

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering
(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2015

Copyright to IJIRCCE 10.15680/ijircce.2015.0302087 1119

Self Learning Based Optimal Resource

Provisioning For Map Reduce Tasks with the

Evaluation of Cost Functions

Nithya.M, Damodharan.P

M.E Dept. of CSE, Akshaya College of Engineering and Technology, Coimbatore, India

Associate Professor, Dept. of CSE, Akshaya College of Engineering and Technology. Coimbatore, India

ABSTRACT: Due to the massive improvement in the usage of data’s in the real world, it becomes more burdens to handle

and process it effectively. The Map reduce is the one of the more developed technology which is used to handle and process
the big data/largest tasks. Map reduce is used to partition the task into sub partitions and map those partitions into the

machines for processing. This process need to be done by the considering the minimization of cost and meeting deadline to

improve the user satisfaction. In the previous work, CRESP approach is used which focus on allocating the map reduces
tasks in the machine with the consideration of reduction of cost and deadline. However this method does not concentrate on

the skew and stragglers problem which can occur while handling the largest task. In our work, we try improve the
performance of resource allocation strategy by considering the skews and stragglers problem in mind. This problem of

skews and stragglers are handled by introducing the partitioning mechanism. The partitioning mechanism will improve the

failure of task allocation strategy.

KEYWORDS: Cloud Computing, Hadoop, Map Reduce, Micro Partitioning, Self Based Learning, TeraSort, WordCount,

PageRank, TableJoin.

I.INTRODUCTION

In the Development of Cloud Computing,Sensor Networks, Grid Computing the huge amount of Datasets could be
Collected from the users, Applications and Environment.For Instance, nowadays users are capable of storing huge amount
of Datasets in a Datacenter, where we go for usage of the Big Data. Map Reduce is a technique which is used to work with
the Big Data.Big Data is nothing but a collection of huge datasets which is difficult to process using on-hand database
management tools or traditional data processing applications.

On the other hand, Cloud analysts in most Organisations such as research institutions, Government institiutions have

no opportunity to access more private Hadoop/MapReduce clouds. Based on the requirements Amazon introduced Elastic
Map Reduce which runs on Hadoop Clusters. Apache Hadoop is the open source Software for Storing and Processing
Large amounts of datasets on Clusters of Hardware. Requirements for running Hadoop cluster on Public and Private clouds
varies promptly. First for each job clusters could be allocated starting from the virtual nodes to make use of “pay-as-you-
use” economic Cloud model. It is difficult to maintain a constant Hadoop cluster as private Hadoop clusters because data
processing requests are generally entering in Continuosly.

The Optimization of the Resource Provisioning could involve about 2 factors.

provisioning the virtual machine nodes which could consider about the monetary cost and Finishing of the job which
considers about the time cost. Resource provisioning could be done based on the cost which depends on the time required

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering
(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2015

Copyright to IJIRCCE 10.15680/ijircce.2015.0302087 1120

for resources to be used. It is complicated to use other constraints such as deadline or monetary budget to reduce the cost
for usge of resources. We propose a method to help users to decide about Allocation of running MapReduce programs in
public clouds. This method, Micro Partitioning is used to distribute the work load amoung the nodes.

II.CRESP APPROACH

The Cloud RESource Provisioning (CRESP) for MapReduce Programs is based on the time cost model. Considering

the time cost model and the parameters, providing the users could solve optimization problems. We analyse cost model in

terms of Input datasets, Specific complexity of the application and the resources that are available for the system. In this

approach we consider the combination of the white-box and machine learning approaches. MapReduce programs have

different time and the logical complexity. The cost functions that may be differing from application to application.

Analysing Map Reduce Tasks
MapReduce is the Combination of parallel and distributed processing.Large number of datas that could be processed

which are defined as clusters. Reduce phase is executed after the execution of Map phase. The execution of Map and
Reduce programs is done by using the concepts of Map/Reduce slot and Map/Reduce task. Slot is the unit used for running
the tasks by allocating the resources that are available. Fixed number of slots could be allocated based on the capacity of the

system. In hadoop, which consists of four Components NameNode which is the heart of hadoop file system, DataNode
which stores blocks of datas and retrieve them, TaskTracker is responsible for the allocation of the number of Map slots and
Reduce slots, JobTracker is responsible for the allocation of the client jobs.

