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Abstract— Quantum computing has been an attractive   

method adapted for increasing the computational speed 

and it is governed by the laws of quantum mechanics. 

Quantum computers are not limited to two states as 

compared with classical systems, but they encode 

information as quantum bits or qubits. A qubit represents 

atoms, ions, photons or electrons and their respective 

control devices that are working together to act as 

computer memory and processors. The power of quantum 

computing lies in its multi-state representation which 

makes it million times more powerful than classical 

computer systems. Quantum computers also use another 

aspect of quantum mechanics known as entanglement, 

which is a property where multiple objects existing in the 

states that can be linked together.  

      There exists a standard/specification of message 

passing library, known as message passing interface 

(MPI) that can be used for achieving high-performance 

computing. The goal of MPI is to provide a standardized 

framework for writing message-passing programs which 

can be used for programming systems that require 

distributed processing. The superposition principle used 

by the quantum algorithm can be simulated in the MPI 

environment with a cluster of computers or multi-CPU 

systems. This paper focuses on exposing the strength of 

quantum algorithm in high performance computing by 

using MPI, and also on comparing the sequential and 

parallel execution of programs on the basis of  

execution time and CPU utilization. 

Keywords—qubit, superposition, entanglement, vector  

space, ket, quantum Fourier transform, Shor’s algorithm, 

message passing interface. 

 

 

 

 

 

 

I. INTRODUCTION 

 

      Numerous non-polynomial hard problems exist in the 

field of computation which cannot be solved by normal 

classical computers [1]. A quantum system offers a 

platform to solve such type of problems [2-3]. Although 

the miniaturization of computer chips will ultimately result 

in reducing their dimension to the scale of quantum 

mechanical prediction, where the mechanisms are 

governed by the laws of quantum physics, so far, the 

development of computational machines is still based on 

the laws of classical physics. A classical computer uses a 

bit that is set either to 0 or 1, and it does computing using 

one bit at a time until a program is completed. Whereas, a 

quantum computer uses a qubit, which is simply a 

superposition of 0 and 1, and enables each step to run all 

variations of a bit at the same time, giving them 

exponentially higher processing power as compared with 

classical computers. Quantum objects display both 

particle-like and wave-like features at the same time, and 

the characteristic property of a wave that is useful in 

computation is the superposition. This means we will have 

a “single instruction multiple data” architecture, i.e., 

having multiple signals at the same position at the same 

time [4] which will lead to enhanced computational 

performance of the system. 

Recently, there have been reports on work on quantum 

computing that aims at increasing the computation speed 

[5-8]. Here we report on our work on gaining speed in 

computing with specific cases such as factoring huge 

numbers. While there are different algorithms like 

Grover’s search algorithm, Simon’s algorithm and 

Deutsch-Jozsa algorithm [9, 10] for computation, we use 

Donald Jefferson Thabah N, Balachandran K, Anirban Roy, & John Kiran A 

Dept of Computer science & Engineering, Christ University Faculty of Engineering, Bangalore, India. 

Dept of Computer science & Engineering, Christ University Faculty of Engineering, Bangalore, India. 

Dept of Computer science & Engineering, Christ University Faculty of Engineering, Bangalore, India. 

 Dept of Computer science & Engineering, Christ University Faculty of Engineering, Bangalore, India. 

 

Quantum Algorithm: A Classical Realization 

in High-Performance Computing Using MPI 

 



Quantum Algorithm: A Classical Realization in High-Performance Computing Using MPI  

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14                                                                                                 1768 

 

Shor’s algorithm which is proved to be one of the best 

algorithms for finding factors of huge integers [11]. We 

show a classical simulation of Shor’s quantum algorithm, 

where the superposition principle is achieved by allocating 

the states to multiple systems present in a cluster. The 

execution time and the processor utilization in parallel 

computing are measured and are compared with those in 

sequential implementation. 

 

II. QUANTUM COMPUTING 

A. Qubit 

 

      The basic unit of information in quantum computation 

is qubit, which is a quantum bit. Like a bit, a qubit can also 

be represented in two states labelled as |0> and |1>, and 

called as a vector or a ket. This notation is very convenient 

because it expresses that the state of a quantum system is a 

vector and at the same time denotes the physical quantity 

of interest (energy level, position, spin, polarization, etc). 

A qubit can exist in a superposition state, which is a linear 

combination of |0> and |1>. 

     A qubit can be represented as, 

|ѱ>=α|0>+β|1>,               (1) 

where α and β are complex amplitudes, |α|
2
+|β|

2
=1, and |α|

2
 

and |β|
2 

give the probability of finding |ѱ> in |0> or |1> 

state, respectively. A qubit can also be represented as a 

vector, for example,   

|ѱ>=




 
 
 

        (2) 

     The vector shown above is in a two dimensional 

complex vector space and it is normalized to 1 [9-12]. 

