in

cloud without losing data confidentiality. The technique is

provably secure and isolates the query result whereby the

server doesn't know anything other the search result. It also

supports functionalities such as controlled searching by

server, hidden query support for user which searches for a

word without revealing it to the server. With searchable

symmetric encryption [7] and pseudorandom sequence

generating mechanisms that are secure, encrypted data can

be effectively scanned and searched without losing data

privacy. The scheme that is proposed is flexible that it can

be further extended to support search queries that are

combined with Boolean operators, proximity queries,

queries that contain regular expression, checking for

keyword presence and so on. But, in case of large

documents and scenarios that demand huge volumes of

storage, the technique has high time complexity.

2.2 Public Key Encryption with Keyword

Search

Dan Boneh proposed a solution for searching over the cloud

data that is encrypted using the Public key Crypto System

[2]. The idea is to securely attach or tag the related

keywords along with the each file. This will avoid the need

to completely decrypt the file and save the time of scanning

entire file to check if the keyword exists. The file is

encrypted using a public key encryption algorithm [2] and

Rahul Goyal et al, Journal of Global Research in Computer Science, 4 (11), November 2013, 13-16

© JGRCS 2013, All Rights Reserved 14

the keywords are encrypted by PEKS algorithm. To retrieve

the document containing keyword W, send only the

Trapdoor (W) to server. He proposed two methods for

construction of this scheme, one using the bilinear maps and

other using Jacobi symbols. The problem with this scheme

is that every tag of all the files has to be processed for

finding the match.

2.3 Boolean Symmetric Searchable Encryption

Most of the techniques discussed so far focused only on

single keyword matching but in real-time scenarios users

may enter more than one word. Tarik Moataz came up with

a solution to tackle such challenges of searching multiple

keywords over the encrypted cloud data. The construction of

Boolean Symmetric Searchable Encryption (BSSE) [11] is

mainly based on the orthogonalization of the keyword field

according to the Gram-Schmidt process. The basic Boolean

operations are: the disjunction, the conjunction and the

negation.

2.4 Fuzzy Keyword Search

The traditional searching techniques retrieve files based on

exact keyword match only but Fuzzy keyword search

technique extends this feature by supporting common typos

and format inconsistencies that occurs when the user types

the keywords. The data privacy that is maintained during

exact keyword search is ensured when this method is used.

Wild card based technique [4] is used to create efficient

fuzzy keyword sets that are used for matching relevant

documents. The keyword sets are created using Edit

Distance algorithm that quantifies word similarity. These

keyword sets reduce storage and representation overhead by

eliminating the need to generate all fuzzy keywords, rather

generating on similarity basis. The search result that is

provided is based on a fuzzy keyword data set that is

generated whenever the exact match search fails.

3.PROPOSED SYSTEM

We have proposed an efficient scheme which enables the

Cloud Service Provider

(CSP) to determine the files that are related to the keywords

searched by the user, rank them and send the most relevant

files without knowing any information about the cloud. Our

schema consists of three entities: Data owner, Un-trusted

cloud server and local trusted server. The data owner is the

one whose data is stored in cloud server and he is also

authorized to search over his files. Cloud server is an un-

trusted server which provides storage service where data

owners store their documents in encrypted form. The trusted

local server stores the index that is created for the files. The

system architecture is shown in Fig 1. We assume that

authorization of users and keys used for encryption are

managed by the local trusted server.

Notations:

1. C (F1, F2, .., Fn) : Files to be uploaded in cloud

server.

2. W (w1, w2, ..,wi) : Keywords extracted from C.

3.1 System Architecture

Fig. 1 System Architecture

3.2 Encryption Algorithm

As we are not going to perform any operation on the

outsourced files to search of the keywords, we can use any

of the existing light weight symmetric key Encryption

algorithms and unload the data files to the cloud. We use

DES to encrypt the file and then outsource it.

