
Volume 2, No. 6, June 2011

JourJourJourJournal of Global Research in Computer Sciencenal of Global Research in Computer Sciencenal of Global Research in Computer Sciencenal of Global Research in Computer Science

RESEARCH PAPER

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 13

SOFTWARE COMPONENT COMPLEXITY MEASUREMENT THROUGH

PROPOSED INTEGRATION METRICS

Ms. Latika1*, Dr. Vijay Singh Rathore2

1Research Scholar,

NIMS University, Jaipur,India

latika.kharb@gmail.com
2Director

S.K. College, Jaipur,India

Abstract: Component based software paradigm has become one of the preferred streams for developing large and complex systems by integrating prefabricated

software components which not only facilitates the process of software development but is also changing the ways for software professionals to develop software

applications. Till today, numerous attempts have been made by several organizations, software development teams, developers as well as researchers to improve

software component systems through improved measurement tools and techniques i.e. through an effective metrics. Our paper is a simple attempt to work for the

demand of an appropriate and relevant metrics and in this paper, we’ve proposed some integration metrics for the measurement of complexity of a software

component, which could be used as one of the approaches for further guidance in component complexity measurement and problem reduction.

Keywords: Component complexity measurement, COSS, integration metrics.

SOFTWARE COMPONENT BASED SYSTEMS: AN

INTRODUCTION

Software Component based systems has become one of the

preferred streams for developing large and complex systems

by integrating prefabricated software components which not

only facilitates the process of software development but also

solves many adaptation and maintenance problems, so it’s

changing the ways for software professionals to develop

software applications. However, a mismatch exists in the

usability of metrics by academicians/researchers and

industry men/developers. Even today, much of the metrics

activity in industrial sector is based on metrics invented long

ago in 70’s. This mismatch exists between them because of

the following reasons:

A) Researchers/academicians are mainly concerned with

detailed and code-oriented metrics while the industrial

sectors demand those metrics that could help them in

their software process improvement. This difference

between needs is the main cause behind the mismatch

between usability criteria of various metrics.

B) Industrial sectors have to abide by some rules and

regulations/standards of their company while

academicians/researchers are not bound by any such

rigid standards and can select/change metrics whenever

needed according to their needs and requirements.

C) Researchers go for relatively small field works with

small data (consisting of small programs) that could get

them quick outputs. But the industry men have to go for

large projects (to develop huge software). In academics,

metrics may or may not be evaluated for correctness,

quality and timeliness in hard values. They have to just

provide data/values in form of theoretical validations.

But the industry men are the one who deal with

practical implementation of data and so they have to

check each and every metric very minutely as even 1%

error rate could be critical if it belongs to real life

software development viz. aeronautical systems. A

software component should be adequately packaged/

specified through its interfaces in order to facilitate

proper usage. CBSD offers an effective approach to

develop the components required to support various

functions and processes for a particular area.

In short, in the last few years most of the research has been

inclined towards methods and approaches that work towards

development of software systems and in comparison, a very

little work has been made for the development of

measures/metrics that can be used to evaluate the

complexity of components being developed, using

component integration. The main issues in component

metrics for capturing integration complexity and complex

interfaces tend to complicate the testing process of the

system [1].

INTRODUCTION TO SOFTWARE COMPONENT

TECHNOLOGY

As the software development managers are increasingly

changing their focus on component technology, it seems that

in recent future Software Component based systems will

become the most preferred industry approach towards

development of improved software systems. In Software

Component based systems, software components are

assembled so that they interact with each other and satisfy

predefined functions, so each component has to provide a

pre-specified service with other components and thus

interface is an important concern to be discussed before

proposing metrics for measurement of integration

complexity. Software Component based systems is a branch

of the software engineering discipline which lays emphasis

on decomposition of the engineered systems into functional

Latika et al, Journal of Global Research in Computer Science, Volume 2 Issue (6), June 2011,

© JGRCS 2010, All Rights Reserved 14

or logical components with well-defined interfaces used for

communication across the components. A COSS is a

software system that is modeled, designed and developed by

integrating components through independent deployment.

