
35RRJET | Volume 4 | Issue 3 | July-September, 2015

Research & Reviews: Journal of Engineering and
Technology

ISSN:2319-9873

Scalable and Efficient Tree based Memory Mapping in Virtual
Routers

Deepika V1*, Geetha SK1 and Varunkumarr CV2

1Assistant Professor, Department of CSE, RVS College of Engineering and Technology, Anna University,
Coimbatore, India

2System Engineer, Infosys Limited, Chennai, India

 Research Article

INTRODUCTION
The growing demand for easy mesh customization and discovery has led to expanded interest in building virtual systems

[1–4]. Establishing these virtual networks needs the use of virtual routers that proceed individually of sharing widespread physical
resources. An example of the need for differing routing purposes on the same stage, akin to virtualization, is the case of ipv4-to-
ipv6 migration [5,6]. Since the migration can only occur incrementally, the so-called dualstack router needs to support both ipv4
and ipv6 routing simultaneously. In each such router, packets are classified based on the IP type and then forwarded utilizing the
corresponding forwarding benches [7].This is alike to having two virtual routers on the same stage.

As the need of virtualized networks augments, a personal router is anticipated to support a few tens and probably even
hundreds of virtual routers, with each having its own forwarding table and routing protocol examples (e.g., juniper routers currently
are reported to be capable of carrying 16 virtual routers [8]). Scaling to these figures poses serious trials to the router conceive,
particularly when complex package classification and deep package examination need to be implemented.

A critical resource that limits scalability is the amount of high-speed memory (e.g., sram and tcam) used for caching the
packet forwarding and filtering data structures, which account for a large portion of the system cost and power consumption.
even though it is straightforward to partition the memory and allocate to each virtual router separately, this is not efficient for two

Received date: 17/07/2015

Accepted date: 24/09/2015

Published date: 30/09/2015

*For Correspondence

Deepika V, Assistant Professor, Department. of CSE,
RVS College of Engineering and Technology, Anna
University, Coimbatore, India
E-mail: iamvdeepika@gmail.com
Keywords Dynamic Programming, Trie Braiding, Virtual
Router.

ABSTRACT

Many well liked algorithms for fast packet forwarding and filtering
rely on the tree facts and figures structure. Examples are the triebased IP
lookup and package classification algorithms. With the latest interest in
mesh virtualization, the ability to run multiple virtual router examples on
a common personal router stage is absolutely vital. A significant climbing
issue is the number of virtual router examples that can run on the platform.
One limiting factor is the allowance of high-speed recollection and caches
available for storing the packet forwarding and filtering data organizations.
A perfect goal is to accomplish good climbing while sustaining total
isolation amidst the virtual routers. Although total isolation requires
sustaining distinct facts and figures structures in high speed memory for
each virtual router. In this paper, we study the case where some sharing of
the forwarding and filtering facts and figures organizations is permissible
and evolve algorithms for blending tries used for IP lookup and packet
classification expressly, we evolve a means called trie braiding that allows
us to blend tries from the facts and figures organizations of different
virtual routers into just one compact trie. Two optimal braiding algorithms
and a faster heuristic algorithm are offered, and the effectiveness is
demonstrated utilizing the real-world facts and figures sets.

36RRJET | Volume 4 | Issue 3 | July-September, 2015

ISSN:2319-9873

reasons: 1) it is difficult to determine the right fractions to allocate to each virtual router when each virtual router has different
forwarding table size and that can change dynamically; 2) overall memory consumption is linear in the number of virtual routers
as well as in the size of the memory required for each virtual router. For example, the latest bgp table already contains about 350
k prefixes [9]. meanwhile, a state-of-art 18-mb tcam can only store 500 k ipv4 (or 250 k ipv6) prefixes, which is hardly sufficient
for two unique bgp tables.

If the isolation obligation is calm, recollection usage can be considerably reduced by consolidating the one-by-one package
forwarding and filtering facts and figures structures into a combined one. we display the advantages of this idea by evolving
effective algorithms for blending the tree data organisations needed for accomplishing two

key router functions: longest prefix matching (Ipm) and packet classification.

