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ABSTRACT: Due to the massive improvement in the usage of data’s in the real world, it becomes more burdens to handle 

and process it effectively. The Map reduce is the one of the more developed technology which is used to handle and process 
the big data/largest tasks. Map reduce is used to partition the task into sub partitions and map those partitions into the 

machines for processing. This process need to be done by the considering the minimization of cost and meeting deadline to 

improve the user satisfaction. In the previous work, CRESP approach is used which focus on allocating the map reduces 
tasks in the machine with the consideration of reduction of cost and deadline. However this method does not concentrate on 

the skew and stragglers problem which can occur while handling the largest task. In our work, we try improve the 
performance of resource allocation strategy by considering the skews and stragglers problem in mind. This problem of 

skews and stragglers are handled by introducing the partitioning mechanism. The partitioning mechanism will improve the 

failure of task allocation strategy. 
 

KEYWORDS: Cloud Computing, Hadoop, Map Reduce, Micro Partitioning, Self Based Learning, TeraSort,   WordCount, 

PageRank, TableJoin. 

 
I.INTRODUCTION 

In the Development of Cloud Computing,Sensor Networks, Grid Computing the huge amount of Datasets could be 
Collected from the users, Applications and Environment.For Instance, nowadays users are capable of storing huge amount 
of Datasets in a Datacenter, where we go for usage of the Big Data. Map Reduce is a technique which is used to work with 
the Big Data.Big Data is nothing but a collection of huge datasets which is difficult to process using on-hand database 
management tools or traditional data processing applications. 

 
On the other hand, Cloud analysts in most Organisations such as research institutions, Government institiutions have 

no opportunity to access more private Hadoop/MapReduce clouds. Based on the requirements Amazon introduced Elastic 
Map Reduce which runs on Hadoop Clusters. Apache Hadoop is the open source Software for Storing and Processing 
Large amounts of datasets on Clusters of Hardware. Requirements for running Hadoop cluster on Public and Private clouds 
varies promptly. First for each job clusters could be allocated starting from the virtual nodes to make use of “pay-as-you-
use” economic Cloud model. It is difficult to maintain a constant Hadoop cluster as private Hadoop clusters because data 
processing requests are generally entering in Continuosly. 

 
The Optimization of the Resource Provisioning could involve about 2 factors.  

provisioning the virtual machine nodes which could consider about the monetary cost and Finishing of the job which 
considers about the time cost. Resource provisioning could be done based on the cost which depends on the time required 
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for resources to be used. It is complicated to use other constraints such as deadline or monetary budget to reduce the cost 
for usge of resources. We propose a method to help users to decide about Allocation of running MapReduce programs in 
public clouds. This method, Micro Partitioning is used to distribute the work load amoung the nodes. 
 

II.CRESP APPROACH 

The Cloud RESource Provisioning (CRESP) for MapReduce Programs is based on the time cost model. Considering 

the time cost model and the parameters, providing the users could solve optimization problems. We analyse cost model in 

terms of Input datasets, Specific complexity of the application and the resources that are available for the system. In this 

approach we consider the combination of the white-box and machine learning approaches. MapReduce programs have 

different time and the logical complexity. The cost functions that may be differing from application to application.  

 

Analysing Map Reduce Tasks 
MapReduce is the Combination of parallel and distributed processing.Large number of datas that could be processed 

which are defined as clusters. Reduce phase is executed after the execution of Map phase. The execution of Map and 
Reduce programs is done by using the concepts of Map/Reduce slot and Map/Reduce task. Slot is the unit used for running 
the tasks by allocating the resources that are available. Fixed number of slots could be allocated based on the capacity of the 

system. In hadoop, which consists of four Components NameNode which is the heart of hadoop file system, DataNode 
which stores blocks of datas and retrieve them, TaskTracker is responsible for the allocation of the number of Map slots and 
Reduce slots, JobTracker is responsible for the allocation of the client jobs. 

 

Calculation of Cost For Map Task 
Map phase consists of the three stages Map,Read and Sort. First we consider the calculation of cost for the input that 

is given to the Map phase. The input that may be in the form of data blocks i(b) that could be from the local or remote disk.  

Second we consider the Map function f(b) that is given by the user. After that sorting of the datas om(b) could be done and 
then the output will be in the form of (Key,Value) pairs which could be give to the reduce phase. 

