Stability Indicating Method Development and Validation for the Determination of Armodafinil in Pharmaceutical Tablet Dosage Form by RP-HPLC

Nalini Kanta Sahoo¹*, Ramya G², Harini D³, Tarun Kumar Padhiary³

¹SRM Modinagar College of Pharmacy, SRMIST (Deemed to be University), Delhi-NCR Campus, Uttar Pradesh, India

²Yalamarty Pharmacy College, Visakhapatnam, Andhra Pradesh, India ³Marri Laxman Reddy Institute of Pharmacy, Telangana, India

Research Article

Received date: 02/06/2021 Accepted date: 26/08/2021 Published date: 02/09/2021

*For Correspondence

Nalini Kanta Sahoo, Principal, SRM Modinagar College of Pharmacy, SRMIST (Deemed to be University), Delhi-NCR Campus, Uttar Pradesh, India.

E-mail: principal.pharmacy.ncr@srmist.edu.in

Telephone: +91 9550741536

Keywords: RP-HPLC, Armodafinil, Forced

degradation.

ABSTRACT

Therapeutic drug monitoring in terms of quality is very much important in pharmaceutical industries. Some of the barriers are like finding out the purity and maintaining uniformity content in pharmaceutical dosage form. To overcome such problems, the present research deals with the development of a stability indicating reverse phase HPLC with PDA detector method for the determination of Armodafinil Agilent XDB-C18, 150 × 4.6 mm, 5 um or Equivalent column. The flow rate was kept at 1.0 ml/min and the injection volume 10 mL and the run time is 8 min and drug Rt is 3.354. The separation was performed at 30°C. Eluents were monitored by PDA detector set at 223 nm. The developed method was statistically validated and results for the linearity is 0.999 and for System suitability, theoretical plates are 2500 and its tailing factor is 1.64, Precision is 0.1, LOQ is 1.00 µg/ml, LOD is 0.33 µg/ml, accuracy is 100.19, Robustness (flow rate, mobile phase) is complied.

INTRODUCTION

Armodafinil [1-3] is the Enantiomer pure compound of the euro-genic modafinil (Provigil). It consists of only the (R) (–) enantiomer of the racemic modafinil. Armodafinil is currently FDA-approved to treat excessive daytime sleepiness associated with obstructive sleep apnea, narcolepsy and shift work disorder. It is commonly used off-label to treat attention deficit hyperactivity disorder, chronic fatigue syndrome and major depressive disorder. It has been shown to improve vigilance in air traffic controllers. Literature review [4-7] reveals very less works done, it became very interesting to pursue the work and to implement the therapeutic drug monitoring in terms of stability.

EXPERIMENTAL PROCEDURE

Drug Profile

IUPAC name : (-)-2-[(R)-(diphenylmethyl)sulfinyl]acetamide

Melting Point : 156-158°C

HPLC Instrumentation and Conditions

Instrumentation and analytical conditions: The analysis of the drug was carried out on a HPLC system equipped with a reverse phase HPLC with PDA detector method for the determination of Armodafinil Agilent XDB-C18, 50×4.6 mm, $5 \mu m$ or Equivalent column. A mobile phase consisting of Phosphate Buffer: Acetonitrile (65:35 v/v) was employed in this study. The flow rate was kept at 1.0 ml/min and the injection volume 10 mL and the run time is 8 min. The separation was performed at 30 °C. Eluents were monitored by PDA detector detector (Waters 2695 Separation Module Equipped with 2996 PDA) set at 223nm.

Chemicals and Reagents

All the chemicals used were of analytical grade and procured from Qualigens India Ltd., Rankem Chemicals Ltd. The chemicals used for the study were, Potassium di-hydrogen phosphate purchased from Merck, Methanol purchased from Rankem, Water and Acetonitrile from Rankem and other chemicals are Ortho Phosphoric acid, Hydrochloric Acid, Sodium Hydrogen Peroxide and Sodium Hydroxide.

Preparation of phosphate buffer

Accurately weighed 2.72 gm of potassium dihydrogen phosphate in 1000 ml of Volumetric flask add about 900 ml of milli-Q water and sonicate and make up to the final volume with milli-Q water, add 1 ml of Triethylamine and then PH 5.6 is adjusted with dilute orthophosphoric acid solution.

