
Volume 3, No. 6, June 2012

Journal of Global Research in Computer Science

RESEARCH PAPER

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 8

SOA BASED MULTI PARTY WEB SERVICES USING DYNAMIC

AUTHENTICATION

Nalini Priya. G
 #1

, Balamurugan B
*2

#1 Associate Professor, Member IEEE, Department of Information Technology, KCG College of Technology,

Anna University, Chennai, India, nalini.anbu@gmail.com
*2 Asst.Professor (senior), School of Information Technology and Engineering,

VIT University, Vellore, India, kadavulai@gmail.com

Abstract— Distributed applications has been a big boon for the development of several applications ranging from on-time supply chain

management ,virtual collaborations and several kinds of service integration across organizations. Often this leads to new challenges in security
and dependability. Collaborating services in a system with a Service-Oriented-Architecture (SOA) may belong to different security realms but
often need to be engaged dynamically at runtime. If their security realms do not have a direct cross-realm authentication relationship, it is
technically difficult to enable any secure collaboration between the services. A potential solution to this would be to locate intermediate realms
at runtime, which serve as an authentication-path between the two separate realms. However, the process of generating an authentication path for
two distributed services can be highly complicated. It could involve a large number of extra operations for credential conversion and require a
long chain of invocations to intermediate services. In this paper, we address this problem by designing and implementing a new cross-realm

authentication protocol for dynamic service interactions, based on the notion of service-oriented multi-party business sessions. Our protocol
requires neither credential conversion nor establishment of any authentication path between the participating services in a business session.

Keywords: Authentication, Multi-Party Interactions, SOA, Secure Service Collaborations, Web Services, Workflow Business Sessions

INTRODUCTION

Dynamism and flexibility are becoming the core

characteristics of modern large-scale distributed applications,
such as business application integration, distributed auction

services, and order processing [5][9]. A business process

does not have to follow in many cases a strict business

specification; the executing order of its activities is

sometimes unpredictable, and on some occasions, the actual

execution of a process can even be “one-of-a-kind” [7]. The

applications and services involved in the process are

typically heterogeneous and may be provided and

maintained by different organisations. As an organisation

has its own security mechanisms and policies to protect its

local resources, the application across multiple organisations
has to operate amongst multiple, heterogeneous security

realms. A security realm is a group of principals (people,

computers, services etc.) that are registered with a specified

authentication authority and managed through a consistent

set of security processes and policies.

Because organisations and services can join a collaborative

process in a highly dynamic and flexible way, it cannot be

expected that every two of the collaborating security realms

always have a direct cross-realm authentication relationship.

A possible solution to this problem is to locate some
intermediate realms that serve as an authentication-path

between the two separate realms that are to collaborate.

However, the overhead of generating an authentication-path

for two distributed realms is not trivial. The process could

involve a large number of extra operations for credential

conversion and require a long chain of invocations to

intermediate services.

In this paper we present a new solution for dynamically

authenticating the services from different realms. The main

contributions of our work are: (1) using the multi-party

session concept to structure dynamic business processes, (2)

a simple but effective way to establish trust relationships

between the members of a business session, and (3) a set of

protocols for multi-party session management, supported by

empirical evaluation and formal analysis. The following

section 2 contains the background and related work done. In

Section 3 we discuss the fundamentals of constructing

multi-party service interactions. Section 4 describes our
proposed authentication protocols and system with formal

proofs.

BACKGROUND

The issues with cross-realm authentication have been
discussed in many papers. For example, both direct cross-

realm authentication and transitive cross realm

authentication are supported in Kerberos [4] [17]. By using

transitive cross-realm authentication, a principal can access

the resources in a remote realm by traversing multiple

intermediate realms, if there is no cross-realm key shared

with the remote realm. However, Kerberos assumes that the

authentication mechanisms in all the federated security

realms are homogeneous. in practice, the authentication

mechanisms in different security realms are often

heterogeneous and even non-interoperable, both in
structures and functions. in order to address the issue of

federating such heterogeneous authentication mechanisms,

credential conversion mechanisms are widely used in many

existing solutions. The work in [12] presents two types of

credential translator services, KCA which translates

Kerberos credentials to PK credentials, and KCT which

translates PK credentials to Kerberos credentials.

