Review on Sex Hormones
Anil Kumar V1*, Chaitanya M2 and Sasidhar R3
1Department of Analysis, Shri Vishnu College of Pharmacy, Bhimavaram, Andhra Pradesh, India
2Department of Pharmaceutics, Holy Mary Institute of Pharmaceutical Sciences, Hyderabad, India
3Department of Pharmaceutics, Vignan Institute of Pharmaceutical Technology, Visakhapatnam, India

Received: 08/07/2016
Accepted: 01/08/2016
Published: 10/08/2016

*For Correspondence
Anil Kumar V, Department of Analysis, Shri Vishnu College of Pharmacy, Bhimavaram, Andhra Pradesh.
E-mail: anilkumar201288@gmail.com

Keywords: Testosterone, Estrogen, Progesterone, FSH, LH, Oxytocin

ABSTRACT
Sexual motivation is influenced by hormones such as androgen, oestrogen, Lipo-Lutin, oxytocin, and internal secretion. In most class species, sex hormones manage the flexibility to interact in sexual behaviours. However, sex hormones don't directly regulate the flexibility to conjoin in primates (including humans). Rather, sex hormones in primate's area unit only 1 influence on the motivation to interact in sexual behaviours. Sexual motivation will be measured employing a style of completely different techniques. Self-report measures, adore the concupiscence Inventory, area unit normally accustomed notice levels of sexual motivation in humans. Self-report techniques adore the fake pipeline will be accustomed guarantee people don't falsify their answers to represent socially fascinating results. Sexual motivation may also be implicitly examined through frequency of sexual behaviour, together with autoerotism.

INTRODUCTION
Sex hormones play a vital role in the human body, as it helps in development in sexual orgasms, development in musculature, primary and secondary sexual characteristics that include both physical and behavioral traits [1-10]. Estrogen and progesterone are the most important hormones play a role in adult puberty but these hormones can’t do their job alone. It needs other hormones participation from the puberty to pregnancy. Estrogen and progesterone are secreted in the female body whereas in the male body secretes only progesterone. In the female body estrogen levels are higher when compared progesterone levels. Progesterone helps in implantation of embryo, luteinizing hormone helps in the ovulation [11-20]. Estrogen helps in the formation of ovary. These hormones play a major role in the maintenance of menstrual cycle. Testosterone secreted in higher concentration in male orgasms to produce sperms [21-30].

HORMONES AND THEIR ROLE

Testosterone
Testosterone is a steroid hormone from the androgen group and is found in humans and other vertebrates. In humans and other mammals, testosterone is secreted primarily by the testicles of males and, to a lesser extent, the ovaries of females. Small amounts are also secreted by the adrenal glands. It is the principal male sex hormone and an anabolic steroid [21].
In men, testosterone plays a key role in the development of male reproductive tissues such as the testis and prostate, as well as promoting secondary sexual characteristics such as increased muscle and bone mass, and the growth of body hair. In addition, testosterone is essential for health and well-being, and for the prevention of osteoporosis. Testosterone is necessary for normal sperm development. It activates genes in sertoli cells, which promote differentiation of spermatogonia \([13-18]\).

1. Regulates acute HPA (Hypothalamic–pituitary–adrenal axis) response under dominance challenge
2. Regulator of cognitive and physical energy.
4. Testosterone regulates the population of thromboxane A2 receptors on megakaryocytes and platelets and hence platelet aggregation in humans.
5. High androgen levels are associated with menstrual cycle irregularities in both clinical populations and healthy women.

As androgen affects the complete body (often by and huge males have larger hearts, lungs, liver, etc.), the brain is additionally full of this sexual differentiation; the protein aromatase converts androgen into estrogen that's chargeable for ontogenesis of the brain in male mice. In humans, ontogenesis of the fetal brain seems, by observation of gender preference in patients with non-inheritable diseases of steroid formation or steroid receptor perform, to be related to practical steroid receptors \([21-25]\).

Progesterone

Progesterone is that the most vital sex hormone within the body, the results of its action as a potent agonist of the nuclear progestogen receptor. Progesterogen incorporates a variety of physiological effects that an area unit amplified within the presence of estrogens. Estrogens through sex hormone receptors (ERs) induce or up regulate the expression of the PR. One example of this is often in breast tissue, wherever estrogens permit progestogen to mediate lobuloalveolar development \([31-33]\).