B. Quantum Gates 

 In a quantum computer, information is processed 

using gates and quantum gates are unitary operators which 

are reversible [13]. A unitary operator U is the one where 

the adjoint is equal to the inverse, meaning  

 U
†
=U

-1 
                                                                       (3)  

 In addition, if H is Hermitian operator, then U=e
iHt

 is 

unitary. A quantum gate with n inputs and n outputs can be 

represented by a matrix of degree 2
n
.  

C. Operator 

       An operator is a mathematical rule that can be applied 

to a function to transform it into another function. For 

instance, an operator is applied to a ket |ѱ> to transform it 

into another ket |∅>. 

       E.g., A|ѱ>=|∅> where A is a unitary operator.   (4) 

    An operator can also act on bra as well, i.e., <u|A=<v|. 

The product of ket and bra can be written as |u><v| (outer 

product), which is also known as the projection operator. 

 

D. Measurement 

       Measurement is a projection of the state to the 

standard basis. Given a state | ѱ> in a two dimensional 

Hilbert space with orthogonal bases (inner product states 

|0> and |1> is zero) |0> and |1>, the projection of the state 

|ѱ> to the standard basis |0> or |1> is known as 

measurement. The probability that a state |ѱ> being 

projected to |0> or |1> is given by the square of the 

complex amplitudes associated with states |0> and |1>. 

 

E. Quantum Fourier transform 

Quantum Fourier transform (QFT) is a quantum 

implementation of the discrete Fourier transform. It 

transforms the n qubit state vector |α>=α0|0>+ 

α1|1>+∙∙∙∙∙∙∙∙αn|n> into its Fourier transform |β>= β0|0>+ 

β1|1>+∙∙∙∙∙∙∙∙ βn|n>, and a measurement on |β> will return 

only one of its n components. The QFT has the following 

properties:  

a. QFT is unitary 

b. Linear shift 

c. Period/Wavelength Relationship 

     These are the properties that are needed to develop the 

Shor’s algorithm [10]. The discrete quantum Fourier 

transform can be expressed as a unitary change of basis,  

    
2 /1

( ) | ( ( )) |ixy N

x y x

f x x e f x y
N

     (5) 

     Writing integer x and y in a binary notation, e.g. x=xn-

1.2
n-1 

+…..+x1.2+x0, the non-trivial fractional part of the 

exponent can be written as Fraction(xy/N)=yn-1(.x0)+yn-

2(.x1x2)+…+y0(.xn-1…x0). Then the unitary rotation of the 

QFT factorizes as 
0 1 0

n 1 0

2 (. ) 2 (.x )
2 /

2 (.x .... )

(| 0 |1 ) (| 0 |1 )
|

1 2 2
|

(| 0 |1 )
........

2

i x i x
ixy N

i x
y

e e
e y

x
N e 

 




     



  

 ,  (6) 

where the sum over y has been expanded in terms of the 

two values of each of its n bits. The factorization has 

converted the sum over N different values of y to a 

product of n single qubit notation. Complete factorization 

of the transform provides the maximal O(N/log N) gain 

for the algorithm. Now the period finding problem 

requires only one result, i.e., the period from multiple 

evaluation of f(x), which is possible with maximal 

quantum superposition of x values and a single run of 

QFT. This period finding using QFT gains another factor 

of N/logN in complexity [4, 13]. 

 

F. Period/wavelength relationship 

      Suppose the function f is periodic with a period r. For 

example see Fig. 1. 

 

 
Fig. 1 Periodic function 

 

      Then, f̂ (the Fourier transform of f) is supported only 

on multiples of M/r. Thus f̂ (x) =0 unless x=kM/r. If r is 

the period of function f, then we can think of M/r as the 

wavelength of f. The wider the range of function is the 

sharper the range in the Fourier on the domain, and vice 

versa. 

For the Shor's algorithm, the period function is written as 
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0(mod )
( )

0

r
if j r

f j M

otherwise




 



     (7) 

 

 

 
Fig. 2 Input superposition of periodic function 

 

 

 
Fig. 3 Quantum Fourier transform of periodic function 

 

The Fourier Transform of equation (7) is 

1
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.
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M

where e















 ,      (8) 

Further simplification of equation 3 will lead to 

, 0(mod )
( )

0,

r
if j r

f j M

otherwise




 



 ,                        (9) 

, where ω is called the primitive M/r root of unity. 

