
 ISSN (Online) : 2319 - 8753

 ISSN (Print) : 2347 - 6710

 International Journal of Innovative Research in Science, Engineering and Technology

 Volume 3, Special Issue 3, March 2014

 2014 International Conference on Innovations in Engineering and Technology (ICIET’14)

 On 21st & 22nd March Organized by

 K.L.N. College of Engineering and Technology, Madurai, Tamil Nadu, India

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1767

Abstract— Quantum computing has been an attractive

method adapted for increasing the computational speed

and it is governed by the laws of quantum mechanics.

Quantum computers are not limited to two states as

compared with classical systems, but they encode

information as quantum bits or qubits. A qubit represents

atoms, ions, photons or electrons and their respective

control devices that are working together to act as

computer memory and processors. The power of quantum

computing lies in its multi-state representation which

makes it million times more powerful than classical

computer systems. Quantum computers also use another

aspect of quantum mechanics known as entanglement,

which is a property where multiple objects existing in the

states that can be linked together.

 There exists a standard/specification of message

passing library, known as message passing interface

(MPI) that can be used for achieving high-performance

computing. The goal of MPI is to provide a standardized

framework for writing message-passing programs which

can be used for programming systems that require

distributed processing. The superposition principle used

by the quantum algorithm can be simulated in the MPI

environment with a cluster of computers or multi-CPU

systems. This paper focuses on exposing the strength of

quantum algorithm in high performance computing by

using MPI, and also on comparing the sequential and

parallel execution of programs on the basis of

execution time and CPU utilization.

Keywords—qubit, superposition, entanglement, vector

space, ket, quantum Fourier transform, Shor’s algorithm,

message passing interface.

I. INTRODUCTION

 Numerous non-polynomial hard problems exist in the

field of computation which cannot be solved by normal

classical computers [1]. A quantum system offers a

platform to solve such type of problems [2-3]. Although

the miniaturization of computer chips will ultimately result

in reducing their dimension to the scale of quantum

mechanical prediction, where the mechanisms are

governed by the laws of quantum physics, so far, the

development of computational machines is still based on

the laws of classical physics. A classical computer uses a

bit that is set either to 0 or 1, and it does computing using

one bit at a time until a program is completed. Whereas, a

quantum computer uses a qubit, which is simply a

superposition of 0 and 1, and enables each step to run all

variations of a bit at the same time, giving them

exponentially higher processing power as compared with

classical computers. Quantum objects display both

particle-like and wave-like features at the same time, and

the characteristic property of a wave that is useful in

computation is the superposition. This means we will have

a “single instruction multiple data” architecture, i.e.,

having multiple signals at the same position at the same

time [4] which will lead to enhanced computational

performance of the system.

Recently, there have been reports on work on quantum

computing that aims at increasing the computation speed

[5-8]. Here we report on our work on gaining speed in

computing with specific cases such as factoring huge

numbers. While there are different algorithms like

Grover’s search algorithm, Simon’s algorithm and

Deutsch-Jozsa algorithm [9, 10] for computation, we use

Donald Jefferson Thabah N, Balachandran K, Anirban Roy, & John Kiran A

Dept of Computer science & Engineering, Christ University Faculty of Engineering, Bangalore, India.

Dept of Computer science & Engineering, Christ University Faculty of Engineering, Bangalore, India.

Dept of Computer science & Engineering, Christ University Faculty of Engineering, Bangalore, India.

 Dept of Computer science & Engineering, Christ University Faculty of Engineering, Bangalore, India.

Quantum Algorithm: A Classical Realization

in High-Performance Computing Using MPI

Quantum Algorithm: A Classical Realization in High-Performance Computing Using MPI

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1768

Shor’s algorithm which is proved to be one of the best

algorithms for finding factors of huge integers [11]. We

show a classical simulation of Shor’s quantum algorithm,

where the superposition principle is achieved by allocating

the states to multiple systems present in a cluster. The

execution time and the processor utilization in parallel

computing are measured and are compared with those in

sequential implementation.

II. QUANTUM COMPUTING

A. Qubit

 The basic unit of information in quantum computation

is qubit, which is a quantum bit. Like a bit, a qubit can also

be represented in two states labelled as |0> and |1>, and

called as a vector or a ket. This notation is very convenient

because it expresses that the state of a quantum system is a

vector and at the same time denotes the physical quantity

of interest (energy level, position, spin, polarization, etc).

A qubit can exist in a superposition state, which is a linear

combination of |0> and |1>.