Reiter and Stubblebine in [16] argue that an authentication

process in a large-scale distributed system often needs the

Nalini Priya. G et al, Journal of Global Research in Computer Science, 3 (6), June 2012, 8-13

© JGRCS 2010, All Rights Reserved 9

assistance of a path of security authorities as it is difficult to

locate a single authority to authenticate all the principals in

the system. They suggest using multiple paths to increase

assurance on authentication. It is important to notice here

that a Session Authority or SA in our system differs

significantly from the security authority in [16]. A security

authority is used to enforce security policies and processes

for a security realm so as to prevent attacks from accessing

the applications and resources within that realm. In contrast,

an SA is associated with a business session (management

system), independent of any local security realm. It has
much simpler functionalities than a security authority,

aiming to provide secure real information to session partners

which may belong to different security realms.

The problems related to federation amongst heterogeneous

authentication mechanisms used by different security realms

are also discussed in the Web service federation protocol

[1][10]. The Web service federation protocol defines a set of

credential conversion mechanisms, with which a principal in

a realm can convert its credential to a credential that can be

accepted in another realm within the federation. The issues
of discovering a credential chain is discussed extensively in

[13]. It is shown that an authentication path can be found in

polynomial time if there is a centralised entity which holds

all the federation information of the security realms possibly

involved. Considering that the session partners of a business

session may be determined dynamically at runtime, it is

practically difficult to have sufficient information about the

security realms to be involved before the execution of that

session. However, without such a centralised entity, this job

becomes much more difficult. In the extreme case, all the

realms possibly involved need to be searched before an
authentication path can be identified. In order to realize

peer-to-peer collaborations amongst Web services, IBM,

Microsoft, and BEA proposed a specification, WS-

Coordination [3], in August 2002. WS-Coordination

describes an extensible framework for supporting the

coordination of the actions in distributed applications.

However, WSCoordination is intended only as a meta-

specification governing the specifications of concrete forms

of coordination. The security issues discussed in this paper

are not addressed.

MULTI-PARTY SERVICE INTERACTIONS

In a distributed application, a session is a lasting

collaboration involving several participating principals,

called session partners. A session is often typified by a state

which includes variables that hold information from

messages transferred within the collaboration. A business
process execution can be regarded conveniently as a

business session. In terms of a Service-Oriented

Architecture (SOA) [11], a business session is a

collaboration involving two or more collaborative services,

and has service instances as its session partners (a service

instance is here referred to as a stateful execution of a

service.) In practice, a session may discover and select

services at runtime. After receiving an initial request from a

business session, a service normally spawns a service

instance to handle the request. Once this instance is accepted

as a session partner, it is entitled to collaborate with other
partners within the same session.

Although security to an extent is provided by the RFID

system, which authenticates the incoming persons by means

of their RFID tags some fraudulent may escape. This results

in the hospital security system being endangered. In order to

overcome such threats, unusual activities within the

premises should be continuously monitored.

Two-Party Session:

As implied by the name, a two-party session consists of two

session partners only, i.e. a client and a server. For the

security of a two-party session, an authentication process is

required when the client sends an initial request to the

server. A short-term secret key between the session partners

is then agreed upon and generated. The secret key, also

called session key, can be used in further communications to

encrypt the messages transferred between the session

partners [8].

The two-party session technique is practically effective, and

it is used widely in many distributed systems and integrated

with the design of most authentication protocols (e.g. SSL

and Kerberos [17]). However, new problems arise if the

two-party session technique is applied directly to the

construction of a multi-party session. Hada and Maruyama

in [9] demonstrate that, if a multi-party session is

constructed out of multiple two-party sessions, it is difficult

in some cases for a session partner to verify whether the

service instance it contacts is actually a member of the same

session. From the perspective of cross-realm authentication,
the two-party session technique does not address the issue

with Heterogeneous Cross-Realm Authentication (HCRA),

which requires credential conversion and the establishment

of authentication paths.

