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ABSTRACT: This paper presents a saliency based video object extraction and recognition framework. The extraction 

framework automatically extract foreground object of interest without any use of training data. The recognition system 

uses list of training data beforehand. For extracting the foreground object from a video, it uses visual and motion 

saliency features .A conditional random field is used to effectively combine the saliency induces features. Our proposed 

method is able to preserve spatial continuity and temporal consistency. Experiments results on variety video shows that 

our proposed system provides qualitatively satisfactory video object extraction (VOE) results. 
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I. INTRODUCTION 

 

Human can easily interpret the salient object from a video, using the capabilities of human brains. But, in computer 

vision it is very challenging to recognise the salient object. Researchers are trying to close the gap between the 

computer and human vision. It is very challenging for a computer vision algorithm to automatically extract the 

foreground object from a video without any of human interaction. However, if one needs to form a computer vision 

algorithm, some factors consider in advance. 

 

1) Unknown subject category and unknown number of subject instances in video frame. 

2) Complex motion of salient objects due to pose variation. 

3) Ambiguous appearance in cluttered background. 

 

It is infeasible to manipulate all foreground objects beforehand. One can extract foreground object from a video using 

foreground or background information. The extracted object can be utilised for further processing in video object 

recognition framework. Thus, the task of object recognition is done. 

 

Besides the above approaches, graph based methods have been shown to be effective for foreground object 

segmentation. Using such methods, an image is typically represented by a graph, in which each observed node indicates 

an image pixel and the associated hidden node correspond to its label. By determining the cost between adjacent hidden 

nodes using color, motion, etc. information, one can segment the foreground object by dividing the graph into disjoint 

parts while minimizing the total cost. In this paper, we focus on VOE in single concept videos captured by a monocular 

camera in static or arbitrary types of background. Instead of assuming that the background motion is consistently 

dominant and different from that of the foreground (as [13] did), we relax this assumption and al low foreground 

objects to be present in scenes which have marginal but complex background motion (e.g., motion induced by sea 

waves, swaying trees, etc.). We also ignore the video frames with significant motion variations due to shot changes or 

abrupt camera movements. To make our method robust and not require any user interaction, we start from multiple 

local motion cues, and integrate the induced shape and color models into a CRF. As we will discuss in Section 2, shape 

features better preserve local information of the foreground object than motion cues do, and our proposed framework 

allows the use of both foreground and background color models to provide better generalization in formulating the 

associated CRF model. It is worth noting that, our method does not require the prior knowledge of the object category, 

and thus no training data or object part detectors are needed. All the feature models we utilize in our CRF are 
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automatically extracted from the test input video in an unsupervised setting, and this cannot be easily achieved by most 

prior work. 

 

II. RELATED WORK 

 

Previous work such as [8] and [9] focused on an interactive scheme and required users to manually provide the ground 

truth label information. Although excellent results were produced, methods which do not require user interaction are 

more practical for real world applications. Recently, several automatic segmentation techniques have been proposed. 

For example, Wu et al. [10] used a stereo camera setting which provides depth information as a cue for ground truth 

label. For videos captured by a monocular camera, literatures such as [11, 12] used a CRF framework which maximizes 

a joint probability of color, motion, etc. models to predict the label of each image pixel. Although the color features can 

be automatically determined from the input video, these methods required the trained object detectors to extract shape 

or motion features. A recently proposed method in [13] addressed the VOE problem without the use of any training 

data. It assumes that the motion of the background is dominant throughout the video, so the authors apply RANSAC 

[19] to extract candidate foreground regions, followed by a CRF which combines the associated color and motion 

features to determine the final foreground region. 

 

On the other hand, unsupervised approaches do not train any specific object detectors or classifiers in advance. For 

videos captured by a static camera, extraction of foreground objects can be treated as a background subtraction problem. 

In other words, foreground objects can be detected simply by subtracting the current frame from a video sequence [24], 

[25]. However, if the background is consistently changing or is occluded by foreground objects, background modeling 

becomes a very challenging task. For such cases, researchers typically aim at learning the background model from the 

input video, and the foreground objects are considered as outliers to be detected. For example, an autoregression 

moving average model (ARMA) that estimates the intrinsic appearance of dynamic textures and regions was proposed 

in [26], and it particularly dealt with scenarios in which the back- ground consists of natural scenes like sea waves or 

trees.  