 A qubit can be represented as,

|ѱ>=α|0>+β|1>, (1)

where α and β are complex amplitudes, |α|
2
+|β|

2
=1, and |α|

2

and |β|
2

give the probability of finding |ѱ> in |0> or |1>

state, respectively. A qubit can also be represented as a

vector, for example,

|ѱ>=




 
 
 

 (2)

 The vector shown above is in a two dimensional

complex vector space and it is normalized to 1 [9-12].

B. Quantum Gates

 In a quantum computer, information is processed

using gates and quantum gates are unitary operators which

are reversible [13]. A unitary operator U is the one where

the adjoint is equal to the inverse, meaning

 U
†
=U

-1
 (3)

 In addition, if H is Hermitian operator, then U=e
iHt

 is

unitary. A quantum gate with n inputs and n outputs can be

represented by a matrix of degree 2
n
.

C. Operator

 An operator is a mathematical rule that can be applied

to a function to transform it into another function. For

instance, an operator is applied to a ket |ѱ> to transform it

into another ket |∅>.

 E.g., A|ѱ>=|∅> where A is a unitary operator. (4)

 An operator can also act on bra as well, i.e., <u|A=<v|.

The product of ket and bra can be written as |u><v| (outer

product), which is also known as the projection operator.

D. Measurement

 Measurement is a projection of the state to the

standard basis. Given a state | ѱ> in a two dimensional

Hilbert space with orthogonal bases (inner product states

|0> and |1> is zero) |0> and |1>, the projection of the state

|ѱ> to the standard basis |0> or |1> is known as

measurement. The probability that a state |ѱ> being

projected to |0> or |1> is given by the square of the

complex amplitudes associated with states |0> and |1>.

E. Quantum Fourier transform

Quantum Fourier transform (QFT) is a quantum

implementation of the discrete Fourier transform. It

transforms the n qubit state vector |α>=α0|0>+

α1|1>+∙∙∙∙∙∙∙∙αn|n> into its Fourier transform |β>= β0|0>+

β1|1>+∙∙∙∙∙∙∙∙ βn|n>, and a measurement on |β> will return

only one of its n components. The QFT has the following

properties:

a. QFT is unitary

b. Linear shift

c. Period/Wavelength Relationship

 These are the properties that are needed to develop the

Shor’s algorithm [10]. The discrete quantum Fourier

transform can be expressed as a unitary change of basis,

2 /1

() | (()) |ixy N

x y x

f x x e f x y
N

    (5)

 Writing integer x and y in a binary notation, e.g. x=xn-

1.2
n-1

+…..+x1.2+x0, the non-trivial fractional part of the

exponent can be written as Fraction(xy/N)=yn-1(.x0)+yn-

2(.x1x2)+…+y0(.xn-1…x0). Then the unitary rotation of the

QFT factorizes as
0 1 0

n 1 0

2 (.) 2 (.x)
2 /

2 (.x)

(| 0 |1) (| 0 |1)
|

1 2 2
|

(| 0 |1)
........

2

i x i x
ixy N

i x
y

e e
e y

x
N e 

 




     



  

 , (6)

where the sum over y has been expanded in terms of the

two values of each of its n bits. The factorization has

converted the sum over N different values of y to a

product of n single qubit notation. Complete factorization

of the transform provides the maximal O(N/log N) gain

for the algorithm. Now the period finding problem

requires only one result, i.e., the period from multiple

evaluation of f(x), which is possible with maximal

quantum superposition of x values and a single run of

QFT. This period finding using QFT gains another factor

of N/logN in complexity [4, 13].

F. Period/wavelength relationship

 Suppose the function f is periodic with a period r. For

example see Fig. 1.

Fig. 1 Periodic function

 Then, f̂ (the Fourier transform of f) is supported only

on multiples of M/r. Thus f̂ (x) =0 unless x=kM/r. If r is

the period of function f, then we can think of M/r as the

wavelength of f. The wider the range of function is the

sharper the range in the Fourier on the domain, and vice

versa.

For the Shor's algorithm, the period function is written as

Quantum Algorithm: A Classical Realization in High-Performance Computing Using MPI

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1769

0(mod)
()

0

r
if j r

f j M

otherwise




 



 (7)

Fig. 2 Input superposition of periodic function

Fig. 3 Quantum Fourier transform of periodic function

The Fourier Transform of equation (7) is

1

0

2 /

^ ()

.