 

 

 

III. DEMONSTATION OF SHOR’S ALGORITHM 

 

A. Breaking the RSAencryption 

      RSA (Ron Rivest, Adi Shamir and Leonard Adleman) 

encryption is based on finite groups, where the group 

operation is based on multiplication modulo method for 

some fixed integer N [14]. It is implemented by choosing 

two huge prime numbers p, q and a large encoding c that 

has no common factor in common with (p-1)×(q-1). Then 

inverse can be calculated as cd≡1(mod(p-1)×(q-1)) where 

d is some integer i.e. c and p×q are known publicly and d 

is private. Hence to encrypt a message M we perform the 

operation b≡M
c
(mod (p×q)) and to decrypt b we perform 

the operation M≡b
d
(mod (p×q))           

      It can be proved that it is sufficient to decrypt the 

encrypted message b if we know the order of b. The order 

r of b divides the order (p-1)×(q-1) of Gpq , and c has no 

common factor with (p-1)(q-1). Therefore,  

cd'≡1 (mod r)                                                 (10) 

r divide cd'-1 

cd'-1=jr 

cd'=1+jr (Here j, d' are some integer d' is the inverse of c)   

      (11)                                                                                                          

Therefore, 

b
d'
≡M

cd'
=M

1+jr
=M(M

r
)
j
≡a(mod(p×q))                         (12)                                                                                                                                          

Hence, if the eavesdroppers manage to find the period 

b≡M
c
(mod(p×q)) then the eavesdroppers can reveal the 

original message M without knowing the value of d. Thus, 

the problem is reduced to quantum period finding [15, 

16]. 

B. Using Shor’s Algorithm for factorizing composite     

integers 

      We begin the quantum period finding by using the 

quantum computer in the following ways: say N=p×q and 

function f(x)≡b
x 

(mod N) is the function for which we 

want to find the order.   

1. Pick a number q= 2 At   such that N
2
≤q<2N

2 
, where N is 

the number to factorize 

2. Pick tb, i.e the number of bits required to represent N. 

3. Pick a random integer x that is co-prime to N 

4. Initialize Register A (having tA qubits) to be |0> and 

Register B (having tB qubits) to |0>, i.e., 

|Ψ>=|0>|0>     (13) 

5. Then apply Hadamard gate [9] (Hadamard gate 

transforms the qubits into a linear combination of vectors 

that is superposition) to all the qubits in the register1  

2 1

0

1  11 1
,  Hence | > | x | 0

1 -12 2

tA

A
BA

tx tt
H 





 
   

 


      (14)                                                                                                                

6. Now modular exponentiation is applied, i.e. the 

operation |z>|y>=|z>|f(x)>. We can measure 

(measurement consist of performing a certain test on each 

qubit with the outcome of either 0 or 1, and it is carried 

out by 1-qubit measurement gate) the tB Qubits of 

register2. If the measurement value is f0, then the 

generalized Born rule tells us that the state of the tA-qubits 

register1 can be taken to be  
1

0 0

0

1
| | |

A B

m

t t

k

x kr f
m





                   (15)

                                         

x0 is the smallest value of x (0≤x0<r) for which f(xo)=f0 

and m is the smallest integer for which mr+x0≥2
tA

, so 

m=Γ2
n
/r˥ or m=Γ2

n
/r˥+1, 

      If we can produce a small number of identical copies 

of the above equation (15) the job is done. The 

measurement in the computational basis would give 

random value of x0+kr, and the difference between the 

results of pairs of measurement on such identical copies 

would give us a collection of random values of r from 

which r can be extracted easily. But this possibility is 

ruled out because all we can extract is a single value of 

x0+kr for unknown random value x0. This is because of 

displacement by an unknown random value x0, which 

prevents any information about r from being extracted in 

a single measurement. Hence, unitary quantum Fourier 

transform comes into play which transforms x0 

dependence into a harmless overall phase factor [17-19]. 

7. Apply the quantum Fourier transformation on register1.  

0

0

1 1
(2 ( )/

0 0

21 1
(2 )/

0 0

1
| | , 0

/
       = | , 0

A

A

A
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t m
ic x kr t

c d

icxt m
ickr tA

c dA

e c f
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e t
e c f

t m

 
 

 

 


 

  





 

      (16)                                 
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8. Measure register1. We observe register1 to be in the 

state |c> with probability  
1

2 / 2

0

1
( ) | |

m
ickr q

d

pr c e
tm






                   (17)    

9. Continued Fraction Convergent 

,
A

c

t
 we stop the convergent before the denominator 

exceeds N and denote the value as r1, possible values of r 

are the multiples of r1 such that f(x) ≡ b
x 
(mod N)) is 1. 

 

IV. SIMULATION AND RESULT 

 

We here demonstrate the working of Shor’s algorithm 

using a simple example of factorizing a number. The 

simulation was carried out on a cluster of three computers. 