A scheme for reducing the allowance of recollection used for lpm in virtual routers in offered in [9]. In that work, the tries
sustained by each virtual router for longest prefix matches are blended into one trie by exploiting prefix commonality and overlaps
between virtual routers. the recollection decrease profited through the overlap is largely due to the likeness between the tries.
however, when the tries are functionally distinct, the gains utilising this design are diminishing.

We insert a new means called trie braiding that can be utilised to construct a compact distributed facts and figures structure.
Trie braiding enables each trie node to swap its left child node and right progeny node without coercion. The changed form is
memorized by a lone bit at each trie node. this additional degree of freedom devotes us the opportunity to accomplish the optimal
recollection distributing presentation when blending the endeavours. We develop two optimal dynamic programming algorithms
for blending multiple trees into a lone compact tree, as well as a much quicker heuristic algorithm. Trie braiding directs to important
savings in high-speed recollection required for classification and longest-prefix matching, and hence advances scalability.

BACKGROUND
Trie-Based Lpm In Virtual Routers

The trie-based LPM algorithms start from a simple binary trie formed by the IP prefixes. Each binary trie node has two
pointers pointing to its two progeny nodes, “0” on the left and “1” on the right. When injecting a prefix into the trie, we analyze the
prefix morsels in alignment and use the bit worth to walk the binary trie. We pursue the left pointer if the bit value is “0,” and the
right pointer else. New nodes are created dynamically. This method is preceded until all the prefix bits are consumed. The last trie
node is then labeled as a legitimate prefix those aides with a next-hop. As an example, two forwarding benches are shown in Table
1.The corresponding binary tries are shown in Figure 1.

Table A Table B
0* 0*
1* 110*

01* 111*
001*

Table 1. Sample prefix tables.

Figure 1. Binary tries for the sample prefix tables. (a)For Table A. (b)For Table B. The dark nodes are valid
prefix nodes.

The lookup method utilizes the packet’s place visited IP address to traverse the trie. The worth of the current address bit
determines which trie agency is to be taken. During the traversal, the last matching prefix node along the route is recorded as the
current best agree. When the route finishes, the lookup process returns the noted prefix as the best matching prefix. Its associated
next-hop is then utilised to ahead the packet.

Problem Statement

When multiple virtual routers are hosted on the identical physical router, with each virtual router requiring its own packet
filtering and forwarding-table lookup capabilities, the physical router’s recollection desires to be distributed or be allocated among
the virtual routers. For the trie-based algorithms, the number of trie nodes can be taken as assess of the memory required, given
a repaired node dimensions that normally consumes one or more recollection phrases. If packet-forwarding facts and figures

37RRJET | Volume 4 | Issue 3 | July-September, 2015

ISSN:2319-9873

organisations are retained separately, the memory dimensions can become prohibitive stopping important scaling of the virtual
router capability. As a plaything demonstration, if we have two virtual routers with the aforementioned prefix benches, we need
the memory to be adept to hold 12 trie nodes since each trie has 6 nodes.

This design apparently does not scale well. To find a more scalable answer, we address the following difficulty: how to shop
multiple binary endeavors in a compact blended facts and figures structure.

TRIEBRADING
We evolve trie braiding as a means to complete a more compact blending of the one-by-one endeavours, even when the

one-by-one tries are not primarily similar. By using a single braiding bit in a trie node, we can turn around the meaning of its child
pointers: When the bit is set, the left pointer represents the “1” agency and the right pointer comprises the “0” agency. We call
this mechanism braiding because we can without coercion swap the left and right subtries of any trie nodes.

Trie braiding permits us to adjust the form of dissimilar endeavors and make them as alike as likely so that the number of
distributed nodes is maximized (thereby reducing memory desires) upon merging. To show, in Figure 1b, if we swap node a’s child
nodes and node c’s progeny nodes, the resulting trie will become alike to the trie in Figure 1a. Now we can amalgamate these two
endeavors into one and get a new trie as shown in Figure 2. This trie has only 7 nodes. In supplement, for this case, leaf impelling
will not increase the total number of nodes.