Software Component based systems are built by combining

the well-defined, independently produced pieces with self-

made components [2]. A software component is a unit of

composition that can be deployed independently by third

parties and contains only the contractually specified

interfaces and the explicit context dependencies. A software

component is made up of three essential parts: the interface,

the implementation, and the deployment [3]. A component

interface consists of a variable part and a fixed part. The

variable part corresponds to possible variants in the

component’s implementation and maps to the collection of

possible implementations; the fixed part expresses invariant

characteristics of the component. Combining components to

form a software system implies combining their fixed and

variable parts. Combining the variable parts may easily lead

to a combinatorial explosion of possible configurations. As a

component is typically developed in a system environment,

which is different from the environment of the final system,

so it is difficult to predict the component behavior in the

new system.

COMPONENT COMPLEXITY

Complexity is a measure of the resources expanded by a

system while integrating with a piece of software to perform

a given task [4]. Software complexity is that aspect of

software which is used to predict external properties of the

program like reliability, understandability & maintainability.

Complexity measures the number of components and their

interconnections and is typically based on internal product

attributes, such as cohesion and coupling [5]. Complexity

mainly results from the components' organization and

interactions between these components. We can define

overall system complexity as a function of the interactions

between system components and individual complexities of

components. Software Component based systems can be

obtained as a result of the composition of some components

with defined interfaces and then the component’s

functionality is implemented in its methods and is provided

for other components through its well-defined interfaces [6].

Component Composition and Component Decomposition

A productive component market would deliver a wide range

of components, designed for different integration

mechanisms, programmed in different programming

languages, and located at a diverse number of places. True

collaborative software development demands that such

diverse components can easily be composed, retrieved, and

configured. However, in practice achieving such

compositionality turns out to be rather complicated [7].

Components must be integrated through some well-defined

infrastructure. This infrastructure provides the binding that

forms a system from the disparate components [8].

Coss Metrics

The component paradigm focuses on developing large

software systems by integrating prefabricated software

components [9]. Component metrics are used to evaluate

properties of something being measured, such as quality,

complexity or effort, in an objective manner. A component's

functionality is implemented in its methods, which is then

provided to other components through its well-defined

interfaces.

Component Integration

One of the main objectives of developing Software

Component based systems is to enable efficient building of

systems through the integration of components [10].

Integration can occur at different moments in time, each

requiring a different integration mechanism. The component

paradigm focuses on developing large software systems by

integrating prefabricated software components [9] and also

facilitates the process of software development to solve

problems of adaptation and maintenance.

PROPOSED COMPONENT INTEGRATION

METRICS

Software metrics can provide useful information to project

managers and software developers by providing means of

measuring the complexity of a software product. Software

complexity means measurement of the resources expended

in developing, testing, debugging, maintenance, user

training, operation and correction of software products.

Component complexity possesses two intrinsic complexities

coming from methods inside the component, and extrinsic

complexities resulting from interactions with other

components i.e. incoming and outgoing interactions. In

other words, according to our metric approach, a component

oriented complexity metric is valid if it accurately measures

the aspects of component-oriented system that influence its

internal and external interactions. Incoming-interactions are

any received interface that is required in a component,

and/or any received event that comes to a component.

Outgoing-interactions are any provided interface used

and/or possible source of events consumed.

% Of Component Interactions (Ci%)

CI% is defined, as a ratio of the available number of

incoming interaction used to the available number of

outgoing interaction i.e. the component interaction metric

CI% will provide a ratio of interactions in a system where, Io

is denoted for the number of outgoing interaction used, and

Ii is denoted for the number of incoming interaction

available. The equation is given by CI%.

CI % = I i * 100% …

 equation (i)

 I o

Interaction %Age Metrics For Component Integration

(I%Mci)

We’ve proposed the Interaction %age metrics for

component integration (I%MCI) in order to measure the

interaction density among components in a software system.

To measure I%MCI, we define I%MCI which is the ratio

between the actual number of interactions to the CI % which

is the % of component Interactions metric (as in equation

(i)).

 I%MCI = Ii + Io … equation (ii)

 CI %

Actual Interactions (Ai)

We’ve proposed the metric actual interactions (AI), which is

the ratio between the actual numbers of interactions (I i + I o)

to the maximum number of performed interactions (I max).