M

r
rij

i

ri M

r
f x

M

where e















 , (8)

Further simplification of equation 3 will lead to

, 0(mod)
()

0,

r
if j r

f j M

otherwise




 



 , (9)

, where ω is called the primitive M/r root of unity.

III. DEMONSTATION OF SHOR’S ALGORITHM

A. Breaking the RSAencryption

 RSA (Ron Rivest, Adi Shamir and Leonard Adleman)

encryption is based on finite groups, where the group

operation is based on multiplication modulo method for

some fixed integer N [14]. It is implemented by choosing

two huge prime numbers p, q and a large encoding c that

has no common factor in common with (p-1)×(q-1). Then

inverse can be calculated as cd≡1(mod(p-1)×(q-1)) where

d is some integer i.e. c and p×q are known publicly and d

is private. Hence to encrypt a message M we perform the

operation b≡M
c
(mod (p×q)) and to decrypt b we perform

the operation M≡b
d
(mod (p×q))

 It can be proved that it is sufficient to decrypt the

encrypted message b if we know the order of b. The order

r of b divides the order (p-1)×(q-1) of Gpq , and c has no

common factor with (p-1)(q-1). Therefore,

cd'≡1 (mod r) (10)

r divide cd'-1

cd'-1=jr

cd'=1+jr (Here j, d' are some integer d' is the inverse of c)

 (11)

Therefore,

b
d'
≡M

cd'
=M

1+jr
=M(M

r
)
j
≡a(mod(p×q)) (12)

Hence, if the eavesdroppers manage to find the period

b≡M
c
(mod(p×q)) then the eavesdroppers can reveal the

original message M without knowing the value of d. Thus,

the problem is reduced to quantum period finding [15,

16].

B. Using Shor’s Algorithm for factorizing composite

integers

 We begin the quantum period finding by using the

quantum computer in the following ways: say N=p×q and

function f(x)≡b
x

(mod N) is the function for which we

want to find the order.

1. Pick a number q= 2 At such that N
2
≤q<2N

2
, where N is

the number to factorize

2. Pick tb, i.e the number of bits required to represent N.

3. Pick a random integer x that is co-prime to N

4. Initialize Register A (having tA qubits) to be |0> and

Register B (having tB qubits) to |0>, i.e.,

|Ψ>=|0>|0> (13)

5. Then apply Hadamard gate [9] (Hadamard gate

transforms the qubits into a linear combination of vectors

that is superposition) to all the qubits in the register1

2 1

0

1 11 1
, Hence | > | x | 0

1 -12 2

tA

A
BA

tx tt
H 





 
   

 


 (14)

6. Now modular exponentiation is applied, i.e. the

operation |z>|y>=|z>|f(x)>. We can measure

(measurement consist of performing a certain test on each

qubit with the outcome of either 0 or 1, and it is carried

out by 1-qubit measurement gate) the tB Qubits of

register2. If the measurement value is f0, then the

generalized Born rule tells us that the state of the tA-qubits

register1 can be taken to be
1

0 0

0

1
| | |

A B

m

t t

k

x kr f
m





     (15)

x0 is the smallest value of x (0≤x0<r) for which f(xo)=f0

and m is the smallest integer for which mr+x0≥2
tA

, so

m=Γ2
n
/r˥ or m=Γ2

n
/r˥+1,

 If we can produce a small number of identical copies

of the above equation (15) the job is done. The

measurement in the computational basis would give

random value of x0+kr, and the difference between the

results of pairs of measurement on such identical copies

would give us a collection of random values of r from

which r can be extracted easily. But this possibility is

ruled out because all we can extract is a single value of

x0+kr for unknown random value x0. This is because of

displacement by an unknown random value x0, which

prevents any information about r from being extracted in

a single measurement. Hence, unitary quantum Fourier

transform comes into play which transforms x0

dependence into a harmless overall phase factor [17-19].

7. Apply the quantum Fourier transformation on register1.

0

0

1 1
(2 ()/

0 0

21 1
(2)/

0 0

1
| | , 0

/
 = | , 0

A

A

A

A

t m
ic x kr t

c d

icxt m
ickr tA

c dA

e c f
tm

e t
e c f

t m

 
 

 

 


 

  





 

 (16)

Quantum Algorithm: A Classical Realization in High-Performance Computing Using MPI

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1770

8. Measure register1. We observe register1 to be in the

state |c> with probability
1

2 / 2

0

1
() | |

m
ickr q

d

pr c e
tm






  (17)

9. Continued Fraction Convergent

,
A

c

t
 we stop the convergent before the denominator

exceeds N and denote the value as r1, possible values of r

are the multiples of r1 such that f(x) ≡ b
x
(mod N)) is 1.

