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Abstract: Let G be a finite group of complex n  n unitary matrices generated by reflections acting on Cn. Let R be the ring of invariant 

polynomials, and  be a multiplicative character of G. Consider the R-module of -invariant deferential forms and the R-module of  -invariants 

in the exterior algebra of derivations. We define a natural multiplication on these modules using ideas from arrangements of hyper planes. We 

show that this multiplication gives each module the structure of an exterior algebra. We also define a multi-arrangement associated to , and 

formulate the relationship between _-invariants and logarithmic forms. We introduce a new method of computing basic derivations and the 
generating _-invariants and give explicit constructions for the exceptional irreducible reflection groups. 
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INTRODUCTION 

Mathematics is one of the most demanding and difficult 

subjects for a student to master [1] [2].  Mathematics is taught 

every year from the beginning of elementary education 

through post-secondary education and in graduate education.  

Basic mathematic skills are essential to everyday life.  From 

shopping to traveling, “math problems” exist in every aspect 

of daily living.  However, the emphasis placed on mathematics 

in education and the pervasive nature of mathematics in 

everyday life are not enough to motivate some students to 

learn, master, and retain its concepts. 
 

Today mathematics is integrated into the educational systems 

of all developed countries.  Most schools begin teaching 

addition and subtraction to students who are between the ages 

of five and seven years old.  Students progress through 

mathematics courses focusing on different subdivisions of 

mathematics as they move through the grades in school.  By 

the time the student graduates from high school or any 

secondary education institution, he will have been taught the 

major subdivisions of mathematics including algebra, 

geometry, and calculus [15].   
 

A.  Layperson's:  
  

If you hold two mirrors together at a right angle and then place 

a key in front of the mirrors, you will see four keys - one real, 

three images. As you angle the mirrors closer together, you see 

more and more keys. Mathematicians like to place infinitely 

tall and wide mirrors in a space and examine how imagines 

bounce from mirror to mirror and end up in new locations. 

They fix some plane to act as a mirror, and then reflect vectors 

about that plane. This is accomplished on paper with a well-

chosen matrix: when you apply the matrix to a vector, you get 
a new vector which is the image upon reflecting through the 

given plane. We are not really interested in the physics of 

reflecting light or mirrors. Rather, we would like to know how 

rearranging a space with reflections affects properties like 

length, volume, orientation (right changes to left!), etc. The 

distance between two points doesn't change after a series of 

reflections. What other functions on the space are unaffected? 
Mathematical objects are called invariant when they are 

unaffected and called semi-invariant when they are almost 

unaffected | they change by a constant. Semi-invariants are the 

subject of this paper [3] 

 

B.  Mathematician’s: 

  

The present inquiry on semi-invariants arose from some 

questions about dynamical systems. In 1989, P. Doyle and C. 

McMullen [7] solved the fifth degree polynomial using a 

highly symmetrical dynamical system which preserved the 

Galois group A5. In 1997, S. Crass and P. Doyle [4] tackled 
the sixth degree polynomial by again finding a dynamical 

system with special symmetry - this time A6 symmetry. Each 

dynamical system was formed by iterating a map that was 

equivariant under the projective action of a reflection group. 

Such maps correspond naturally to semi-invariant differential 

forms. Because almost nothing was known about these forms, 

constructing the necessary dynamical systems was a difficult 

step in both cases. 

 

Here, introduced a general theory of semi-invariants. 

Specifically, show that for any finite unitary reflection group 

G and multiplicative character  of G, the module of -

invariant differential forms has a natural multiplication which 

turns the module into an exterior algebra. This exterior algebra 

structure allows us to understand completely the forms that 
give rise to highly symmetrical dynamical systems, and gives 

us tools to compute these forms explicitly. Extend these results 

to vector fields (or derivations), observe some applications to 

logarithmic forms, and show new techniques for computing 

semi-invariants. The theory presented here builds on work by 

R. Stanley, who characterized the module of  -invariant 

polynomials in 1977 [15]. It also builds on more recent work 

by P. Orlik, K. Saito, L. Solomon, H. Terao and others on 

invariant derivations [13]. 
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SOME TERMINOLOGY 

Here, define reflection groups, differential forms, derivation 

forms, some particular group actions, and semi-invariance 
[11]. These terminologies helpful in motivating this paper 

 

A. Reflection Groups 

 

Reflection groups are called real reflection groups, or Coxeter 

groups, when their matrices are real. Coxeter groups are 

generated by orthogonal reflections with determinant - 1. The 

symmetry group of a regular complex polytope, called a 

Shephard group, is also a reflection group. In 1954, G. 