Progesterone has key effects via non-genomic signalling on human spermatozoon as they migrate through the feminine tract before fertilization happens, tho' the receptor(s) until now stay unidentified. Elaborate characterisation of the events occurring in spermatozoon in response to progestogen has elucidated sure events together with living thing Ca\(^{2+}\) transients and maintained changes, slow Ca oscillations, currently thought to presumably regulate motility. It's made by the ovaries. Apparently, progestogen has additionally been shown to demonstrate effects on octopus spermatozoa \([34-39]\).

Progesterone converts the mucosa to its liquid body substance stage to organize the female internal reproductive organ for implantation. At identical time progestogen affects the channel epithelial tissue and cervical secretion, creating it thick and impenetrable to spermatozoon. Progesterogen is anti-mitogenic in mucosa animal tissue cells, and in and of itself, mitigates the tropic effects of steroid. If physiological state doesn't occur, progestogen levels can decrease, leading, within the human, to catamenia. Traditional emission trauma is progestogen-withdrawal trauma. If biological process doesn't occur and therefore the ductless gland doesn't develop, levels of progestogen could also be low, resulting in anovulatory dysfunctional female internal reproductive organ trauma \([40-41]\).

During implantation and gestation, progestogen seems to decrease the maternal immunologic response to permit for the acceptance of the physiological state. Progestogen decreases ability of the female internal reproductive organ swish muscle. Additionally progestogen inhibits lactation throughout physiological state. The autumn in progestogen levels following delivery is one among the triggers for milk production. A visit progestogen levels is probably one step that facilitates the onset of labor. The vertebrate metabolizes placental progestogen within the production of adrenal steroids.

Progesterone plays a very important role in exocrine gland development in females. In conjunction with lactogenic hormone, it mediates lobuloalveolar maturation of the breasts throughout physiological state to permit for milk production, and therefore lactation and breastfeeding once birthing. Steroid is needed for progestogen to mediate lobuloalveolar maturation, because it induces expression of the PR in breast tissue.

Estrogen

Estrogen is that the primary feminine steroid. It's accountable for the event and regulation of the feminine system and secondary sex characteristics. Estrogen may additionally ask any substance, natural or artificial, that
mimics the consequences of the natural internal secretion. The steroid 17β-estradiol is that the most potent and rife endogenous estrogen, though many metabolites of estrogen even have steroid secretion activity. Artificial estrogens square measure used as a part of some oral contraceptives, in estrogen replacement medical aid for biological time ladies, and in internal secretion replacement medical aid for trans ladies [21-30].

Estrogens, in females, square measure made primarily by the ovaries, and through gestation, the placenta. gonadotrophic hormone (FSH) stimulates the gonad production of estrogens by the granulose cells of the gonad follicles and corpora lutea. Some estrogens are made in smaller amounts by different tissues love the liver, adrenal glands, and therefore the breasts. These secondary sources of estrogens square measure particularly vital in biological time ladies. Fat cells manufacture oestrogen in addition [42].

In rodents, estrogens (which square measure regionally aromatized from androgens within the brain) play a crucial role in representation differentiation, let's say, by masculinizing territorial behavior an equivalent isn't true in humans. In humans, the masculinizing effects of antepartum androgens on behavior (and different tissues, with the potential exception of effects on bone) seem to act solely through the steroid hormone receptor. Consequently, the utility of placental mammal models for finding out human representation differentiation has been questioned. Since oestrogen current within the blood will negatively feed-back to cut back current levels of gonadotropin hormone and gonadotropin, most oral contraceptives contain an artificial estrogen, alongside an artificial steroid. Even in men, the most important internal secretion concerned in gonadotropin feedback is estrogen, not androgenic hormone [43].

Estrogen, in conjunction with somatotropic hormone (GH) and its humour product insulin-like protein one (IGF-1), is important in mediating breast development throughout pubescence, in addition as breast maturation throughout gestation in preparation of lactation and breastfeeding. Oestrogen is primarily and directly accountable for inducement the ductal part of breast development, in addition as for inflicting fat deposition and animal tissue growth. It's conjointly indirectly concerned within the lobuloalveolar part, by increasing progestin receptor expression within the breasts and by inducement the secretion of gonadotrophin. Allowed for by oestrogen, progestin and gonadotrophin work along to complete lobuloalveolar development throughout gestation. Androgens love androgenic hormone powerfully oppose oestrogen action within the breasts, love by reducing oestrogen receptor expression in them [44-49].