IV. SIMULATION AND RESULT

We here demonstrate the working of Shor’s algorithm

using a simple example of factorizing a number. The

simulation was carried out on a cluster of three computers.

A. Classical simulation overview

1. Message passing interface (MPI)

 The message passing interface (MPI) is a library

specification for message-passing, proposed as a standard

by broadly based committee of vendors, implementors

and users [20]. It is designed for high performance

computing on both massive parallel machines and on

workstation clusters. In this paper, it is implemented on a

clusters of workstations. MPICH is a high performance

and a widely portable implementation of the MPI

standard, and is used here which support of C++.

2. TORQUE Resource Manager

 TORQUE (Terascale Open-Source Resource and

QUEeu Manager) Provides control over bath jobs and

distributed computing resources.

B. System and Cluster configuration

 Three systems were used in a cluster, each running

CentOS 6.4(Final). The following is the configuration

used

1. Master node and two slave nodes.

2. MPICH3 with TOUQUE resource manager were used.

3. All systems have the same configuration with processor

Intel(R) Core(TM) i3-2100 CPU @ 3.10GHz and 3Gb

RAM.

C. Simulation environment

 We present a realization of Quantum algorithm

(Shor’s algorithm) using MPI in a cluster implemented in

C++. There are four restrictions for the Shor’s algorithm

when it is used for factorizing a number. They are

1. The number to be factorized should be greater than 15

2. The number to be factorized must be odd

3. The number to be factorized must not be a prime power

D. Results

 Table I shows a comparison of the execution time

taken by the cluster of computers in parallel and serial

mode, respectively, for the chosen problem of

factorization of given numbers. It is clear that the time

taken in parallel execution is very less, and CPU

utilization was 100 % (Figs. 5-7). These results are

interesting, showing that quantum computing is able to

increase the computational speed.

TABLE I

COMPARISON OF EXECUTION TIME IN SERIAL AND

PARALLEL COMPUTING

 Input integer
serial (ms)

No of process 4

parallel (ms)

No of process 8

15 10 10

21 20 10

35 40 20

77 340 150

91 1080 570

195 12070 4640

255 18830 6950

315 62330 35520

713 407470 51730

Fig. 4 Execution time in serial and parallel computing

using one computer for serial and three computers for

parallel execution

Fig. 5 CPU utilization of the computing node i.e. slave

node 1271 is factorized (master)

Quantum Algorithm: A Classical Realization in High-Performance Computing Using MPI

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1771

Fig. 6 CPU utilization of the computing node i.e. slave

node 1271 is factorized (slave 1)

Fig. 7 CPU utilization of the computing node i.e. slave

node 1271 is factorized (slave 2)

 Table II demonstrates that by increasing the number of

processes in a parallel computing one would achieve

further increment in speed. Figure 8 graphically represents

the processing time taken by the system of three

computers for solving factorization problem. It is clear

from the table II that the time consumed for factorizing

small integers is more in the case of 64 processes,

whereas it significantly gets reduced eventually when the

integer becomes big, when compared with cases with 16

and 32 processes.

TABLE II.

COMPARISON OF EXECUTION TIME IN PARALLEL

COMPUTING WITH DIFFERENT PROCESS NUMBER.

Input

integer

parallel

(ms)

No of

process 16

parallel(ms)

No of

process 32

parallel (ms)

No of

process 64

15 40 50 170

21 40 80 170

35 60 90 180

77 70 90 200

91 170 100 210

195 1160 400 350

255 1690 900 370

315 8030 2080 860

713 33160 9310 1610

1271 - - 37090

Fig. 8 Chart showing the execution time in parallel

computing with different process number

 The present work has considered solving factorization

problem of integers using Shor’s algorithm. One limitation

encountered in this work is the representation of a huge

integer by the existing register memory. The future work

will consider solving this problem by dividing the

quantum states into multiple systems that can represent

huge numbers.

 Shor’s algorithm has been employed by various

researchers in solving problem of factoring huge

composite integers on different computational platforms

like Sun, Enterprise4500 [21, 22]. A direct comparison of

our work with the literature report is difficult at the

moment due to varying system configurations involved in

computation.

V. CONCLUSIONS

The article demonstrates the simulation of quantum

computing using Shor’s algorithm with an example of

factorization of given integers. It is found that the parallel

computing using a cluster of classical computers is

effective in increasing the computational speed. It implies

that upon increasing the number of classical systems

further in a cluster, one may achieve a better speed for

computing.