Shephard and J. Todd [11] published a paper that proved many 

fundamental properties of reflection groups: Finite unitary 
reflection groups. They extended results about real reflection 

groups to general (complex) reflection groups, collected 

information about the groups, and proved important new 

properties. Every reflection group is either irreducible or the 

direct product of irreducible components, each of which is 

itself a reflection group. 

  

Begin with a complex vector space V: = C
n
. A unitary n  n 

matrix is a reflection if its fixed point set is a hyperplane of V, 

i.e., an (n-1) - dimensional space. A reflection matrix is 

characterized by the fact that n - 1 of its eigenvalues are 1 

(corresponding to the fixed hyperplane) and the remaining 

eigenvalue is a non-trivial root of unity. If the non-trivial 

eigenvalue is a k-th root of unity, then we say that the 

reflection is k-fold. A reflection group is a finite group of 
matrices generated by reflections. They are often called  finite 

reflection groups, finite pseudo-reflection groups, or U.G.G.R. 

(unitary groups generated by reflections).The second group of 

researchers adopting the external view espouses a more 

dynamic view of mathematics, but they focus on adjusting the 

curriculum to reflect this growth of the discipline and to see 

how students acquire knowledge of the related content and 

skills. The underlying focus is, however, still on student 

mastery of the curriculum or on the application of recent 

advances in technology or instructional technology to 

mathematics instruction.  

  
B. Forms 

 

Now some notation: Let S := C [x1 ,…..,xn] be the ring of 

polynomials on V and F := C (x1,……,xn) be the field of 

rational functions. Denote the module of differential p-forms 

on V by 
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C. Group Actions 
Let G be a reflection group. The group G not only acts on the 

space V, but also on S, p, and p. The action on S is defined 

by gf := f g-1 for f S, g  G. The correspondence between xi 

and xi = / xi extends anti-linearly to degree one polynomials 

by  
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Extend the action to  
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INVARIANT POLYNOMIALS 

The best known semi-invariants are those that are invariant: 

forms  that satisfy g  =  for all g in G. A rich theory of 

invariants for reflection groups has developed around a 

powerful theorem by G. Shephard, J. Todd, and C. Chevalley 

[11] (V.5.3, Theorem 3) describing the set of invariant 

polynomials. 

 

A. Invariants 

 

 Let R be the set of invariant polynomials. The 

celebrated theorem about invariant polynomials is [1]  

 

Theorem 1 There exist n homogeneous polynomials, f1,……..,fn, 

with R = C [f1,……,fn]. The degrees of the fi are uniquely 
determined.  

 

We call the polynomials in the above theorem basic invariants, 

and call R the ring of invariants. Basic invariants have been 

constructed for all 37 of the irreducible reflection groups. 

Notice that ( p)  and ( p)  are modules over R. In 1963, L. 

Solomon [14] showed that the R-module of invariant 

differential forms, G, has the beautiful structure of an 

exterior algebra: 

 

Theorem 2 The module G is generated over R as an exterior 

algebra by the dfi, i.e., ( p)G is generated over R by the forms 

dfi1^ _ _ _ ^ dfip, where 1  i1 ,……, ip  n. 

 

B. Application to Semi-invariants 

 

 Given any G-module N, we can define NG := {n  N 

: g(n) = n g  G}. We state a well-known proposition about 

G-modules; for proof, see Lemma 6.45 of [9].  
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Proposition If M is a G-module of dimension r over C, then 

the R-module (S M)G is free of rank r (over R).  

 

Corollary The R-modules ( p)  and ( p)  are both free of 

rank (
p
n ). 

ARRANGEMENTS OF HYPERPLANE 

Reflection groups are often studied using results from 

arrangements of hyperplane. One important result completely 

describes semi-invariant polynomials. Here, explained the 

connection between reflection groups and hyperplane 

arrangements, and give the fundamental result on semi-

invariant polynomials. We will often follow notation from the 

wonderful text Arrangements of Hyperplane [9], which should 

be consulted as a general reference. 

