

Regenerating Teeth and Enamel Repair: Advances in Biomimetic Approaches for Restorative Dentistry

Hiroshi Tanaka*

Department of Biomaterials and Regenerative Dentistry, Tokyo Medical and Dental University, Japan

Editorial

Received: 2-Sep-2025, Manuscript No. jds-25-177989; **Editor Assigned:** 4-Sep-2025, Pre QC No. jds-25-177989; **Reviewed:** 15-Sep-2025, QC No. jds-25-177989; **Revised:** 20-Sep-2025, Manuscript No. jds-25-177989; **Published:** 29-Sep-2025, DOI: 10.4172/2320-7949.13.3.010

*For Correspondence

Hiroshi Tanaka, Department of Biomaterials and Regenerative Dentistry, Tokyo Medical and Dental University, Japan

E-mail: hiroshi.tanaka@tmd.ac.jp

Citation: Hiroshi Tanaka, Regenerating Teeth and Enamel Repair: Advances in Biomimetic Approaches for Restorative Dentistry. RRJ Dental Sci. 2025.13.010.

Copyright: © 2025 Hiroshi Tanaka, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Techniques use fluoride, calcium, and phosphate ions to enhance mineral deposition on demineralized enamel. Advanced formulations, such as casein phosphopeptide-amorphous calcium phosphate (CPP-ACP), stabilize calcium and phosphate ions, promoting enamel remineralization and reducing caries risk.

Self-Assembling Peptides: Peptides that mimic enamel matrix proteins can guide hydroxyapatite crystal growth, facilitating enamel-like mineral deposition on damaged surfaces. These peptides form scaffolds that nucleate mineral formation, enhancing structural integrity.

Nanohydroxyapatite (nHA) Materials: Nano-sized hydroxyapatite particles can penetrate enamel pores and bind to crystal surfaces, repairing microdefects and improving hardness and resistance to acid attack.

Bioactive Glasses: These materials release calcium and phosphate ions in situ, promoting remineralization and forming a mineral layer compatible with natural enamel.

These biomimetic approaches represent a shift from passive repair to active tissue restoration, aiming for long-lasting and functional enamel recovery [2].

Whole Tooth Regeneration

Beyond enamel repair, regenerating complete teeth involves reconstructing dentin, pulp, and enamel simultaneously. Key strate-

INTRODUCTION

Dental caries, enamel erosion, and traumatic injuries compromise tooth structure and function, posing significant challenges in oral healthcare. Conventional restorative treatments, such as fillings, crowns, and veneers, repair damage but do not restore the biological structure of the tooth. In recent years, regenerative dentistry has emerged as a promising field aiming to restore tooth tissues, particularly enamel, dentin, and pulp, using biomimetic and tissue engineering approaches. Advances in understanding tooth development, stem cell biology, and bioactive materials have paved the way for strategies that can potentially regenerate enamel and whole tooth structures. This article explores current approaches, challenges, and future directions in tooth regeneration and enamel repair.

Enamel Structure and Challenges in Repair

Enamel is the hardest and most mineralized tissue in the human body, composed primarily of hydroxyapatite crystals arranged in a highly organized prism structure. Unlike dentin or pulp, enamel is acellular and does not regenerate naturally once formed. Its repair is limited to remineralization through saliva and fluoride, which can only reverse early lesions but cannot restore lost enamel architecture. Therefore, effective enamel regeneration requires biomimetic strategies capable of replicating its complex hierarchical structure.

Biomimetic Enamel Repair Approaches

Several strategies aim to mimic natural enamel formation for restorative purposes:

Fluoride and Calcium-Phosphate Systems:

Traditional remineralization techniques use fluoride, calcium, and phosphate ions to enhance mineral deposition on demineralized enamel. Advanced formulations, such as casein phosphopeptide-amorphous calcium phosphate (CPP-ACP), stabilize calcium and phosphate ions, promoting enamel remineralization and reducing caries risk.

Self-Assembling Peptides: Peptides that mimic enamel matrix proteins can guide hydroxyapatite crystal growth, facilitating enamel-like mineral deposition on damaged surfaces. These peptides form scaffolds that nucleate mineral formation, enhancing structural integrity.

Nanohydroxyapatite (nHA) Materials: Nano-sized hydroxyapatite particles can penetrate enamel pores and bind to crystal surfaces, repairing microdefects and improving hardness and resistance to acid attack.

Bioactive Glasses: These materials release calcium and phosphate ions in situ, promoting remineralization and forming a mineral layer compatible with natural enamel.