Figure. 1 A business session scenario

Figure 1 illustrates an example of a business session

constructed with two two-party sessions. The business

session consists of three participating services, Consumer,

Producer, and Shipper. At the start of the business session,

an instance of Consumer, CI, contacts Producer to order
some products. After receiving the request from CI,

Producer creates a service instance PI to handle it. PI then

selects Shipper to deliver the products to Consumer. An

instance of Shipper, SI, is thus generated to do this job, and

it is required to negotiate with CI about delivery options and

details. In this case, an HCRA process for authentication

between SI and CI has to be performed by means of a new

two party session as SI and CI do not know each other and

Nalini Priya. G et al, Journal of Global Research in Computer Science, 3 (6), June 2012, 8-13

© JGRCS 2010, All Rights Reserved 10

belong to different security realms. This HCRA process is

both costly and complex due to credential conversion and

possibly a long authentication path between the two local

authentication systems of SI and CI. For a business session

involved with n heterogeneous security realms, the HCRA

process has to be repeated n × (n – 1)/2 times to allow all

possible partner interactions with the session.

Multi-Party Session:

A multi-party session may have two or more session

partners for the intended collaboration. A partner can search

for and invoke new services at runtime. Before a service

(instance) is accepted as a new partner, an HCRA process is

needed. However, unlike a two-party session, authentication

for the existing partners of a multi-party session could be

simplified significantly without requiring credential

conversion and the establishment of any authentication path.
This is because session partners can make use of their

session memberships to authenticate each other even if they

belong to different security realms. A shared session key or

individual secret keys may be used to enforce a secure

collaboration amongst session partners. Consider the

example of Fig 1 again. When SI attempts to contact CI, it

does not have to authenticate itself with the local

authentication system of CI because both SI and CI are

members of the same session. SI can simply use its session

membership to prove its identity to CI. This simplified

authentication process is called Simplified Cross-Realm

Authentication (SCRA). The HCRA process has to be
repeated (n – 1) times for a multi-party session with n

security realms, but up to (n – 1) × (n – 2)/2 authentication

processes can be simplified as SCRA based on session

memberships, thereby reducing both cost and complexity

significantly. However, managing and coordinating a multi-

party session is more complex in nature, in comparison with

handling two parties only. A multi-party session

management system needs to address the issues with

message routing and secret keys for communications. A

Session Authority (SA) is also required to provide reliable

real-time information (e.g. memberships) about session
partners [9].

Message Routing:

Message routing is concerned with the issues of dispatching

messages to the intended service instance which maintains

corresponding states. In practice, a service may handle

requests from different requestors concurrently. When all
the requestors invoke operations provided by the same port,

the messages are sent to the same address (e.g. the same

URL). In this case, additional correlated information is

needed, which helps the underlying middleware to

determine which interaction a message is related to and to

locate the corresponding service implementation object to

handle the message.

A simple approach is to exploit a correlated token, shared by

the communicating partners, for identifying the related

messages transported within the collaboration. A shared
token is sufficient to the identification of session partners on

the both sides of two-party collaboration. However, session

partners (i.e. service instances) in a multi-party session may

be generated by the same service with the same address. It is

difficult to distinguish them using a single token. In contrast

with the token-based solution, an ID-based solution assigns

every session partner with a unique identifier, thereby

distinguishing all the partners unambiguously. In practice, a

token-based solution is usually used to decide whether an

instance is actually working within a business session while

an ID-based scheme is employed to identify individual

session partners in the case that fine-grained instance

identification is needed.

Secret Keys:

In a two-party session, authentication typically consists of

several rounds of operations and message passing, and the

session key used in the subsequent communication between

the two partners is normally a by-product of the

authentication process. However, in a multi-party session,

SCRA is a highly simplified process and does not include

the automatic generation of secret keys.

An obvious approach is to generate a single secret key for a

given multi-party session and then distribute it to all the

session partners. Once the session key is generated, it can be

used to simplify the authentication process amongst the

existing session partners, thereby avoiding HCRA. Hada and

Maruyama’s protocols in [9] are an example of this type of

solution with the support of a Session Authority. However,

if a partner loses the secret key, the security of the whole

session will be compromised. Moreover, session partners

may leave and join a session dynamically. When a partner

leaves from its session, the shared secret key must be

refreshed in order to ensure that any previous partner cannot
gain any further information from the session. Similarly,

when a new partner joins the session, the secret key must

also be refreshed in order to ensure that any new partner

cannot obtain any previous information transferred within

the session. The issues related with secret key revocation

have been discussed in many papers on secure group

communications (e.g. [15][20]).