Фm = i(b) + f(b) + s(om(b),R)+εm         (1) 

 
Calculation of Cost Of Reduce Task 

Reduce phase consists of the three stages Shuffle, MergeSort, Reduce and WriteResult. The execution that could be 
done in parallel in the reduce phase. In the execution of the reduce task the amount of data is proportional to the number of 
keys that are assigned. The keys given by the Map phase is distributed equally to the reduce Tasks. In the Shuffle stage the 
each and every reduce tasks will be assigned for its shares which could be given as k/R and the the amount of data that 
could be given is 

bR = M * om(b) * k/R           (2) 

 
In the MergeSort stage the datas that could be simply merged because the sorting of the datas are done at the earlier 

stages. The cost of MergeSort could be given as it is ms(bR) which depends upon bR. 

 

Learning the Model 
For the calculation of the cost function we concentrate on the number of input variables, M, m, R and then the 

parameter βi. First we randomly sample the variables which is considered for testing. Second collect the time and cost for 

the map and reduce tasks by setting the variables (M,m,R). m is nothimg but the number of samples that are considered. 
Third the regression model is considered which is applicable for learning of the models with the transformed variables such 
as,  

X1 = m/M, x2 = MR/m, x3 = R/m, x4 = (M log M)/R, x5 = M/R, x6 = M, x7 = R. 
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III.SYSTEM MODEL 

Micro Partitioning 

 Micro Partitioning is the key technique is to run a large number of reduce tasks, splitting the map output into many 
smaller units of partitions than reduce machines in order to produce smaller tasks. These smaller tasks are assigned to 
reduce machines in a “just-in-time” fashion as workers become idle, allowing the task scheduler to dynamically mitigate 
skew and stragglers. With large tasks, it can be more efficient to exclude slow nodes rather than assigning them any work. 
By assigning smaller units of work, jobs can derive benefit from slower nodes. 

These tasks are assigned to reduce machines as workers become idle, allowing the task scheduler to dynamically 
mitigate skew and stragglers. Running many small tasks lessens the impact of stragglers, since work that would have been 
scheduled on slow nodes is small which can now be performed by other idle workers.  

 

 

 
Figure 3.1. Architecture Diagram 
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For inputs containing few distinct keys, fine-grained partitioning may result in many empty reduce tasks that 

receive no data. These empty reduce tasks are unproblematic, since they can be easily detected and ignored by the 
scheduler. Jobs with few distinct keys are the most sensitive to partitioning skew, since there may not be enough other work 
to mask the effects of a straggling task created by a key collision in the hash partitioning function.  
 

Datasets 

 
We use four types of testing Datasets to test the samples. The datasets could be 1000 words randomly chosen is 

used as samples from the dictionary. Another dataset is samples generated from the PageRank Program, next dataset is 
packages from the Hadoop. 

 

The samples used are 

 
WordCount: Used to calculate the number of words that are present in the input file that is given. 

 
TeraSort: Sorting of the datas that are done and then given for reducers. 

 
PageRank: The ranking for the accessing of the websites are given. 
 
TableJoin: The joining of the wordcount, TeraSort is done. 

 
The implemention of micro partitioning technique is as follows: 
 
Step 1: Take the input samples 

Step 2: Store the input samples in trie 

Step 3: Build the two-level trie 

Step 4: Count the occurrence of each and every prefixes 

Step 5: Use cut-point algorithm to determine the cut-points 

Step 6: Split points are obtained 

Cut points = sum of counters/number of partitions+ 1 
Step 7: Use cut points to send the keys to appropriate reducers 

if (key<cutpoint1) 

Send key to reducer 1 

else if (key>=cut-point1&&key<cut-point2) 

Send key to reducer2 

else if (key>=cut-point2&&key<cut-point3) 

Send key to reducer3 

else 

Send to the finished reducer 
Step 8: Determine the slow running node by comparing  the  performance  of  each  node  with  other. 

Step 9: If there is any slow running node move the data to the free node. 
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IV. PROPOSED METHOD 
 

Learning Resource Status Using State Vector Machine 
 

SVM based  learning approach is introduced for learning about the resouces that are clocated to the training 

sample. The cost that is required for the compution that could be reduced by the informations that are learned. In machine 

learning, support  vector machines are the supervised learning methods which are associated with the learning algorithms, 

that could analyse datas and recognise patterns in order to do classification and regression analysis.  

 

The machine learning method which could identify the pedagogical relationships. We are learning the new rules in 

the pedagogical relationships or the DRs in the electronic textbooks in the training phase. Support vector machines which 

make use of the decision planes that defines the decision boundaries. A decision plane is nothing but the  separation 

between a set of objects having different class memberships. The SVM modeling algorithm finds an optimal hyper plane 

which focuses on the maximal margins to separate the two classes. This coul be required to solve the following 

optimization problem.  