 

Sun et al. [27] utilized color gradients of the background to determine the boundaries of the foreground objects. Some 

unsupervised approaches aim at observing features associated with the foreground object for VOE. For example, graph-

based methods [28], [29] identify the foreground object regions by minimizing the cost between adjacent hidden 

nodes/pixels in terms of color, motion, etc. information.  

 

More specifically, one can segment the foreground object by dividing a graph into disjoint parts whose total energy is 

minimized without using any training data. While impressive results were reported in [28], [29], these approaches 

typically assume that the background/camera motion is dominant across video frames. For general videos captured by 

freely moving cameras, these methods might not generalize well (as we verify later in experiments). Different from 

graph-based methods, Leordeanu and Collins [30] proposed to observe the co-occurrences of object features to identify 

the foreground objects in an unsupervised setting. Although promising results under pose, scale, occlusion, etc. 

variations were reported, their approach was only able to deal with rigid objects (like cars). 

 

III. AUTOMATIC OBJECT MODELING AND EXTRACTION 

 

Since not all the parts of a moving object will produce motion cues, or some of these cues might be negligible due to 

low contrast, etc. effects, it is not surprising that motion cues are not sufficient for VOE problems. To overcome this 

limitation, we propose to first extract the motion cues from the moving object across video frames, and we combine the 

motion induced shape, foreground and background color models into a CRF. Without prior knowledge of the object of 

interest, this CRF model is designed to address VOE problems in an unsupervised setting. In Section 2.1, we first 

briefly review the use of CRF for object segmentation/extraction. We will detail the construction of our motion, shape, 

foreground and background color models, and discuss how we integrate them into a unified CRF framework in the 

remaining of this section. 
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Fig 1: CRF for object segmentation 

 

3.1. Extraction of visual saliency 

To extract visual saliency of each frame, we perform image segmentation on each video frame and extract color and 

contrast information. In our work, we advance Turbopixels proposed by [21] for segmentation, and the resulting image 

segments (superpixels) are applied to perform saliency detection. The use of Turbopixels allows us to produce edge- 

preserving superpixels with similar sizes, which would achieve improved visual saliency results as verified later. For 

the kth superpixel 𝑟𝑘 , we calculate its saliency score 𝑆 𝑟𝑘  as follows: 

 

𝑆 𝑟𝑘  =  𝑒𝑥𝑝(𝐷𝑠(𝑟𝑘 , 𝑟𝑖)/𝜎𝑠
2)𝜔(𝑟𝑖)𝐷𝑟(𝑟𝑘 , 𝑟𝑖)

𝑟𝑘≠𝑟𝑖

 

             ≈  exp(𝐷𝑠(𝑟𝑘 , 𝑟𝑖)/𝜎𝑠
2)𝐷𝑟(𝑟𝑘 , 𝑟𝑖)      (1)

𝑟𝑘≠𝑟𝑖

 

 

where 𝐷𝑠 is the Euclidean distance between the centroid of 𝑟𝑘and that of its surrounding superpixels 𝑟𝑖 , while 𝜎𝑠
 controls 

the width of the kernel. The parameter 𝜔(𝑟𝑖)is the weight of the neighbor superpixel 𝑟𝑖 , which is proportional to the 

number of pixels in 𝑟𝑖 . Compared to [22], 𝜔(𝑟𝑖 ) can be treated as a constant for all superpixels due to the use of 

Turbopixels (with similar sizes). The last term 𝐷𝑟(𝑟𝑘 , 𝑟𝑖) measures the color difference between 𝑟𝑘and 𝑟𝑖 , which is also 

in terms of Euclidean distance. As suggested by [23], we consider the pixel i as a salient point if its saliency score 

satisfies 𝑆 𝑖 >0.8∗max(S), and the collection of the resulting salient pixels will be considered as a salient point set. 

Since image pixels which are closer to this salient point set should be visually more significant than those which are 

farther away, we further refine the saliency 𝑆 (𝑖) for each pixel i as follows: 

 

𝑆  𝑖 = 𝑆 𝑖 ∗ (1 − 𝑑𝑖𝑠𝑡(𝑖)/𝑑𝑖𝑠𝑡𝑚𝑎𝑥 )    (2) 

 

where 𝑆 𝑖  is the original saliency score derived by (1), and dist(i) measures the nearest Euclidian distance to the 

salient point set. We note that distmax in (2) is determined as the maximum distance from a pixel of interest to its 

nearest salient point within an image, thus it is an image dependent constant. 