Another possible solution is to generate a shared secret key

for every pair of session partners (e.g. using the Diffie-

Hellman public key algorithm [18]). This scheme is more
costly but it avoids the issue with key revocation.

Session Authority:

A Session Authority (SA) is a service that provides reliable

real-time information (e.g. session memberships) for a given

multi-party session. For example, the SA may be employed

to notify that a partner has left from the session, by
contacting all the partners that have collaborated with the

previous partner. An SA service could be associated

conveniently with, or implemented as part of, a multiparty

management system. This can be implemented using

different methods with different features and characteristics

such as fault-tolerance, scalability and cost-effectiveness.

These methods include centralized management,

decentralized architecture for better scalability, and fully

distributed information provision for improved fault-

tolerance. As an example of the SA implementation, our

authentication protocols are designed to conform to the WS-
Coordination specification [3] in which an SA is an

extension of a coordinator. In WS-Coordination both

centralized and decentralized coordinators are discussed. An

SA may act as a centralized service that handles requests

from all the session partners within a business session;

alternatively, an SA may manage the session partners within

Nalini Priya. G et al, Journal of Global Research in Computer Science, 3 (6), June 2012, 8-13

© JGRCS 2010, All Rights Reserved 11

a local domain only, and a group of decentralized SA’s can

then manage collectively the whole business session,

thereby avoiding the problem of concentrating the SA

operations in a single place.

AUTHENTICATION PROTOCOLS

In this section we provide a multi-party authentication

system and use the business scenario in Section 2 to explain

the structure of the system. The related protocols are

described and analyzed formally.

Example:

Consider an SA-based multi-party authentication system. In

this system each business session is associated with a unique

session identifier. Every service instance within a session is

associated with a unique instance identifier so that every

session partner can be identified unambiguously. The Diffie-

Hellman public key algorithm is used to generate a pair of

public/private keys for each service instance. The public key

of an instance is identical to its identifier and can be

transferred over the network while its private key is kept

securely and can be used to prove the possession of the
identifier. The Diffie-Hellman algorithm is also exploited

for generating a shared secret key for every pair of

collaborative partners of a session.

Figure 2 illustrates how the authentication system performs

multi-party session authentication and management using

the example of Figure 1. First, CI contacts an SA to start a

new business session, S. The SA service then generates an

instance, SA, to manage the new session. CI thus becomes a

session partner of S, and its identifier is recorded in SA. CI

then contacts Producer. Producer sends back the identifier
of the instance PI in Step (2) while PI is introduced by CI to

SA in Step (3). Next, CI starts to collaborate with PI after

receiving the confirmation from SA (Step (4)). In the same

way, PI invokes a new shipper instance SI and introduces it

to SA (Steps (5) to (7)). After receiving the request from SI,

CI first contacts SA to check whether SI is a legal business

session partner of S (Steps (8) and (9)). Once this is

confirmed by SA, CI

Figure. 2. A business scenario

Formal Definitions:

In this section we will define two core protocols in our

multi-party authentication system using the well known

Logic of Authentication (or BAN logic) [2]. Protocol 1 is

concerned with the introduction of a new session partner,

and Protocol 2 performs authentication between two existing

session partners. For the brevity of discussion, we use the

following notation for formal definitions and proofs (which

is a simplified version of the notation used in [14]).

Figure.3 Protocol 1: Accepting a new session partner

Figure 3 illustrates Protocol 1: Accepting a new session

partner. Our protocol conforms to the WSResource

Framework (WSRF) specification [6], where a service is

associated with a factory service F that generates service

instances.