3.3 String Matching Algorithm

Aho-Corasick is found to be the efficient algorithm for

multiple string matching that finds all occurrences of the

pattern present in the files that are to be outsourced to the

un-trusted cloud server.

The algorithm consists of two parts:

The first part is building of the tree (trie) from keywords we

want to search for, and the second part is searching the test

for the keywords using the previously built tree. The tree is

a finite state machine, which is a deterministic model of

Rahul Goyal et al, Journal of Global Research in Computer Science, 4 (11), November 2013, 13-16

© JGRCS 2013, All Rights Reserved 15

behavior composed of finite number of states and transitions

between those states. In the first phase of tree building,

keywords are added to the tree where the root node is just a

place holder and contains links to other letters. A trie is the

keyword tree for a set of keywords K is a rooted tree T such

that each edge of T is labeled by a character and any two

edges out of a node have different labels.

CONSTRUCTION for set of keywords W = {W1, … Wk}

and n = ∑= |Wi|.

Begin with the root node

Insert each keyword W, one after the other as follows:

Starting at the root, follow the path labeled by characters of

Wi:

 If the path ends before Wi, continue it by adding

new edges and nodes for the remaining characters

of Wi

 Store identifier i of Wi at the terminal node of the

path. This takes clearly O(|W1| + … + |Wk|) = O(n)

time

LOOKUP of a string P:

Starting at root, follow the path labeled by characters of P as

long as possible; If the path leads to a node with an

identifier, P is a keyword. If the path terminates before P,

the string is not in the set of keywords. This takes clearly O

(|P|) time.

The files that are to be outsourced are given to the trie. Each

word is looked up in the trie to check whether it is a

keyword and the number of occurrences is stored. This

value is then passed on to the next phase, which is Indexing.

3.4 Indexing

Index is created as a list of mappings [10] which correspond

to each keyword. The list for a particular keyword contains

details such as:

1. File ids of the files which has the particular keyword

2. Term frequency for each file which denotes the number of

times the keyword has occurred in the file. This

measures the importance of the keyword in that file.

3. Length of each file

4. Relevance score for each file

5. Number of files that has the particular keyword

Data structures such as B+ trees can be used to store this

data. Term frequency, length of the file, number of files for

the keyword are used to calculate the relevance score for

each file by scoring mechanisms which is discussed later in

the Ranking modules.

The previous papers discuss architectures [5][6] where both

the index and the files are stored in encrypted form in the

un-trusted server. Whenever user searches for a word, the

request is sent to the un-trusted server, which searches over

the index and sends the entire mapping that is created for the

word to the user. The user has the overhead to decrypt and

request to retrieve the most relevant files based on the

relevance score information in the index. This takes up a

huge amount of bandwidth and round trip time. To reduce

the overheads, a new architecture that stores the index as

plain text in the local trusted server is proposed. When user

searches for a word, the word is sent to the local trusted

server, which searches the index, finds out the most relevant

files and requests un-trusted server for the files to be

retrieved and sent to user thereby ensuring data

confidentiality in un-trusted server.

Whenever a data file is stored, it is preprocessed to generate

a index containing the aforesaid details using the keywords

extracted (using multiple string matching algorithm

discussed earlier) from the data file. The index creation

scheme is as follows:

1. For each wi, that belongs to the keyword set W,

generate F(wi) which denotes the file ids that contain wi

2. For each wi € W

For 1 <= j <= |F(wi)|

2.1. Calculate score of the file Fij (with the help of

scoring mechanisms discussed later) and store as Sij

2.2. Store it with file id id(Fij), length of the file |Fij| as (id(Fij)

|| |Fij| || Sij) in I(wi) which is the index list for the

particular word wi

2.3. Update the total number of files that contain the keyword

with the index list as (I(wi)||N)

The position of the word in the file is also considered for

ranking the file. Hence the file that has the keyword in its

title is considered to be more relevant than the files that has

the keyword in their content. The relevance score is then

stored in the index so that whenever the user requests for a

word w, the top 'k' relevant files can be retrieved with this

score.