Calculation of Cost For Map Task
Map phase consists of the three stages Map,Read and Sort. First we consider the calculation of cost for the input that

is given to the Map phase. The input that may be in the form of data blocks i(b) that could be from the local or remote disk.

Second we consider the Map function f(b) that is given by the user. After that sorting of the datas om(b) could be done and
then the output will be in the form of (Key,Value) pairs which could be give to the reduce phase.

Фm = i(b) + f(b) + s(om(b),R)+εm (1)

Calculation of Cost Of Reduce Task

Reduce phase consists of the three stages Shuffle, MergeSort, Reduce and WriteResult. The execution that could be
done in parallel in the reduce phase. In the execution of the reduce task the amount of data is proportional to the number of
keys that are assigned. The keys given by the Map phase is distributed equally to the reduce Tasks. In the Shuffle stage the
each and every reduce tasks will be assigned for its shares which could be given as k/R and the the amount of data that
could be given is

bR = M * om(b) * k/R (2)

In the MergeSort stage the datas that could be simply merged because the sorting of the datas are done at the earlier

stages. The cost of MergeSort could be given as it is ms(bR) which depends upon bR.

Learning the Model
For the calculation of the cost function we concentrate on the number of input variables, M, m, R and then the

parameter βi. First we randomly sample the variables which is considered for testing. Second collect the time and cost for

the map and reduce tasks by setting the variables (M,m,R). m is nothimg but the number of samples that are considered.
Third the regression model is considered which is applicable for learning of the models with the transformed variables such
as,

X1 = m/M, x2 = MR/m, x3 = R/m, x4 = (M log M)/R, x5 = M/R, x6 = M, x7 = R.

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering
(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2015

Copyright to IJIRCCE 10.15680/ijircce.2015.0302087 1121

III.SYSTEM MODEL

Micro Partitioning

 Micro Partitioning is the key technique is to run a large number of reduce tasks, splitting the map output into many
smaller units of partitions than reduce machines in order to produce smaller tasks. These smaller tasks are assigned to
reduce machines in a “just-in-time” fashion as workers become idle, allowing the task scheduler to dynamically mitigate
skew and stragglers. With large tasks, it can be more efficient to exclude slow nodes rather than assigning them any work.
By assigning smaller units of work, jobs can derive benefit from slower nodes.

These tasks are assigned to reduce machines as workers become idle, allowing the task scheduler to dynamically
mitigate skew and stragglers. Running many small tasks lessens the impact of stragglers, since work that would have been
scheduled on slow nodes is small which can now be performed by other idle workers.

Figure 3.1. Architecture Diagram

Input

files

Split

Learn the cost

functions of every

components and

map the tasks

Time and Cost

constraints

Classify

the nodes

Distribute

the

workload

Reducer Output files

Micro-partioning Method

Divide the workload

into smaller tasks

Self Learning

Algorithm

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering
(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2015

Copyright to IJIRCCE 10.15680/ijircce.2015.0302087 1122

For inputs containing few distinct keys, fine-grained partitioning may result in many empty reduce tasks that

receive no data. These empty reduce tasks are unproblematic, since they can be easily detected and ignored by the
scheduler. Jobs with few distinct keys are the most sensitive to partitioning skew, since there may not be enough other work
to mask the effects of a straggling task created by a key collision in the hash partitioning function.

Datasets

We use four types of testing Datasets to test the samples. The datasets could be 1000 words randomly chosen is

used as samples from the dictionary. Another dataset is samples generated from the PageRank Program, next dataset is
packages from the Hadoop.

The samples used are

WordCount: Used to calculate the number of words that are present in the input file that is given.

TeraSort: Sorting of the datas that are done and then given for reducers.

PageRank: The ranking for the accessing of the websites are given.

TableJoin: The joining of the wordcount, TeraSort is done.

