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ABSTRACT 

 

 In this paper, we study the properties of the transform which 

approximates a signal at a given resolution. We show that the difference 

of a signal at different resolutions can be extracted by decomposing the 

signal on a wavelet orthonormal basis. In wavelet orthonormal basis is a 

family of functions, which is built by dilating and translating a unique 

function. The development of orthonormal wavelet bases has opened a 

new bridge between approximation theory and signal processing.  It is 

possible to keep the simplicity while improving the performance with non-

linearities in a sparse representation. The analysis results imply that 

proposed method has lots of efficiency over other methods.  

 

 

INTRODUCTION 

 

 Adapting the signal resolution allows one to process only the relevant details for a particular task. It is 

introduced a multiresolution pyramid that can be used to process a low resolution first and then selectively 

increase the resolution when the application of signal estimation in additive noise environment, linear operators 

have long predominated because of their simplicity, despite their limited performance. The approximation of a 

function at a resolution is specified by samples on a discrete grid which provides local averages of over 

neighborhoods size proportional [1,2,3]. We say that the sequence is a multiresolution approximation, if the following 

conditions hold: All the other properties of the multiresolution approximation are easily verified. The approximation 

at the resolution is defined as the orthogonal projection. To compute this projection, we must find an orthonormal 

basis. The theorem orthogonalizes the Riesz basis and constructs an orthonormal basis of each subspace by 

dilating and translating a single function called a scaling function.  To avoid the resolution and the scale, the 

notation of resolution is dropped, called an approximation at provide a discrete approximation of for the case of 

Shannon approximations, we have constructed basis, which are orthonormal basis. A multiresolution approximation 

is entirely characterized by the scaling function that generates an orthonormal basis of each subspace. The 

properties  of  which guarantee that the spaces satisfy all the conditions of a multiresolution approximation. It is 

proven that any scaling function can be specified by a discrete filter called a conjugate mirror filter. The 

multiresolution causality property imposes.  In particular, a basis decompose relates a dilation of the scaling 

function to its integer translations. The sequence can be interpreted as a discrete filter. The Fourier transformation 

of both sides yields and gives necessary and sufficient conditions on to guarantee this infinite product is the Fourier 

transform of a scaling function. The Fourier transform of the case of Shannon multiresolution approximation. We 

thus derive from that in the multiscale analysis, we interested in the difference between consecutive resolution 

scales. This difference is often called a detail signal. The approximations at resolution of a signal are respectively 

equal to their orthogonal projection. It can also be shown that the signal details at resolution are given by an 

orthogonal projection of the original signal onto the orthogonal complement of represent the orthogonal 

complement, it denotes a direct sum.  In order to obtain the detail signal of a function, we need to find an 

orthonormal basis of Theorem, Scaling function and the corresponding conjugate mirror filter.  

 

METHODS AND MATERIALS 

 

 The orthogonal projection of a signal in a detailed space is obtained with a partial expansion in its wavelet 

basis. signal expansion in a wavelet orthonormal basis can thus be viewed as an aggregation of details at all the 
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scales that goes from, Many applications using wavelet decomposition desire efficient approximations of particular 

classes of functions by a few non-zero coefficients. This usually requires optimizing the design to produce maximum 

number of wavelet coefficients that close to zero.  The  actual  number  of  coefficients  with  non-negligible  values 

depends on the  regularity,  the number  of  vanishing  moments  of the  analyzing wavelet and the size of its 

support. A wavelet has vanishing moments if The  vanishing  moment  is  crucial  to  measure  the  local  regularity  

of  a  signal. If the wavelet has vanishing moments, then it can be shown that the wavelet transformation is actually 

a multiscale differential operator of order.  This nice property relates the differentiability with its wavelet transform 

decay at fine scales. Hence If a wavelet has vanishing moments, then its first derivatives are zero. it follows that if a 

wavelet has vanishing moments, then its corresponding conjugate mirror filter and its first derivatives are zero, we 

can decompose a function. As mentioned before, the number of wavelet coefficients with non-negligible values  

depends  on  not  only  the  number  of  vanishing  moment,  but  also  the  size  of  its support. Suppose has a 

singularity point, and is inside the support of might have a large value.  If it has a compact support of size N, then at 

scale there must be N wavelets whose support includes the singularity point. To minimize the number of 

coefficients with non-negligible values, we have to choose a wavelet with a small support size. Daubechies showed  

that  the  scaling  function has  a  compact  support  if  and only  has a compact support. On the other hand, just a 

dilation. The equality proves that if it has a compact support. 

 

 
Figure 1: Signal Estimation by Fourier transforms 
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RESULTS AND DISCUSSION 

 

 To form a radar image, bursts of received signal are sampled and organized burst by burst into a two-

dimensional array, this sample matrix is not uniformly spaced in the spatial frequency, and instead, it is polar 

formatted data. The Discrete Fourier Transform processing of the polar formatted data would result in blurring at 

the edges of the target reflectivity image. a synthetic are spatial frequency quantities defined at frequency and 

target rotation angle. The phase term is related to the target translational motion only, and can be compensated by 

traditional translational motion compensation methods. ISAR image of moving target reconstructed by the Discrete 

Fourier Transformation ISAR image of an aircraft target. The radar is assumed to be operating at 9GHz and 

transmits a stepped-frequency waveform. Each burst consists of 64 narrow-band pulses stepped in frequency from 

pulse to pulse by a fixed frequency step. The pulse repetition frequency is 15KHz.  Basic motion compensation 

processing has been applied to the data. A total of 512 bursts of received signal are taken to reconstruct the image 

of this aircraft, which corresponds integration time. As we can see, the resulting image is defocused due to the 

target rotation. In fact, the defocused image in Figure 2 is formed by overlapping a series of target at different 

viewing angles. By replacing the Fourier transform with the time varying spectral analysis techniques, we can take a 

sequence of snapshots of the target during the 2 :18sof integration time. the trajectory of the target, with image 

frames taken respectively. Image registration can be applied to estimate the target motion from this sequence of 

images. For the synthetic ISAR images shown in Figure 2, we search for the rotation angles between a sequence of 

image frames observed in a time interval secutive target image frames. As can already be seen in the figures, 

uniform weights produce the sharpest peak. By interpolating, we obtain an estimated trajectory of the target 

rotational motion during the imaging time. An estimated trajectory of a target is particularly important since it may 

be subsequently used in polar re-formating and re-sampling the received signal into rectangular format [4,5]. 

 

 
Figure 2: Trajectory of a sequence of target image frames 

 

CONCLUSION 

 

 A new generalized divergence measure, divergence, is proposed in this paper. We prove the convexity of 

this divergence measure, derive its maximum value, and analyze its performance upper bounds in terms of the 
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Bayes error of nearest neighbor classifier. Based on the divergence, we propose a new approach to the problem of 

image registration. Compared to the mutual information based registration techniques, the divergence adjusts its 

weight and exponential order to control the measurement sensitivity of the joint histogram. This flexibility ultimately 

results in a better registration accuracy. 
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