 

A hyperplane in W is a (n-1)-dimensional affine subspace of 

W. A hyperplane arrangement is a finite set of hyperplane. For 

each hyperplane H in a hyperplane arrangement A, let H be a 

linear polynomial on W whose kernel is H. We call 

 

( )
H A

Q A H  

 

the defining polynomial of A. The polynomial Q(A) is 

uniquely defined up to a nonzero scalar multiple 

A. Reflection Arrangements 

  

We now consider the arrangement defined by our reflection 

group G. Each reflection in our group fixes a hyperplane in C 

n. Fix A as the collection of all such hyperplane. Notice that 

the group G permutes the hyperplane in A. For each H  A, 

define H  S by ker( H) =H. Then the polynomial 

 

: ( )
H A

Q Q A H  

defines the hyperplane arrangement A. 

EXTERIOR ALGEBRA 

A. -Wedging 

  

The first step in understanding the structure of  is to define 

a multiplication. Observe that  is not closed under the 

exterior product! Here unwinds the definitions of Q  and the 

group action in a helpful coordinate system. Recall that 
( )Ha

H

H A

Q  

and that sH is a reflection in G of maximal order that fixes H 

point wise. So Q divides the exterior product of any 

two invariant differential forms. if write 
 

1

1
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1 ...
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Corollary The R-module  is closed under –wedging. 

 

B. Criterion 

  

When Solomon showed that G is generated over R by the dfi 

as an exterior algebra, he used the fact that the dfi wedge to Q 

vol. We follow ideas in Solomon's original proof to give a 

condition for n 1-forms to generate . 

 

Proposition Let 1,….., n be -invariant 1-forms. The 

forms …. p for I  I p and p  0, generate  over R 

if and only if 

 

1 ………… n =Q det
vol

. 
C. Criterion Satisfied 

  

Now that we have a criterion for a set of 1-forms to generate 

, we wonder if there exist any forms that satisfy the 

criterion. In the case  = det
-1, we have already constructed 

such forms. We built (det -1)-invariant 1-forms, 1,…………., n, 

whose exterior product is Qn-1 vol. We called the i basic anti-

invariant forms because they satisfy the criterion in 

Proposition: 

 

   
1

1 1.... ....n

n nQ  

          
1 1n nQ Q vol  

          1vol  

          1det .det
.Q vol  

 

 

The case  = det-1 is not just an example. We will use the 

basic anti-invariant forms to satisfy the criterion in Proposition 

for arbitrary . 

 

LOGARITHMIC FORMS 

We now discuss a few applications of the previous 

ideas to logarithmic forms. Some of these applications will 

appear in [12]. We have previously only considered 

differential forms with polynomial coefficients, but now 

consider differential forms with rational functions as 

coefficients. The S-module of logarithmic p-forms with poles 

along A (see also [13], p. 124) is defined as 

1

1

det

:  all H  Ap p

H Hand d for
Q

 

G. Ziegler [16] extends this definition to multi-arrangements 
of hyperplane, hyperplane arrangements in which each 

hyperplane is given a positive integer multiplicity. We apply 

his definitions to our context of reflection groups and semi-

invariants: Let A  
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 be the multi-arrangement consisting of each hyperplane H  

A counted with multiplicity H( ), i.e., the multi-arrangement 

defined by Q . 

 

Corollary 

 

1det1
( ) ( )p P

RA S
Q

 

Proof: If 1,………, n are basic anti-invariant forms, then 

1^….^ n = Qn-1 vol. Hence by above propositions is freely 

generated by Q-1
1^….^ Q-1

Ip , I  Ip. 

 

The above corollary is shown with a different argument in 

[13]. 

 

A. Basic - Forms 

 

We now introduce a construction of differential 1-forms from 
derivations and polynomials that behave well with respect to 

semi-invariance. The idea is to replace each xi with dxi and 

each xi with xi, bar the complex scalars, and then apply the 

resulting operator to a polynomial. 

 

We show here how above ideas are used to compute semi-

invariants explicitly. Specifically, we show how to find all the 

semi-invariants for the exceptional irreducible reflection 
groups. We make some remarks about the irreducible 

reflection groups and display a reduced form of the Hilbert 

Series of -invariants for each of the exceptional groups. We 

indicate the basic -forms for the higher dimensional 
exceptional groups as well. 

 

B. Irreducible Reflection Groups 

 

We remarked above that every reflection group is either 

irreducible or the direct product of irreducible components, 

each of which is itself a reflection group. We thus focus on 

semi-invariants of the irreducible reflection groups. The 

irreducible reflection groups consist of three infinite families 

and thirty-four exceptional groups. Shephard and Todd gave 

each group a serial number: the infinite families are numbered 
1 through 3 and the exceptional groups are numbered 4 

through 37. The exceptional groups range in dimension from 2 

to 8 and are labeled G4 through G37. 