REFERENCES

[1] G.A.A. Mary, J.Naresh , C.Chellapan, A Parallel Algorithms for

Solving Factorization and Knapsack Problems, IJCSI International

Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March

2012.
[2] M.R.S Aghaei, Z.A Zukarnian, A. Mamat, H. Zainuddin, A

Hybrid Architecture Approach for Quantum Algorithm, Journel

of Computer Science Vol.5, pp. 725-731,2009.
[3] T.P. Spiller, Quantum Information Processing: Cryptography,

Computation, and Teleportation, Proceesings of the IEEE, Vol. 84,

No. 12, Dec 1996.
[4] A. Patel, Quantum Computation: Particle and Wave Aspects of

Algorithms, Resonance- Journal of Science Education, Vol 16,

pp.821-835, 2011.
[5] S. Nakayama, P. Gang, I. Iimura, Study of quantum parallel

processing by adiabatic quantum computation in Bernstein-

Vazirani problem,13th international conference on parallel and
distributed computing application and technologies, China, Dec

12-16, 2012.

Quantum Algorithm: A Classical Realization in High-Performance Computing Using MPI

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1772

[6] D.F.Walls Gerard J. Milburn, Quantum Optics, 2nd Ed., Springer,

USA, 2010.
[7] L.M.K. Vandersypen, M. Steffen, G. Breyta, C. S.Yannoni, M. H.

Sherwood, I. L. Chuang, Experimental realization of Shor’s

quantum factoring algorithm using nuclear magnetic resonance,
Nature, Vol 414, pp.883-887, 2001.

[8] G.D. Paparo and M.A Martin-Delgado, Google in a Quantum

Network, arXiv:1112.2079v2 [quant-ph], 11 jul 2012.
[9] D. McMahon, Quantum Computing Explained, Wiley-

Interscience A John Wiley & Sons, Inc., USA, 2007.

[10] M.A. Nielsen & I.L. Chuang, Quantum Computation and
Quantum Information, 10th Anniversary Edition, Cambridge

University press, UK, 2010.

P.W. Shor, Algorithms for quantum computation:discrete
logarithms and factoring, 35th symposium on Foundations of

computer science, Santa Fe, pp 124-134, Nov 20-22, 1994.

[11] F. Tabakin, B. Julia-Diaz, QCMPI: A Parallel Environment for
quantum computing, arXiv:0902.0699v1 [quant-ph] 4 Feb 2009.

[12] T.P. Spiller, Quantum Information Processing: Cryptography,

Computation, and Teleportation, Proceesings of the IEEE, Vol. 84,
No. 12, Dec 1996.

[13] W.Zhang, C Xu, F. Li, J. Feng, A Period-finding Methos for

Shor’s Algorithm, International Conference on Computational
Intelligenc and Security, Harbin, China, 15-19 Dec 2007.

[14] N.D. Merman, Quantum Computer Science an Introduction,

Cambridge University press, USA, 2007.
[15] X. FU, W. BAO*, C. ZHOU, Design and Implementation of

Quantum Factorization Algorithm, 3rd International Symposium on
Intelligent Information Techhnology and Security Informatics,

China, Dec 15-19, 2007.

[16] R. Kumar, A. Ranjan and P. Srivastava, An Analytical
Optimization Based on Quantum Computing Embedded into

Evolutionary Algorithm, 2nd International Conference on

Education Technology and Computer (ICETC), China, June 20-
24, 2010.

[17] J.S. Rahhal, Dia I. Abu-AL-Nadi and M. Hawa, Viterbi Decoder

Algorithm using Quantum Computing, IEEE Congress on
Evolutionary Computation (CEC), Singapore, Sep 25-28, 2007.

[18] C.P Williams, Explorations in Quantum Computing, 2nd edition,

Springer, New York, 2011.
[19] J.L. Traff, W.D. Gropp, R. Thakur, Self-consistent MPI

performance guidelines, IEEE Transactions on parellel and

distributed systems vol. 21, pp.698-709, 2010.
[20] J.J. Vartiainen, A.O. Niskanen, M. Nakahara, M.M. Salomaa,

Implementing Shor’s algorithm on Josephson charge qubits, Vol.

A 70, pp. 012319-1-11, Physical Review 2004
[21] C.S. Calude, M.J. Dinneen, F. Peper, Unconventional models of

computation, Third International Conference, UMC 2002, Kobe,

Japan, Oct 2002.