Maximize, 

 𝛼𝑖

𝑛

𝑖=1

−
1

2
 𝛼𝑖𝛼𝑗

𝑛

𝑖 ,𝑗=1

𝑦𝑖𝑦𝑗𝑘(𝑥𝑖 , 𝑥𝑗 ) 

Subject to, 

 𝛼𝑖

𝑛

𝑖=1

𝑦𝑖 = 0 

Where 0 ≤ αi ≤ b i = 1,2, …… . . , n, αi  is the weight of training sample x1,  K is a kernel function, used to measure the 

similarity between two samples. A popular radial basis function (RBF) kernel functions. This is repeated for ‘k’ times.  

Algorithm 

Input: Number of the training samples (determined in existing system) with dataset  𝑤  as input data point for SVM 

classification  

Output: Classification result  

Procedure SVM (𝑤) // input training data results from the SVM classification 

Begin 

Initialize the value C=0 //initially the class labels should be zero  
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Get input file dataset w for training //the input dataset result as the example for training the user data and prediction results 

of the pedagogical relationships  

Read the number of input training dataset W from the given original dataset 

𝑥𝑖 . 𝑤 + 𝑏 = 0  ////Input training dataset W is represented as matrix and denoted by 𝑥𝑖   and 𝑤 is the weight value matrix 

whose product is summed with bias value to give the class value. 

𝑥𝑖 . 𝑤 + 𝑏 = 1 // this above equation marks a central classifier margin. This can be bounded by soft margin at one side using 

the following equation.  

Decision function  𝑓 𝑊 =  𝑥𝑖 . 𝑤 − 𝑏 //decision function f(w) decides the class labels for the  SVM classification training  

examples , 

If  𝑓 𝑊 ≥ 1  for 𝑥𝑖  is the first class // if the f(w) is greater than or equal to the 1 is labeled as  first class  

Else  

𝑓 𝑊 ≤  −1  for 𝑥𝑖  is the second  class  // if the f(w) is less than or equal to the value of -1 is labeled as second class  

The prediction result  for  (i=1,…n) number of training samples  //after the classification result are performed then check 

the classification result by  testing phase it is check the below function  

𝑦𝑖(𝑥𝑖 . 𝑤 − 𝑏) ≥ 1  

Display the result //finally we display the classification result. 

V. RESULT ANALYSIS 

Figure 5.1 compares the consumption of time in CRESP Approach with the Micropartitioning Mechanism. The 

time consumption is reduced in the Micro Partitioning mechanism. Figure 5.2 shows that uage of the size of memory is 

reduced in Micro Partitioning Mechanism when compared with the CRESP Approach. Figure 5.3 shows that cost is 

reduced in Micro Partitioning Mechanism when compared with the CRESP Approach. 

 



 

          
               ISSN(Online): 2320-9801 

         ISSN (Print):  2320-9798   

                                                                                                                               

International Journal of Innovative Research in Computer 

and Communication Engineering 
(An ISO 3297: 2007 Certified Organization) 

Vol. 3, Issue 2, February 2015 

Copyright to IJIRCCE                                                                10.15680/ijircce.2015.0302087                                                              1125 

    

 
 

Figure.5.1 Time Consumption in ms 

 

Figure.5.2 Memory consumption in bytes 

 

 

 
 

Figure.5.3 Cost in rupees 
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VI. CONCLUSION AND FUTURE WORK 

A. CONCLUSION  
In this work, we study the components in MapReduce processing and build a cost function that explicitly models 

the relationship among the amount of data, the available system resources, and the complexity of the Reduce function for 
the target Map Reduce program. The model parameters can be learned from test runs. Based on this cost model, we can 
solve decision problems, which could minimize the monetary cost by considering monetary budget or job finish time. 

To improve the load balancing for distributed applications, micro partitioning techniques. By improving load 

balancing, MapReduce programs can become more efficient at handling tasks by reducing the overall computation time 

spent processing data on each node. In addition to that we use MapReduce For that we use node classification method and 

distribute the workload among the nodes according to the node capacity. After that a micro partitioning method is used for 

applications using different input samples. This approach is only effective in systems with high-throughput, low-latency 

task schedulers and efficient data materialization.  

B. FUTURE WORK 
In the future, we would like to implement the proposed task scheduler architecture and perform additional 

experiments to measure performance using straggling or heterogeneous nodes. We also plan to investigate other benefits of 

micro-tasks, including the use of micro-tasks as an alternative to preemption when scheduling mixtures of batch and 

latency-sensitive jobs. 
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