Figure 2. Node sharing using trie braiding. The numbers are the braiding bit value for the original tries.

One time the value of the braiding bits is very resolute, to insert a prefix in the trie (or to lookup a given IP address), we do
the following. Beginning from the origin node, we analyze each prefix bit sequentially. We contrast this bit to the braiding bit at the
current trie node. If they are equal, we pursue the left pointer; else, we pursue the right pointer.

The braiding morsels are exclusive to each virtual router. When we amalgamate tries from multiple virtual routers, the
braiding method donates us a helpful device for minimizing recollection usage by maximizing the node distributing (Table 2).

Ti Tree i

vi Generic node in tree Ti

hi Depth of tree Ti

ri Root of tree Ti

P(vi) Parent of node vi

CL(vi) Left child of node vi

CR(vi) Right child of node vi

d(vi) Depth of vi

t (vi) Subtree rooted at vi

n(vi) Number of nodes in t (vi), or Weight of vi

Ni(h) Set of nodes at depth h in Ti

Ui(h) Number of isomorphisms at depth h in Ti

L(vi) Isomorphism label of node vi

|Ti| Size of Tree I, i.e. n(ri)
∆(vi, vj) Distance between t (vi) and t (vj)
S(vi, vj) Optimal mapping track bit
Bi Braiding bit at node vi

Table 2. Notations.

OPTIMAL TRIE BRAIDING ALGORITHM
Braid : A Dynamic Programming Algorithm

We now give a dynamic programming-based mapping algorithm (BRAID) that determines the optimal braiding pattern to
minimize the allowance of memory to store the two trees. The input to the optimal braiding algorithm is the two binary trees, and
the output from the algorithm is the following

I.	 a minimum-cost mapping M fromT2 to T1;

II.	 a braiding bit B(v2) for each nonleaf node v2€T2 that indicates the straight mapping (B(v2)=0) or the twisted mapping

38RRJET | Volume 4 | Issue 3 | July-September, 2015

ISSN:2319-9873

(B(v2)=1) applied to node v2 ’s two child nodes.

Computing Mapping Charges

Given tree Ti rooted at ri, our aim is to work out ∆(r1,r2) . This can be accomplished from the base up.Since any node in the
tree has at most two children, we can compute the worth of ∆(v1,v2) by contemplating the following two mapping possibilities:

•	 a straight mapping :∆(v2, v1) where the left (right) progeny of v2 is mapped to the left (right) child of v1

•	 a twisted mapping: ∆(v2,v1) where the left (right) progeny of v2is mapped to the right (left) child of v1.

First, we use a depth-first search on each tree separately and compute the depth of all the nodes in both trees. Let hm=min
{h1, h2}, Nodes with depth larger than hm will be mapped to We let the nonexistent node be , for which n(v)=0. We can now define
the expanse between two nodes v1€T1 and v2€T2, ∆(v1,v2)=|n(v2)-n(v1)|

Determining the Minimum-Cost Mapping

Now the algorithm begins to determine the minimum-cost mapping for each node in T2. It begins from r2 and uses S (,) to
get the optimal mapping. In supplement, the algorithm outputs the braiding bit B (v2) for each node. If B (v2) =0, then the straight
map is optimal at node. If B (v1) =0, then the twisted map is optimal at node.

Fast Braid: Braiding With Isomorphism Detection

We advance the presentation of BRAID considerably both in periods of running time as well as memory utilisation by identifying
the isomorphic subtrees during the course of running the algorithm.The performance improvement with this modification is
determined by the following:

•	 Time taken to identify isomorphisms;

•	 The number of isomorphic subtrees at each depth.

Generating Labels

Two nodes will be given the same mark if and only if the subtrees fixed at those two nodes are isomorphic.