A. Classical simulation overview 

1. Message passing interface (MPI) 

     The message passing interface (MPI) is a library 

specification for message-passing, proposed as a standard 

by broadly based committee of vendors, implementors 

and users [20]. It is designed for high performance 

computing on both massive parallel machines and on 

workstation clusters. In this paper, it is implemented on a 

clusters of workstations. MPICH is a high performance 

and a widely portable implementation of the MPI 

standard, and is used here which support of C++. 

 

2. TORQUE Resource Manager 

      TORQUE (Terascale Open-Source Resource and 

QUEeu Manager) Provides control over bath jobs and 

distributed computing resources. 

B. System and Cluster configuration 

      Three systems were used in a cluster, each running 

CentOS 6.4(Final). The following is the configuration 

used 

1. Master node and two slave nodes. 

2. MPICH3 with TOUQUE resource manager were used. 

3. All systems have the same configuration with processor 

Intel(R) Core(TM) i3-2100 CPU @ 3.10GHz and 3Gb 

RAM. 

C. Simulation environment 

      We present a realization of Quantum algorithm 

(Shor’s algorithm) using MPI in a cluster implemented in 

C++. There are four restrictions for the Shor’s algorithm 

when it is used for factorizing a number. They are 

1. The number to be factorized should be greater than 15 

2. The number to be factorized must be odd 

3. The number to be factorized must not be a prime power 

 

D. Results 

      Table I shows a comparison of the execution time 

taken by the cluster of computers in parallel and serial 

mode, respectively, for the chosen problem of 

factorization of given numbers. It is clear that the time 

taken in parallel execution is very less, and CPU 

utilization was 100 % (Figs. 5-7). These results are 

interesting, showing that quantum computing is able to 

increase the computational speed. 

 

 

 

TABLE I 

COMPARISON OF EXECUTION TIME IN SERIAL AND 

PARALLEL COMPUTING 

  Input integer 
serial (ms) 

No of process 4 

parallel (ms) 

No of process 8 

15 10 10 

21 20 10 

35 40 20 

77 340 150 

91 1080 570 

195 12070 4640 

255 18830 6950 

315 62330 35520 

713 407470 51730 

 

 

 

 

 
 

Fig. 4 Execution time in serial and parallel computing 

using one computer for serial and three computers for 

parallel execution 

 

 
 

Fig. 5 CPU utilization of the computing node i.e. slave 

node 1271 is factorized (master) 
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Fig. 6 CPU utilization of the computing node i.e. slave 

node 1271 is factorized (slave 1) 

 

 

 
 

Fig. 7 CPU utilization of the computing node i.e. slave 

node 1271 is factorized (slave 2) 

 

      Table II demonstrates that by increasing the number of 

processes in a parallel computing one would achieve 

further increment in speed. Figure 8 graphically represents 

the processing time taken by the system of three 

computers for solving factorization problem. It is clear 

from the table II that the time consumed for factorizing 

small integers is more in the case of 64 processes, 

whereas it significantly gets reduced eventually when the 

integer becomes big, when compared with cases with 16 

and 32 processes. 

 

TABLE II. 

COMPARISON OF EXECUTION TIME IN PARALLEL 

COMPUTING WITH DIFFERENT PROCESS NUMBER. 

Input 

integer 

parallel 

(ms)  

No of 

process 16 

parallel(ms) 

No of 

process 32 

parallel (ms) 

No of 

process 64 

15 40 50 170 

21 40 80 170 

35 60 90 180 

77 70 90 200 

91 170 100 210 

195 1160 400 350 

255 1690 900 370 

315 8030 2080 860 

713 33160 9310 1610 

1271 - - 37090 

 

 

 
 

Fig. 8 Chart showing the execution time in parallel 

computing with different process number 

 

      The present work has considered solving factorization 

problem of integers using Shor’s algorithm. One limitation 

encountered in this work is the representation of a huge 

integer by the existing register memory. The future work 

will consider solving this problem by dividing the 

quantum states into multiple systems that can represent 

huge numbers. 

      Shor’s algorithm has been employed by various 

researchers in solving problem of factoring huge 

composite integers on different computational platforms 

like Sun, Enterprise4500 [21, 22]. A direct comparison of 

our work with the literature report is difficult at the 

moment due to varying system configurations involved in 

computation. 

V. CONCLUSIONS 

 

The article demonstrates the simulation of quantum 

computing using Shor’s algorithm with an example of 

factorization of given integers. It is found that the parallel 

computing using a cluster of classical computers is 

effective in increasing the computational speed. It implies 

that upon increasing the number of classical systems 

further in a cluster, one may achieve a better speed for 

computing.  
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