Preparation of mobile phase

Mix 600 ml of phosphate buffer pH 5.6 and 400 ml of Acetonitrile (HPLC grade) in a ratio of (65:35% v/v) degassed in ultrasonic water bath for 5 minutes. Filtered through 0.45 μ filter under vacuum filtration

Diluent

Prepare filter and degass the mixture of HPLC grade water & methanol in a Ratio of (20:80% v/v).

Preparation of standard solution of Armodafinil

Accurately Weighed and transferred 10 mg of Armadofinil working Standards into a 10 ml clean dry volumetric flask, add 7 ml of methanol, sonicated for 5 minutes and make up to the final volume with methanol (standard stock 1000 μ g/ml). From the filtered solution 0.5 ml was pipette out into a 10 ml volumetric flask made up with diluents.

Assay of Armodafinil 1 N Armod 20 Tablets

Preparation of sample solution of Armodafinil

Twenty tablets were weighed and crushed into powder, in order to calculate the average weight of each tablet. From that powder weight equivalent to 50 mg of Armodafinil was transferred into a 100 ml volumetric flask, 70 ml of diluent added and sonicated for 25 min, further the volume made up with diluent and filtered. From the filtered solution 0.2 ml was pipetted out into a 10 ml volumetric flask and made up to 10 ml with diluent. The peak areas were measured at 223 nm and concentrations in the samples were determined by interpolation from calibration plot previously obtained.

Estimation of Armodafinil in tablet dosage form

Assay was performed by using the regression equation (y = 100769x + 27300, R2=0.9991) obtained from the standard curve of Temozolomide API.

Forced Degradation Studies

The drug was subjected to stress conditions in various ways to observe the rate and extent of degradation that is likely to occur in the course of storage and/or after administration to body. The various degradation pathways studied are Acid degradation, alkaline degradation, Oxidative degradation, Thermal degradation, Photo degradation.

METHOD VALIDATION

Linearity and Calibration Curve

The linearity of an analytical method is its ability to elicit test results that are directly proportional to the concentration of analytes in samples within a given range or proportional by means of well-defined mathematical transformations. Linearity may be demonstrated directly on the test substance (by dilution of a standard stock solution) and/or by using separate weight of synthetic mixtures of the test product components, using the proposed procedure [8-11].

Accuracy

Accuracy was best determined by the standard addition method. Previously analyzed samples of Armodafinil API were added with standard drug solutions and are analyzed by the proposed method. Recovery (%) and RSD (%) were calculated for each concentration.

Precision

Precision was determined as both repeatability and intermediate precision, in accordance with ICH guidelines. Repeatability of sample injection was determined as intra-variation and intermediate variation was determined by measurement of inter day variation. For these determinations, three concentrations of the solutions of Armodafinil API were used.

Robustness

The concept of robustness of an analytical procedure has been defined by the ICH as "a measure of its capacity to remain unaffected by small but deliberate variations in method parameters". The robustness of a method is the ability to remain unaffected by small changes in parameters such as pH of the mobile phase, temperature, % organic solvent strength and buffer concentration etc. To determine the robustness of the method experimental conditions are purposely altered and chromatographic characters are evaluated. Influence of small changes in chromatographic conditions such as change in flow rate (± 0.1 ml/min), temperature (± 2 °C), wavelength of detection (± 2 nm) and water content in mobile phase (± 2 %) were studied to determine the robustness of the method.

Limit of Detection (LOD)

The limit of detection (LOD) of an analytical method may be defined as the concentration, which gives rise to an instrument signal that is significantly different from the blank. For spectroscopic techniques or other methods that rely upon a calibration curve for quantitative measurements, the IUPAC approach employs the standard deviation of the intercept (Sa), which may be related to LOD and the slope of the calibration curve, b, by

Limit of Quantitation (LOQ)

The LOQ is the concentration that can be quantitated reliably with a specified level of accuracy and precision. The LOQ represent the concentration of analyte that would yield a signal-to-noise ratio of 10.

LOQ = 10 Sa/b

Where, Sa is the standard deviation of the peak area ratio of analyte to IS (5 injections) of the drugs and b is slope of the corresponding calibration curve.