 

3.2. Extraction of motion cues 

In our work, each moving part of a foreground object is assumed to form a complete sampling of the entire object of 

interest (as [11, 12, 13] did). We aim to extract different feature information from these moving parts for the later CRF 

construction. To detect the moving parts and their corresponding pixels, we perform dense optical flow forward and 

backward propagation [15] at every frame. A moving pixel 𝑞𝑡  at frame t is determined by: 

 

𝑞𝑡 = 𝑞 𝑡 ,𝑡−1  𝑞 𝑡 ,𝑡+1                       (3) 

 
Where 𝑞𝑡  denotes the pixel pair detected by forward or backward optical flow propagation. Only if a pixel is identified 

by the opticalflow trajectories in both directions, we will denote it as a pixel of a moving object. To alleviate the 

influence of camera shake, we ignore the frames which result in a large number of moving pixels after this step. After 

determining the regions induced by the moving object (or its parts), we will extract the associated shape and color 

information from these regions, as we discuss next. 
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3.3. Learning shape cues 

Since we assume each moving part of an object forms a complete sampling of the entire object, part based shape 

information induced by the above motion cues can be advanced to characterize the foreground object. To describe each 

moving part, we apply the histogram of oriented gradients (HOG) features. We first divide each frame into disjoint 8×8 

pixel grids, and we compute HOG descriptors for each region (patch) of 4×4 = 16 grids. To capture scale invariant 

shape information, we further downgrade the resolution of each frame and repeat the above process (the lowest 

resolution of the scaled image is a quarter of that of the original one). We note that [20] also used a similar setting to 

extract their HOG descriptors. Since the use of sparse representation has been shown to be very effective in many 

computer vision tasks [16], once the HOG descriptors of the moving foreground regions are extracted, we learn an over 

complete codebook and determine the associated sparse representation of each HOG.  

 
(a) 

 
(b) 

 
(c) 

Fig 2: Visualization of sparse shape representation. (a) Example codewords for sparse shape representation. (b) Corresponding image patches (only 
top 5 matches shown). (c) Corresponding masks for each codeword. 

 

After obtaining the dictionary and the masks to represent the shape of foreground objet, we use them to encode all 

image patches at each frame. This is to recover non moving regions of the foreground object which does not have 

significant motion and thus cannot be detected by motion cues. For each image patch, we derive its sparse coefficient 

vector, and each entry of this vector indicates the contribution of each shape codeword. Correspondingly, we use the 

associated masks and their weight coefficients to calculate the final mask for each image patch. The reconstruction 

image using foreground shape information is then formulated as: 

 

 𝑋 𝑡
𝑆 =   𝑛𝜖 𝐼𝑡

 𝛼𝑛 ,𝑘 ∙ 𝑀𝑘
𝐾
𝑘=1                (4) 

 

Figure 3 shows an example of the reconstruction of a video frame using shape information of the foreground object 

(induced by motion cues only). We note that b XS t serves as the likelihood of foreground object at frame t in terms of 

shape information. This shape likelihood function contributes to the shape energy function in CRF, i.e. 

 

𝐸𝑆 = −𝑤𝑠log(𝑋 𝑡
𝑆)                        (5) 

 

where 𝑤𝑠 controls the contribution of this shape energy term in the final CRF formulation. Comparing to the motion 

likelihood in Section 2.2 and [13], it is expected that better candidate foreground object can be discovered using the 

above motion induced shape information. This makes the use of foreground and background color models more 

feasible, as we discuss next. 
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     Fig 3: Shape Likelihood 

 

3.4. Learning color cues 

Besides the motion induced shape information, we also combine the color cues into our CRF framework to better 

model the object of interest.  

 
Fig 4: Object extraction example of (a) the input frame, using (b) motion, (c) foreground color, and (d) our proposed CRF integrating multiple types 

of motion induced features. 