The details of the messages transported within Figure 3 are

presented as follows, where “A →B” means that A sends a

message to B:

Nalini Priya. G et al, Journal of Global Research in Computer Science, 3 (6), June 2012, 8-13

© JGRCS 2010, All Rights Reserved 12

It is assumed that an HCRA process has been performed

before Service 1 contacts Service 2. In Figure 3 instance A is
a session partner of S, and has registered with SA. When A

tries to contact Service 2, it first sends a request (message

(1)) to the factory service F of Service 2. F then generates a

new instance B and sends the related information about B

(message (2)) back to A. Next, A introduces B to SA

(message (3)). After receiving the confirmation from SA

(message (4)), A will start to communicate with B (messages

(5) and (6)). During this process, the integrity of messages

(1) and (2) needs to be protected by additional security

channels (e.g. SSL, the secure conversation protocol, the

secure message protocol etc.) as B is not yet a session

partner during those steps. The integrity of messages (3),
(4), (5), (6) is protected by shared secret keys distributed

within S. For example, A can use its private key and the

identifier of B to generate K(A,B) according to the Diffie-

Hellman algorithm. K(A,B) is then used to generate the

message authentication code of message (5). Similarly, B

can use its private key and the identifier of A to generate

K(B,A), which is identical to K(A,B). K(B,A) is then used to

generate the MAC of message (6).

Figure 4: Protocol 2: Authenticating a session partner

Figure 4 illustrates Protocol 2: Authenticating a session

partner. B and C are session partners of S, but B has not yet

communicated with C before. First, B sends a request

message (1) to C. C then sends message (2) to SA in order to

check the identity of B. SA will send back a confirmation in

message (3), confirming that B is a session partner of S.

After receiving the confirmation, B will handle the request
from C and send the result back. All the messages

transferred during this process are encrypted by the secret

key generated with the Diffie-Hellman algorithm. The

details of the messages passed in Figure4 are presented as

follows:

In Protocols 1 and 2, MACs are used to protect the integrity

of the messages transported within a business session, and

fresh nonces are used to guarantee that a message is not

replayed.

IMPLEMENTATION DETAILS

Beside the correctness analysis, we also need to examine

whether our authentication system is feasible enough for

practical real-world applications. Consequently, a series of

experiments has been implemented to assess the overheads

imposed by the authentication mechanisms and the

scalability of our proposed system. Because the system is
designed to be deployed on service-oriented middleware, we

will evaluate the compatibility of our system with existing

message-level security protocols.

We have implemented our idea using NetBeans 6.9.1 IDE.

We have used JSP as our front end tool to create web pages

and used Microsoft SQL server 2000 to maintain backend

databases.

We made a comparison evaluation for security and

performance overhead for authentication using two party
and multi party session. The results of which are displayed

in the following figures.

CONCLUSION

In practice, a dynamic business process may involve many

applications and services which belong to different

organizations and security realms. The dynamic

authentication process between organizations could be
highly complex and time-consuming if some intermediate

authentication paths have to be created and credentials have

Nalini Priya. G et al, Journal of Global Research in Computer Science, 3 (6), June 2012, 8-13

© JGRCS 2010, All Rights Reserved 13

to be converted. When there is no existing authentication

relationship in place between two organizations, it will be

practically difficult for a system to enable any secure

collaboration between services from the two organizations

in a just-in-time fashion.

We have developed a new authentication system for multi-

party service interactions that does not require credential

conversion and the establishment of any authentication path

between collaborative session partners. The system also

offers the ability to identify individual service instances
within a business session even if some instances in fact

belong to the same service. Although the amount of

communications between the partners of a session and the

Session Authority is limited, the performance overhead

imposed by it is indeed of some practical concern.

ACKNOWLEDGMENT

The authors wish to thank the anonymous reviewers for their

valuable suggestions and comments which motivated us

towards new scope in our research.

REFERENCES

[1]. S. Bajaj, G. Della-Libera, B. Dixon, M. Dusche, M. Hondo,

M. Hur, C. Kaler, H. Lockhart, H. Maruyama, A. Nadalin,

N. Nagaratnam, A. Nash, H. Prafullchandra, and J.

Shewchuk, “Web Services Federation Language (WS-

Federation),” available from http://msdn2. microsoft. com/

en-us/library/ ms951236.aspx, Jul.2003.

[2]. M. Burrows, M. Abadi, and R. Needham, “A Logic of

Authentication,” ACM Trans. on Computer Systems, Feb.

1990, pp. 18-36.

[3]. F. Cabrera, G. Copeland, T. Freund, J. Klein, D.