The implemention of micro partitioning technique is as follows:

Step 1: Take the input samples

Step 2: Store the input samples in trie

Step 3: Build the two-level trie

Step 4: Count the occurrence of each and every prefixes

Step 5: Use cut-point algorithm to determine the cut-points

Step 6: Split points are obtained

Cut points = sum of counters/number of partitions+ 1
Step 7: Use cut points to send the keys to appropriate reducers

if (key<cutpoint1)

Send key to reducer 1

else if (key>=cut-point1&&key<cut-point2)

Send key to reducer2

else if (key>=cut-point2&&key<cut-point3)

Send key to reducer3

else

Send to the finished reducer
Step 8: Determine the slow running node by comparing the performance of each node with other.

Step 9: If there is any slow running node move the data to the free node.

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering
(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2015

Copyright to IJIRCCE 10.15680/ijircce.2015.0302087 1123

IV. PROPOSED METHOD

Learning Resource Status Using State Vector Machine

SVM based learning approach is introduced for learning about the resouces that are clocated to the training

sample. The cost that is required for the compution that could be reduced by the informations that are learned. In machine

learning, support vector machines are the supervised learning methods which are associated with the learning algorithms,

that could analyse datas and recognise patterns in order to do classification and regression analysis.

The machine learning method which could identify the pedagogical relationships. We are learning the new rules in

the pedagogical relationships or the DRs in the electronic textbooks in the training phase. Support vector machines which

make use of the decision planes that defines the decision boundaries. A decision plane is nothing but the separation

between a set of objects having different class memberships. The SVM modeling algorithm finds an optimal hyper plane

which focuses on the maximal margins to separate the two classes. This coul be required to solve the following

optimization problem.

Maximize,

 𝛼𝑖

𝑛

𝑖=1

−
1

2
 𝛼𝑖𝛼𝑗

𝑛

𝑖 ,𝑗=1

𝑦𝑖𝑦𝑗𝑘(𝑥𝑖 , 𝑥𝑗)

Subject to,

 𝛼𝑖

𝑛

𝑖=1

𝑦𝑖 = 0

Where 0 ≤ αi ≤ b i = 1,2, …… . . , n, αi is the weight of training sample x1, K is a kernel function, used to measure the

similarity between two samples. A popular radial basis function (RBF) kernel functions. This is repeated for ‘k’ times.

Algorithm

Input: Number of the training samples (determined in existing system) with dataset 𝑤 as input data point for SVM

classification

Output: Classification result

Procedure SVM (𝑤) // input training data results from the SVM classification

Begin

Initialize the value C=0 //initially the class labels should be zero

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering
(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2015

Copyright to IJIRCCE 10.15680/ijircce.2015.0302087 1124

Get input file dataset w for training //the input dataset result as the example for training the user data and prediction results

of the pedagogical relationships

Read the number of input training dataset W from the given original dataset

𝑥𝑖 . 𝑤 + 𝑏 = 0 ////Input training dataset W is represented as matrix and denoted by 𝑥𝑖 and 𝑤 is the weight value matrix

whose product is summed with bias value to give the class value.

𝑥𝑖 . 𝑤 + 𝑏 = 1 // this above equation marks a central classifier margin. This can be bounded by soft margin at one side using

the following equation.

Decision function 𝑓 𝑊 = 𝑥𝑖 . 𝑤 − 𝑏 //decision function f(w) decides the class labels for the SVM classification training

examples ,

If 𝑓 𝑊 ≥ 1 for 𝑥𝑖 is the first class // if the f(w) is greater than or equal to the 1 is labeled as first class

Else

𝑓 𝑊 ≤ −1 for 𝑥𝑖 is the second class // if the f(w) is less than or equal to the value of -1 is labeled as second class

The prediction result for (i=1,…n) number of training samples //after the classification result are performed then check

the classification result by testing phase it is check the below function

𝑦𝑖(𝑥𝑖 . 𝑤 − 𝑏) ≥ 1

Display the result //finally we display the classification result.