Latika et al, Journal of Global Research in Computer Science, Volume 2 Issue (6), June 2011,

© JGRCS 2010, All Rights Reserved 15

AI = I i + I o …. equation (iii)

I max

TOTAL INTERACTIONS PERFORMED (TIP)

It’s based on measurement of actual interactions for

component Integration (AI), as in equation (iii) to the total

number of components (C). Here C includes C1, C2,

C3……..Cn.

 TIP =AI …

 equation (iv)

 C

Complete Interactions in A Cbs (Ci)

This component interaction metric would provide an

estimate of actual interactions in a component. It’s a sum of

Ci and Co which is the complexity of incoming and outgoing

interactions respectively divided by the C, the total number

of components.

CI = C i +C o … equation (v)

C

Such a metric could be helpful in improving systems quality

because complex component integration complicates the

testing and debugging processes, so it should account for

effort/difficulty in integration process of components. Such

a metric could be helpful in improving systems quality

because complex component integration complicates the

testing and debugging processes, so it should account for

effort/difficulty in integration process of components.

DISCUSSION

Component metrics are used to evaluate properties of

something being measured, such as quality, complexity or

effort, in an objective manner. The component paradigm

focuses on developing large software systems by integrating

prefabricated software components and an attempt has been

made to overcome the lack of some suitable metrics through

proposed metrics. Such a metric could be helpful in

improving systems quality because complex component

integration complicates the testing and debugging processes,

so it should account for effort/difficulty in integration

process of components. For software developers, these

values of CI%, I%MCI, AI, TIP and CI will be useful to

examine the density of interactions within the component. A

component with high value of interactions indicates the need

to employ high quality design and testing procedures to be

followed. The values will also be valuable to assess the

whole system interaction. The low value indicates a simple

system, which also means lower effort to do the software

risk analysis. As the complexity in Software Component

based systems is related to the degree of difficulty of

perception of the system, this complexity could be evaluated

using three constituents of component integration:

A) Complexity of incoming interactions,

B) Complexity of outgoing interactions, &

C) Components of the whole system.

In our view of complexity, we concentrated on the

complexity that is mainly dependent on structure. The

metrics proposed in this paper could explain additional

variance in measurement effort beyond that explained by

other integration metrics. Our paper would provide insight

into how application complexity evolves and how it can be

managed through the use of metrics.

FUTURE WORKS AND CONCLUSION

An effort for contributing towards improved quality through

reduced complexity by providing a new metrics for

components integration has been made in this paper. In this

paper, we’ve proposed some metrics to measure the

complexity of software systems integrated through

component based software paradigm and also discussed how

a good metrics for the component complexity can be of

great use for software developers and managers. The

component metrics proposed above can further guide

component complexity management in component based

systems, by reducing problems encountered during software

development.

REFERENCES

[1] Sedigh-Ali, S., Ghafoor, A., and Paul, R. A. 2001,

Software Engineering Metrics for COTS-Based

Systems. IEEE Computer, vol. 34, No. 6: 44—50

[2] Brown A. W., Large-scale Component-Based

Development, Prentice-Hall, 2000.

[3] McInnis, Component-Based Development: The

Concepts, Technology and Methodology, Castek

Software Factory Inc., www.CBD~HQ.com

[4] V. Basili, “Quantitative Software Complexity Models:

A Panel Summary,” Proceedings of the Workshop on

Quantitative Software Models for Reliability,

Complexity, and Cost, IEEE publication, October 1979.

[5] Goldberg A., Rubin K.S.: Succeeding with Objects,

Decision Frameworks for Project Management,

Addison-Wesley Publishing, 1995.

[6] C. Szyperski, Component Software: Beyond Object-

Oriented Programming. Addison -Wesley, 1997.

[7] Merjin de Jonge, to reuse or to be reused: Techniques

for Component Composition & Construction, 2003.

[8] Capt Gary Haines, AFMC SSSG, David Carney, SEI,

John Foreman, Component-Based Software

Development / COTS Integration, SEI: Copyright 2007

by Carnegie Mellon University, URL:

http://www.sei.cmu.edu/str/descriptions/cbsd_body.htm

l

[9] Dogru, A. H., and Tanik, M. 2003. A process Model for

Component Oriented Software Engineering. IEEE

Software, March/April: 34—41

[10] Ivica Crnkovic, Magnus Larsson, and Otto Preiss,

Concerning Predictability in Dependable Component-

Based Systems: Classification of Quality Attributes.