Determining the Distance

In the BRAID algorithm, we calculated ∆(v2,v1). In the FAST-BRAID algorithm, we have to calculate the value of ∆ for two
labels, each from a different tree.

K- Braid : A-Step Lookaheadheurestic For Braiding

In situations where working out the optimal braiding answer is time-consuming, we can use a -step lookahead heuristic to
compute the mapping. Unlike the optimal braiding algorithms that compute the mapping utilising a bottom-up approach, this
heuristic algorithm works out the mapping from origin to leaves.The heuristic is founded on a very easy idea: If we do not have
information of the forms of the subtrees, the best scheme is to chart heavier subtree to heavier subtree and lighter subtree to
lighter subtree. The parameter is the lookahead steps that we use to improve the accuracy of our estimation.

At all step, the lookahead design imaginarily truncates the tree to a deepness of from the current origin .We then run BRAID
on these “truncated” trees to work out the optimal strategy at the origins (i.e., if the two subtrees of one origin should be braided
or not). By doing this, the whole tree structure underneath deepness is abstracted by a lone weight value. After each step, the
mapping of the progeny nodes of the origins is repaired. Then, at each of the child nodes, we replicate the method until all the
tree nodes are mapped.

In generic step while considering nodes v1€T1 and v2€T2:

Truncate trees T1 and T2 at depth at d(v2)+k; Determine the leaf node weights

n(vi);

Run BRAID on the truncated trees;

Write braiding bit B(v2) to v2 and fix M(CL(v2)) and M(CR(v2)) .

This procedure is repeated for all nonleaf nodes v2€T2.

Combining Multiple Trees

So far, we have administered with the difficulty of combining two trees. If we want to blend more than two trees, then the
running time of the optimal algorithm augments exponentially with the number of trees. For demonstration, if there are three trees
T1, T2, T3, and we desire to chart T2andT3 onto T1. At depth h, we have to address the cost of mapping every pair of nodes (v2,
v3), where v2 is at deepness of tree T2 and v3 is at deepness of tree T3, with every node v1 at deepness of tree T1. This makes
the optimum algorithm prohibitively costly to run. Therefore, we use an incremental approach where we first amalgamate T1 and

39RRJET | Volume 4 | Issue 3 | July-September, 2015

ISSN:2319-9873

T2 and then merge up T3 on this blended tree. Though it is not optimal, the running time only goes up linearly in the number of
trees. The alternative of the alignment in which the trees are merged can make a distinction to the answer, but from our checking,
we find that the distinction in the amalgamating order is negligibly little for all our tests.

CONCLUSION
Effective asset distributing while maintaining the logical isolation is an important design topic for virtual routers. In this

paper, we present the trie braiding design and the optimal braiding algorithms to maximize the memory distributing for trie-
based packet forwarding and filtering data organisations. The experiments on a real facts and figures set display our algorithms
are highly effective on recollection decrease without compromising the presentation. Trie braiding is applicable when the data
structure involves multiple trees, no matter for one router or for multiple virtual routers.

REFERENCES
1.	 Feamster N, et al. How to lease the Internet in your spare time, Comput. Commun.Rev. 2007; 37:61–64.

2.	 Global Environment for Network Innovations, GENI, 2006.

3.	 Turner J. A proposed architecture for the GENI backbone platform, in Proc. ACM/IEEE ANCS 2006;1 –10.

4.	 Bavier N, et al. In VINI veritas: Realistic and controlled network experimentation, in Proc. ACM SIGCOMM 2006; 3–14.

5.	 Curran J. IPv4 depletion and migration to IPv6, 2008.

6.	 Nordmark E and Gilligan R. RFC 4213: Basic Transition Mechanisms for IPv6 Hosts and Routers 2005.

7.	 Intelligent logical router service, Juniper Networks, Sunnyvale, CA 2004.

8.	 Route Views project, Univ. Oregon, Eugene, OR, 2011.

9.	 Fu J and Rexford J. Efficient IP address lookup with a shared forwarding table for multiple virtual routers, Proc. ACM CoNEXT
2008.