These biomimetic approaches represent a shift from passive repair to active tissue restoration, aiming for long-lasting and functional enamel recovery [2].

gies include:

Stem Cell-Based Approaches: Dental pulp stem cells (DPSCs), stem cells from apical papilla (SCAP), and induced pluripotent stem cells (iPSCs) have been investigated for their ability to differentiate into odontoblasts and other dental tissues. Scaffolds seeded with these cells can promote dentin and pulp regeneration in preclinical models.

Tissue Engineering Scaffolds: Biodegradable scaffolds, often composed of collagen, chitosan, or synthetic polymers, provide a 3D matrix for cell attachment, proliferation, and differentiation. Growth factors such as bone morphogenetic proteins (BMPs) and vascular endothelial growth factor (VEGF) are incorporated to stimulate tissue development and vascularization.

Organogenesis Techniques: Advances in organoid and bioengineered tooth germ technology allow researchers to generate tooth-like structures in vitro. These bioengineered teeth can potentially be transplanted into the jaw, integrating with surrounding tissues.

While whole tooth regeneration remains largely experimental, these approaches demonstrate the feasibility of restoring lost dental structures biologically rather than prosthetically.

Clinical Applications and Translational Research

Current applications of enamel repair strategies are already available in preventive and restorative dentistry:

Remineralizing Toothpastes and Gels: Products containing fluoride, CPP-ACP, or nHA are used to treat early enamel lesions and hypersensitivity.

Minimally Invasive Dentistry: Biomimetic materials allow clinicians to repair enamel defects without extensive cavity preparation, preserving natural tooth structure.

Pulp Regeneration Trials: Clinical studies using stem cell-seeded scaffolds aim to regenerate pulp tissue in immature teeth following endodontic procedures [3], enhancing root development and tooth vitality.

Translational research continues to bridge laboratory discoveries with clinical practice, emphasizing safety, biocompatibility, and long-term outcomes

Challenges in Tooth and Enamel Regeneration

Despite promising advances, several challenges remain:

Structural Complexity: Recreating enamel's hierarchical organization and mechanical properties is technically difficult.

Vascularization and Innervation: Whole tooth regeneration requires establishing blood supply and nerve integration for functional success [4].

Immune Response and Biocompatibility: Stem cell therapies and scaffolds must avoid immune rejection and inflammatory complications.

Regulatory and Ethical Issues: Clinical translation involves rigorous safety evaluation, ethical considerations, and regulatory approval processes.

Cost and Accessibility: Advanced regenerative therapies may be expensive, limiting widespread adoption initially.

Addressing these challenges requires multidisciplinary collaboration among material scientists, biologists, and clinicians.

Future Directions

The future of tooth regeneration and enamel repair is likely to focus on:

Smart Biomaterials: Responsive materials capable of releasing ions or growth factors in response to local pH or damage [5].

3D Bioprinting: Layer-by-layer fabrication of dental tissues to replicate enamel, dentin, and pulp architecture.

Gene Therapy Approaches: Modifying gene expression to promote natural tooth tissue regeneration *in situ*.

Personalized Regenerative Dentistry: Patient-specific stem cells and biomaterials tailored to individual dental anatomy and needs.

These innovations aim to transform dental care from restorative repair to biological regeneration, offering long-term functional and aesthetic benefits.

Conclusion

Regenerating teeth and repairing enamel represent the forefront of modern restorative dentistry, offering the potential to restore natural tooth structure and function. Biomimetic approaches, including remineralization, self-assembling peptides, nanomaterials, and stem cell-based therapies, are advancing rapidly. While challenges in structural replication, vascularization, and clinical

translation remain, ongoing research continues to bring regenerative solutions closer to routine dental practice. The integration of these technologies promises a future in which dental care is not only reparative but truly regenerative, improving oral health outcomes and patient quality of life.

References

1. Epelboin S, et al. Obstetrical outcomes and maternal morbidities associated with COVID-19 in pregnant women in France: A national retrospective cohort study. *PLoS Med.* 2021; 18(11):e1003857.
2. Blitz MJ, et al. Preterm birth among women with and without severe acute respiratory syndrome coronavirus 2 infection. *Acta Obstet Gynecol Scand.* 2021; 100:2253-2259.
3. Venkatachala RP and Sundari SS. Preterm Birth Outcomes in COVID-positive and COVID-negative Pregnancies during SARS-CoV-2 Pandemic in a Tertiary Care Center in India: A Cohort Study. *J South Asian Fed Obstet Gynecol.* 2022; 13:396-402.
4. Molenaar NM, et al. SARS-CoV-2 during pregnancy and associated outcomes: Results from an ongoing prospective cohort. *Paediatr Perinat Epidemiol.* 2022; 36:466-475.