 

Constructing the background model is difficult because the sparse motion cues throughout the video might not be 

sufficient to indicate the foreground/background regions. This difficulty can be depicted in Figure 4(b) which is an 

example of foreground region extraction using only motion cues in a CRF. To apply the color information of both 

foreground objects and the remaining background regions into our CRF, we utilize the shape likelihood image obtained 

from the previous step, and threshold the resulting shape posterior probability  𝑋  
𝑆 . For the pixels of  𝑋  

𝑆  whose 

probability values are above a predetermined threshold, the associated regions will be potentially considered as 

foreground; those below the threshold will be thus grouped as candidate background regions. For these candidate 

foreground and background regions, we use Gaussian Mixture Models (GMM) 𝐺𝑐𝑓  and 𝐺𝑐𝑏  to model the RGB 

distribution for each, with the number of Gaussian components set to 10 for both cases. We now detail the learning of 

color cues for foreground object extraction. A single energy term which is associated with both foreground and 

background color models in our CRF is defined as follows: 

 

𝐸𝑐 = 𝐸𝑐𝑓 − 𝐸𝑐𝑏                                 6  
                                                  Where 

 

 
 
 

 
 𝐸𝐶𝐹 = −𝑤𝑐𝑓 log( 𝐺𝐶𝑓(𝑖))

𝑖𝜖𝐼

𝐸𝑐𝑏

                   

𝐸𝐶𝐵 = −𝑤𝑐𝑏 log( 𝐺𝐶𝑏(𝑖))

𝑖𝜖𝐼

                   

  

 

As for the visual saliency cue at frame t, we convert the visual saliency score 𝑆 𝑡  derived in (2) into the following energy 

term 𝐸𝑉  :  

 

𝐸𝑉 = −𝑤𝑣 log( 𝑆 𝑡)                         (7) 

 

Similar to (6), 𝑤𝑐𝑓  and 𝑤𝑐𝑏  in (7) weight the corresponding color models in the CRF. It is worth noting that only 

foreground color information is modeled in [13]. As we will show later in our experiments, disregard of the background 

color model would limit the performance of object segmentation. 
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3.5. Integration of multiple feature models   via CRF 

Induced by motion cues, we combine both shape and color (foreground and background) models into our CRF 

framework. Since we do not require prior knowledge of the object category, use of multiple types of motion induced 

features allows us to model the foreground object of interest without the need of user interaction or any training data. 

To provide the property of spatial coherence into our CRF model, we introduce a pairwise term to preserve local 

foreground/background structures.  

 

We note that the above pairwise term is able to produce coherent labeling results even under low contrast or blurring 

effects. Finally, by integrating (6), (7), the objective energy function (2) and pair wise term of our CRF can be re 

written as: 

 

           𝐸 = 𝐸𝑢𝑛𝑎𝑟𝑦 + 𝐸𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒                           

=  𝐸𝑆 + 𝐸𝐶𝐹 − 𝐸𝐶𝐵) + 𝐸𝑖 ,𝑗                

= 𝐸𝑆 + 𝐸𝐶 + 𝐸𝑉 + 𝐸𝑖 ,𝑗                          (8) 

  

To solve the above optimization problem, one can apply graph based energy minimization techniques such as max 

flow/min cut algorithms. When the above energy function is minimized, the labeling function output F indicates the 

class label (foreground or background) of each observed pixel. 

 

IV. FOREGROUND OBJECT RECOGNITION 

 

Object recognition is a process for identifying a specific object in a digital image or video. Here, neural networks are 

used for object recognition purpose. Neural Network provides functions and apps for modeling 

complex nonlinear systems that are not easily modeled with a closed form equation. Neural Network supports 

supervised learning with self organizing maps and competitive layers. With this we can design, train, visualize, and 

simulate neural networks.  

 

 
Fig 5: Training Neural network 

 

V. CONCLUSION  

 

In this paper, we proposed a method which utilizes multiple motion induced features such as shape and fore 

ground/background color models to extract foreground objects in single concept videos. We advanced a unified CRF 

framework to integrate the above feature models. Using sparse representation techniques, our motion induced shape 
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model describes the shape information of the foreground object in a probabilistic way, which allows us to extract and 

construct both foreground and background color models for the object of interest. Compared with prior work, our 

approach better models the foreground object due to the use of multiple types of motion induced feature models, while 

no prior knowledge of the object of interest, collection of training video data, or the design of object part detectors are 

required. 

 

Future research will be directed at extensions of our approach for videos with multiple concepts (i.e. multiple 

foreground objects of interest), and the applications of VOE for higher level tasks such as action/activity recognition 

and video retrieval. For these applications, we expect to integrate features from heterogeneous domains (e.g. visual, 

audio, temporal, text, etc.), and we will provide a systematic way to select proper feature models for extracting 

particular types of the object of interest. 
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