 

We have multiplied each series by (1 - xd1 ) …. (1 - xdn), where 
di is the degree of fi, to obtain a polynomial called the reduced 

Hilbert series that ignores the contribution of the basic 

invariants. Corollary implies that the quotient is indeed a 

polynomial, and that this polynomial factors. The coefficient 

of xiyj is the dimension over R of the space of j-forms of 

homogeneous polynomial degree i. Nolan Wallach suggested 

factoring the polynomials with negative exponents, which 

prompted the idea to knock Stanley polynomials and basic 
derivations together. The Hilbert series were computed from 

character tables using a version of Molien's theorem and the 

software GAP and Mathematica. 

 

C. Two-dimensional Groups 

 

We now restrict our attention to the two-dimensional 

exceptional groups. We compute basic derivations for the 

duality groups with a simple formula: i = dfn-i  fn. The 

numerology of a duality group suggests this formula, but 

perhaps the formula in some sense also sheds light on the 

numerology. Each basic -form of a duality group is either dfi 

Q  or i  Q . With nonduality groups, these constructions 

may give zero for some i. We then substitute fnfi (for some i) 

for fn. 

 

Klein [13] explored the invariant theory for the projective 

tetrahedral, octahedral, and icosahedral groups in detail. There 

are three important invariant polynomials for each projective 

group, f, h, and t. Up to a scalar, the polynomial h is the 

Hessian of f and the polynomial t is the Jacobian of f and h. 

Here, f, h, and t for the tetrahedral, octahedral, and icosahedral 

groups explicitly. Any invariant of the corresponding 

reflection group can be written as a product of the f, h, and t. 
We give the basic invariants in terms of f, h, and t and give the 

basic derivations in terms of co-knocking fn with dfi. We write 

each Stanley polynomial as a product of the f; h, and t. The 

Stanley polynomials were found by examining the effect of 

group generators using Mathematica. Using these theories, the 

reader can compute any semi-invariant form for a two-

dimensional exceptional group from the appropriate 

polynomial f alone! 

 

D. Higher Dimensional Groups and Tables 

 

The basic -forms for the rest of the exceptional groups follow 

the same patterns. We have computed the basic derivations 

and basic -forms for the groups G25, G26, G28, and G32. The 

other higher dimensional groups carry only the trivial and det-1 

multiplicative characters. Hence, their semi-invariants can be 

constructed from the basic derivations computed in [6] and 

[8]. We have also computed basic derivations and basic -

forms for the non-duality group G31. We indicate the results 

here, but forego the explicit calculations. As with the two-

dimensional groups, basic derivations for the duality groups 

can be computed with the simple formula: i = dfn-i  fn. 

Again, each basic -form of a duality group is either dfi Q  or 

i  Q . The reduced Hilbert series and indicates how to 

choose dfi Q  or i  Q . Each factor (1 + xdy) in the reduced 

series corresponds to dfi Q  , where d is the degree of dfi 

(exponent). Each factor (1 + x-ey) corresponds to i  Q , 

where e is the degree of i (co-exponent). Again, with our 

non-duality group G31, the construction i = dfn-i  fn gives 

zero for one i. We then substitute f2
n for fn. 

CONCLUSION & FUTURE WORK 

 We provide a survey the research in the area of 

conceptions of mathematics to mathematics education 

research. Analogous results hold for vector fields, or 

derivations. Let be the module of -invariants in the 

exterior algebra of derivations. Because the group action 

differs here, these case where I1  1 is the same as in the 

original lemma, and hence Q also divides the exterior 

product of two elements in  (the proof is analogous to the 



Mukesh Kumar, Journal of Global Research in Computer Science,2 (10), October  2011, 14-18 

© JGRCS 2011, All Rights Reserved   18 

case of ). The criterion for n derivations to generate via 

-wedging is also slightly different: they must -wedge to 

det 1 ...
n n

Q  instead of det 1 ... nQ dx dx . 

This follows from the fact 1̀ .... ndx dx is (det
-1)-invariant 

while 

1

....
n

 is det-invariant. Finally, we note 

that the correspondence between di_erential p-forms (in p) 

and (n - p)-forms in  (the exterior algebra of derivations) 

induces a module isomorphism between and det. 
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