3.5 Ranking

Once the documents are stored and indexed, the next

important function is to rank them using details available

such that the user retrieves the top „k‟ most relevant

documents. To do so, we need to calculate a numeric score

for each file. In the IR community, the most widely used

ranking functions are based on the TF X IDF rule, where TF

stands for Term frequency which represents the number of

times a keyword is present in a file and IDF stands for

Inverse Document Frequency which is defined as the ratio

of number of file containing the word to the total number of

files present in the server.

The Ranking Function [5] used:

Score (W,Fi) = ∑ 1/|Fi| . (1 + ln fi,t) . (1 + N/ft)

 W: Keyword whose score to be calculated

 fi,t : Frequency of term in file Fi

 |Fi|: Length of the file

 N : Total number of files in the collection.

4. CONCLUSIONS

In this paper, we solve the problem of post processing

overhead and unnecessary network traffic created when

Boolean search techniques are used, by introducing the

Rahul Goyal et al, Journal of Global Research in Computer Science, 4 (11), November 2013, 13-16

© JGRCS 2013, All Rights Reserved 16

ranked keyword search scheme. The scheme generates

indexes that help the user to search for his documents in a

secure environment. The files matching the keyword search

are further ranked based on the relevant score calculated

with term frequency, file length etc.

Further extensions to the project can be done by

1. Supporting multi user environment where there would

be an extra entity in the scenario i.e., data user who is

authorized to access other users files. The

authorization mechanisms and key exchanges methods

can be modified to support the same.

2. Tolerating minor typos and format inconsistencies that

occur while typing the key words. This can be done by

introducing fuzzy keyword mechanism discussed

earlier.

3. Boolean Symmetric search technique can be included

to support multiple keyword search without making

any changes to the existing architecture.

5. REFERENCES

1. D. Song, D. Wagner, and A. Perrig.: “Practical Techniques
for Searches on Encrypted Data.” in Proc. of IEEE
Symposium on Security and Privacy‟ (2000).

2. D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano.:
“Public Key Encryption with Keyword Search.” in Proc.
of EUROCRYP‟04, volume 3027 of LNCS. Springer
(2004).

4. Y.-C. Chang and M. Mitzenmacher.: “Privacy Preserving
Keyword Searches on Remote Encrypted Data.” in Proc. of
ACNS‟05 (2005).

5. J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou.:
“Fuzzy Keyword Search over Encrypted Data in Cloud
Computing.” in Proc. of IEEE INFOCOM‟10 Mini-
Conference (2010).

6. C. Wang, N. Cao, K. Ren, and W. Lou.: “Enabling Secure
and Efficient Ranked Keyword Search over Outsourced
Cloud Data.” IEEE Transactions on parallel and distributed
systems, vol. 23,no. 8 (2012).

7. C. Wang, N. Cao, J. Li, K. Ren, and W. Lou.: “Secure
Ranked Keyword Search over Encrypted Cloud Data.” in
Proc. of ICDCS‟10 (2010).

8. R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky.:
“Searchable Symmetric Encryption: Improved Definitions
and Efficient Construction.” in Proc. of ACM CCS‟06
(2006).

9. Remya Rajan.: “Efficient and Privacy Preserving Multi User
Keyword Search for Cloud Storage Services.” International
Journal of Advanced Technology And Engineering Research
(IJATER), ISSN 2250 - 3536,Vol 2,Issue 4 (2012).

10. Zeeshan Ahmed Khan, R.K Pateriya.: “Multiple Pattern
String Matching Methodologies” A Comparative Analysis
(2012).

11. I. H. Witten, A. Moffat, and T. C. Bell.: “Managing
Gigabytes: Compressing and Indexing Documents and
Images.” Morgan Kaufmann Publishing, San Francisco
(1999).

12. Tarik Moataz and Abdullatif Shifka.: “Boolean
Symmetric Searchable Encryption.”