Protein Hormones

Protein hormones are: Human placental agent (hPL), Human sac endocrine (hCG), stimulative (ACTH), hormone variant (hGH-V), secreter hormone-related molecule (PTH-rP), Calcitonin, Relaxin, Inhibins Activins, chamber symptom organic compound, Hypothalamic-like cathartic and inhibiting hormones, internal secretion Thyrotrophin, Thyrotrophic internal secretion, Thyroid-stimulating hormone, Cathartic hormone (TRH), Gonadotrophin, Gonadotrophic internal secretion, Cathartic hormone (GnRH), Corticotropin-releasing hormone (CRH), Somatostatin, Growth internal secretion-releasing internal secretion (GHRH), Foetoprotein, Prolactin, internal secretion and various decidual proteins [50-57].

Oxytocin

Oxytocin (Oxt) could also be a hormone, neuropeptide, and medication. As a drug, it's accustomed cause contraction of the female internal reproductive organ therefore on begin labor or increase the speed of labor, and to forestall hemorrhage following delivery [58-64]. For this purpose, it's given either by injection into a muscle or into a vein. Oxytocin is mostly created by the paraventricular nucleus of the body structure and discharged by the secretory gland. It plays a task in social bonding, copy in every sex, and thru and once parturition. Hormone is discharged into the blood as a hormone in response to stretching of the cervix and female internal reproductive organ throughout labor and with stimulation of the nipples from breastfeeding. This helps with birth, bonding with the baby, and milk production.

Vasopressin

Vasopressin, collectively referred to as secretion (ADH), is also a neurohypophysial endocrine found in most mammals. In most species it contains essential organic compound and is therefore collectively said as essential organic compound endocrine (AVP) or argipressin [53-56]. It's a pair of primary functions square measure to retain water at intervals the body and to constrict blood vessels. [2] endocrine regulates the body's retention of water by acting to increase water organic process at intervals the kidney's aggregation ducts, the tubules that receive the really dilute excretion created by the helpful unit of the viscous, the nephrons. ADH is also a organic compound secretion which will increase water porosity of the kidney's aggregation duct and distal convoluted complex body
part by inducement translocation of aquaporin-CD water channels at intervals the cytomembrane of aggregation duct cells. It collectively can increase peripheral tube resistance that in turn can increase force per unit area. It plays a key role in equilibrium, by the regulation of water, glucose, and salts at intervals the blood. It’s derived from a preprohormone precursor that is synthesized at intervals the structure and detain vesicles at the secreter gland. Most of its keep at intervals the secreter gland to be discharged into the blood. However, some AVP may additionally, be discharged directly into the brain, and accumulating proof suggests it plays a significant role in social behavior, sexual motivation and take a look at bonding, and maternal responses to stress. It is a awfully short half-life between 16–24 minutes [65-70].

The hormones endocrine and endocrine square measure concerned in regulation every male and female sexual motivation. Endocrine is discharged at consummation and is expounded to every pleasure and so the formation of emotional bonds. Supported the pleasure model of sexual motivation, the improved pleasure that happens following endocrine unhitch might encourage motivation to act in future sexual activities. Emotional closeness are going to be associate significantly sturdy predictor of sexual motivation in females and poor endocrine unhitch might after diminish arousal and motivation in females.

High levels of endocrine can cause decreases in sexual motivation for females. A link between endocrine unhitch and aggression has been observed in females, which may impair female arousal and sexual motivation by leading to feelings of neglect and hostility toward a sexual partner. In males, endocrine is bothered at intervals the arousal half. Endocrine levels area unit shown to increase throughout erectile response in male arousal, and scale back back to baseline following ejaculation. The increase of endocrine throughout erectile response might even be directly relating to increased motivation to act in sexual behavior [71-79].

Follicle Stimulating Hormone (FSH)

Follicle-stimulating hormone (FSH) could be a gonadotropic hormone, a compound protein peptide secretion. Gonadotropic hormone is synthesized and secreted by the internal secretion cells of the gland, and regulates the event, growth, time of life maturation, and procreative processes of the body. Gonadotropic hormone and ICSH (LH) work along within the system [1].

FSH regulates the event, growth, time of life maturation and procreative processes of the material body. In each males and females, gonadotropic hormone stimulates the maturation of germ cells. In males, gonadotropic hormone induces Sertoli cells to secrete androgen-binding proteins (ABPs), regulated by inhibin's feedback mechanism on the endocrine.

In females, gonadotropic hormone initiates vesicle growth, specifically touching granulosa cells. With the concomitant rise in inhibin B, gonadotropic hormone levels then decline within the late vesicle section. This appears to be vital in choosing solely the foremost advanced cyst to proceed to biological process. At the tip of the stage, there's a small rise in gonadotropic hormone that appears to be of importance to begin successive ovulatory cycle [61-64].