V. RESULT ANALYSIS

Figure 5.1 compares the consumption of time in CRESP Approach with the Micropartitioning Mechanism. The

time consumption is reduced in the Micro Partitioning mechanism. Figure 5.2 shows that uage of the size of memory is

reduced in Micro Partitioning Mechanism when compared with the CRESP Approach. Figure 5.3 shows that cost is

reduced in Micro Partitioning Mechanism when compared with the CRESP Approach.

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering
(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2015

Copyright to IJIRCCE 10.15680/ijircce.2015.0302087 1125

Figure.5.1 Time Consumption in ms

Figure.5.2 Memory consumption in bytes

Figure.5.3 Cost in rupees

0
500

1000
1500
2000
2500
3000
3500

T
im

e
in

 s
ec

Base

Proposed

0

500000

1000000

1500000

2000000

W
o

rd
C

o
u

n
t

So
rt

P
ag

eR
an

k

Ta
b

le
Jo

inM
em

o
ry

 i
n

 b
y
te

s

Base

Proposed

0

500000

1000000

1500000

2000000

W
o

rd
C

o
u

n
t

So
rt

P
ag

eR
an

k

Ta
b

le
Jo

inC
o
st

 i
n

 r
u

p
ee

s

Base

Proposed

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering
(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 2, February 2015

Copyright to IJIRCCE 10.15680/ijircce.2015.0302087 1126

VI. CONCLUSION AND FUTURE WORK

A. CONCLUSION
In this work, we study the components in MapReduce processing and build a cost function that explicitly models

the relationship among the amount of data, the available system resources, and the complexity of the Reduce function for
the target Map Reduce program. The model parameters can be learned from test runs. Based on this cost model, we can
solve decision problems, which could minimize the monetary cost by considering monetary budget or job finish time.

To improve the load balancing for distributed applications, micro partitioning techniques. By improving load

balancing, MapReduce programs can become more efficient at handling tasks by reducing the overall computation time

spent processing data on each node. In addition to that we use MapReduce For that we use node classification method and

distribute the workload among the nodes according to the node capacity. After that a micro partitioning method is used for

applications using different input samples. This approach is only effective in systems with high-throughput, low-latency

task schedulers and efficient data materialization.

B. FUTURE WORK
In the future, we would like to implement the proposed task scheduler architecture and perform additional

experiments to measure performance using straggling or heterogeneous nodes. We also plan to investigate other benefits of

micro-tasks, including the use of micro-tasks as an alternative to preemption when scheduling mixtures of batch and

latency-sensitive jobs.

REFERENCES

1. Candan KS, Kim JW, Nagarkar P, Nagendra M, Yu R (2010) RanKloud: scalable multimedia data processing in server clusters. IEEE MultiMed

18(1):64–77

2. Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrws M, Chandra T, Fikes A, Gruber RE (2006) Big table: a distributed storage system for
structured data. In: 7th UENIX symposium on operating systems design and implementation, pp 205–218.

3. Dean J, Ghemawat Dean S (2008) MapReduce: simplified data processing on large clusters. Commun ACM 51:107–

4. Ghemawat S, Gobioff H, Leung S-T (2003) The Google file system. In: 19th ACM symposium on operating systems principles (SOSP).
5. Jiang W, Agrawal G (2011) Ex-MATE data intensive computing with large reduction objects and its application to graph mining. In: IEEE/ACM

international symposium on cluster, cloud and grid computing, pp 475–484.
6. Jin C, Vecchiola C, Buyya R (2008) MRPGA: an extension of MapReduce for parallelizing genetic algorithms. In: IEEE fourth international conference

on escience.

7. Kavulya S, Tany J, Gandhi R, Narasimhan P (2010) An analysis of traces from a production MapReduce cluster. In: IEEE/ACM international
conference on cluster, cloud and grid computing, pp 94–95.

8. Krishnan A (2005) GridBLAST: a globus-based high-throughput implementation of BLAST in a grid computing framework. Concurr Comput

17(13):1607–1623.
9. Hsu C-H, Chen S-C (2012) Efficient selection strategies towards processor reordering techniques for improving data locality in heterogeneous clusters.

J Super computer 60(3):284–300.

	page5