Langworthy, D. Orchard, J. Shewchuk, and T. Storey,

“Web Services Coordination (WS-Coordination),”

available from http:// www. ibm. com/ developerworks/

library/ws-coor/, Aug. 2002.

[4]. I. Cervesato, A.D. Jaggard, A. Scedrov, and C. Walstad,

“Specifying Kerberos 5 Cross-Realm Authentication,”

Proc. Workshop on Issues in the Theory of Security, Long

Beach, California, USA, 2005, pp. 12 – 26.

[5]. N. Cook, S. Shirvastava, and S. Wheater, “Distributed

Object Middleware to Support Dependable Information

Sharing between Organisations,” Proc. International

Conference on Dependable Systems and Networks,

Maryland, USA, Jun. 2002, pp, 249- 258.

[6]. K. Czajkowski, D. Ferguson, I. Foster, J. Frey, S. Graham,

I. Sedukhin, D. Snelling, S. Tuecke, W. Vambenepe, “The

WS Resource Framework Version 1.0,” available from

http://www.globus.org/wsrf/specs/ws-wsrf.pdf, 3 May

2004.

[7]. D. Georgakopoulos and M. Hornick, “An Overview of

Workflow Management: From Process Modelling to

Workflow Automation Infrastructure,” Distributed and

Parallel Database, Springer, Mar. 2005, pp. 119-153.

[8]. Li Gong, “Increasing Availability and Security of an

Authentication Service,” IEEE J. Selected Areas in

Communication, vol. 11, no. 5, June, 1993, pp. 657-662.

[9]. S. Hada and H. Maruyama, “Session Authentication

Protocol for Web Services,” Proc. Symposium on

Application and the Internet, Jan. 2002, pp. 158-165.

[10]. M. Hondo, N. Nagaratnam, and A. J. Nadalin, “Securing

Web Services,” IBM Systems J., 2002.

[11]. M. Huhns and M. P. Singh, “Service-Oriented Computing:

Key Concepts and Principles,” IEEE Internet Computing,

vol. 9, no. 1, Jan. 2005, pp. 75-81.

[12]. O. Kornievskaia, P. Honeyman, B. Doster, and K.

Coffman, “Kerberized Credential Translation: A Solution

to Web Access Control,” Proc. 10th USENIX Security

Symposium, Washington, DC, USA, Aug. 2001.

[13]. N. Li, W. Winsborough, and J.C. Mitchell, “Distributed

Credential Chain Discovery in Trust Management,” J.

Computer Security, vol. 11, no. 1, 2003, pp. 35-86.

[14]. P. C. van Oorschot, “Extending Cryptographic Logics of

Belief to Key Agreement Protocols,” Proc. the 1st ACM

Conference on Computer and Communications Security,

Fairfax, Virginia, USA, Nov. 1993, pp. 233– 243.

[15]. S. Rafaeli and D. Hutchison, “A Survey of Key

Management for Secure Group Communication,” ACM

Comput. Surveys, vol. 35, no. 3, Sep. 2003, pp. 309-329.

[16]. M. K. Reiter and S. G. Stubblebine, “Resilient

Authentication Using Path Independence,” IEEE Trans.

Computers, vol. 47, no. 12, Dec. 1998, pp. 1351-1362.

[17]. W. Stallings, Cryptography and Network Security:

Principles and Practices, Prentice Hall, Upper Saddle

River, New Jersey, 1999.

[18]. M. Steiner, G. Tsudik, and M. Waidner, “Diffie- Hellman

Key Distribution Extended to Group Communication,”

Proc. of the 3rd ACM Conference on Computer and

Communications Security, New Delhi, India, Mar. 1996,

pp. 31-37.

[19]. H. Sun, Y. Zhu, C. Hu, J. Huai, Y. Liu, and J. Li, “Early

Experience of Remote and Hot Service Deployment with

Trustworthiness in CROWN Grid,” Proc. APPT, 2005, pp.

301-312.

[20]. C. K. Wong, M. G. Gouda, and S. S. Lam, “Secure Group

Communications Using Key Graphs,” Proc. ACM

SIGCOMM '98 Conf. Applications, Technologies,

Architectures, and Protocols for Computer Comm., 1998,

pp. 68-79.