Control of gonadotropic hormone unharness from the endocrine is unknown. Low frequency gonadotropin-releasing secretion (GnRH) pulses increase gonadotropic hormone mRNA levels within the rat [6], however isn't directly correlative with a rise in current gonadotropic hormone. GnRH has been shown to play a very important role within the secretion of gonadotropic hormone, with hypothalamic-pituitary disconnection resulting in a surcease of gonadotropic hormone. GnRH administration ends up in a comeback of gonadotropic hormone secretion. Gonadotropic hormone is subject to steroid feed-back from the gonads via the neural structure pituitary endocrine axis. Gonadotropic hormone stimulates primary spermatocytes to bear the primary division of meiosis, to create secondary spermatocytes. Gonadotropic hormone stimulates the expansion and enlisting of immature female internal reproductive organ follicles within the ovary [80-87]. In early (small) antral follicles, gonadotropic hormone is that the major survival issue that rescues the tiny antral cysts (2–5 mm in diameter for humans) from necrobiosis (programmed death of the corporeal cells of the follicle and oocyte), within the luteal-follicle action amount the liquid body substance levels of progestogen and oestrogen (primarily estradiol) decrease and not suppress the discharge of gonadotropic hormone, consequently gonadotropic hormone peaks at concerning day 3 (day one is that the 1st day of emission flow). The cohort of little antral follicles is generally sufficiently in variety to supply enough Inhibin B to lower gonadotropic hormone liquid body substance levels [87-90].

Luteinizing Hormone (LH)

Luteinizing endocrine may be a hormone made by endocrine cells within the anterior pituitary gland. In females, associate degree acute rise of ICSH triggers biological process and development of the endocrine gland. In
males, wherever had additionally been known as opening cell–stimulating hormone (ICSH), it stimulates Leydig's cell production of androgen. It acts synergistically with gonadotrophic hormone.

LH supports theca cells within the ovaries that give androgens and secretion precursors for oestradiol production. At the time of flow, gonadotrophic hormone initiates vesicle growth, specifically touching granulosa cells. With the increase in estrogens, ICSH receptors also are expressed on the maturing cyst, that causes it to supply a lot of oestradiol. Eventually, once the cyst has absolutely matured, a spike in 17-hydroxyprogesterone production by the cyst inhibits the assembly of estrogens, resulting in a decrease in estrogen-mediated feedback of GnRH within the neural structure that then stimulates the discharge of ICSH from the adenohypophysis. But another theory of the ICSH peak may be a feedback mechanism from oestradiol \[90\]. The degree keep rising through the vesicle section associate degreed once they reach an unknown threshold, this end in the height of the ICSH. This result is opposite from the same old feedback mechanism conferred at lower levels. In alternative words, the mechanism(s) don't seem to be nonetheless clear. The rise in ICSH production solely lasts for twenty-four to forty eight hours. This "LH surge" triggers biological process, thereby not solely emotional the egg from the cyst, however additionally initiating the conversion of the residual cyst into an endocrine gland that, in turn, produces progestogen to arrange the mucosa for a potential implantation. ICSH is critical to keep up endocrine gland operate for the second period of the oscillation. If maternity happens, ICSH levels can decrease, and endocrine gland operates can instead be maintained by the action of sac gonadotropin (human chorionic gonadotropin), a endocrine terribly the same as ICSH however secreted from the new placenta \[91-97\].

LH acts upon the Leydig cells of the nut and is regulated by GnRH. The Leydig cells turn out androgen (T) underneath the management of ICSH that regulates the expression of the accelerator 17ß hydroxysteroid dehydrogenase that's wont to convert androstenedione, the endocrine made by the gonads, to androgen, associate degree steroid hormone that exerts each endocrine activity and intratesticular activity on gametogenesis \[98\].

CONCLUSION

Estrogen, progesterone and testosterone are responsible for the sexual and mental development. Gonadotropins like FSH and LH also takes part in the ovulation and lactation. Oxytocin plays significant role in pregnancy by contracting uterus muscles that helps to start labor pains. Adequate levels of circulating thyroid hormones are of primary importance for normal reproductive function.

REFERENCES

42. Burger HG. "Androgen production in women. Fertility and Sterility. 2002;4:S3-S5.
80. Ichihara I and Pellonimi LJ. Morphometry and ultrastructure of stage ix-specific effects on rat sertoli and spermatogenic cells immediately after 7-day testosterone treatment in one group and the same treatment in another group followed by 7-day non-treatment. Andrology. 2012;1:103.