Specificity

The specificity of the method was determined by exposing the drug sample to acidic (0.1 N HCl), basic (0.1N NaOH) and oxidizing (3% H₂O₂) stress conditions. The resulting solutions were then analyzed and the analyte peak was evaluated both for peak purity and for resolution from the nearest eluting peak.

Stability

Stability of pharmaceutical product may be defined as, the capacity of a particular formulation in a specific container or closure system, to remain within its physical, chemical, microbiological, therapeutic and toxicological specifications.

Stability of Armodafinil API was determined after storage of the drug solution for 24 hours at room temperature (25 ± 2°C).

RESULTS AND DISCUSSION

Optimization of Chromatographic Conditions

The chromatographic conditions were optimized by different means i.e. using different column, different mobile phase, different flow rate, different detection wavelength and different diluents for sample preparation etc. and finally the prescribed method is accepted. Chromatographic conditions were listed in Tables 1 and 2 and Figures 1-3.

Accuracy - Recover Study

The recovery of the method, determined by adding a previously analyzed test solution with additional drug standard solution, was 100.19%. The values of recovery (%) and RSD (%) listed in Tables 4 and 5 indicate the method is accurate-chromatogram was shown in Figures 4 and 5.

	Table 1. Analytical method development trials.								
Trial	Column	Flow rate (ml/min)	Temp	Mobile phase	Wave length	Observation	Remarks		
1	Agilent XDB, C ₁₈ , 50×4.6 mm, 5 µm or Equivalent	1.0 ml/min	30°C	Phosphate Buffer: Methanol (70:30)	223 nm	Broad peak was observed.	Method rejected		
2	Agilent XDB, C ₁₈ , 150×4.6 mm, 5 µm or Equivalent	1.0 ml/min	30°C	Phosphate Buffer: Acetonitrile (90:10)	223 nm	No peak was observed	Method rejected		
3	Agilent XDB, 150×4.6 mm, 5 µm or Equivalent	1.0 ml/min	30°C	Phosphate Buffer: Acetonitrile (80:20)	223 nm	No peak was observed	Method rejected		
4	Agilent XDB, C ₁₈ , 150×4.6 mm, 5 µm or Equivalent	1.0 ml/min	30°C	Phosphate Buffer: Acetonitrile (75:25)	223 nm	Poor plate count	Method rejected		
5	Agilent XDB, C ₁₈ , 250×4.6 mm, 5 µm or Equivalent	1.0 ml/min	30°C	Phosphate Buffer: Acetonitrile (70:30)	223 nm	Peak with more tailing is observed.	Method rejected		
6	Agilent XDB, C ₁₈ , 150×4.6 mm, 5 μm or Equivalent	1.0 ml/min	30°C	Phosphate Buffer: Acetonitrile (65:35)	223 nm	A sharp peak with good plate count is	Method accepted		

observed.

Column	Agilent XDB C18, 150 \times 4.6 mm, 5 μ		
Detector wavelength	223 nm		
Column temperature	30°C		
Injection volume	10 μL		
Run time	8 min		
Diluent	Water: Methanol (20:80)		
Mobile phase	Buffer: Acetonitrile (65:35)		
Drug RT	3.354		
Elution technique	Isocratic		

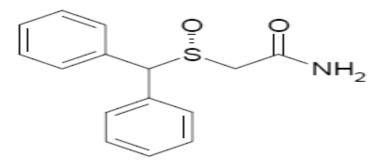


Figure 1. Chemical structure of Armodafinil.

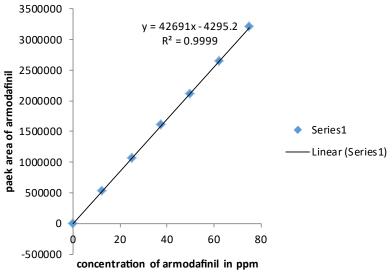


Figure 2. Calibration curve of Armodafinil API.

Precision: System Precision and Method Precision

This method was carried out and the high values of mean assay and low values of standard deviation and % RSD (RSD NMT 2.0%) within a day and day to day variations for armodafinil revealed that the proposed method is precise and the final result obtained % RSD is 0.1. Results obtained are shown in **Figures 6 and 7** and **Tables 6 and 7**.

Robustness

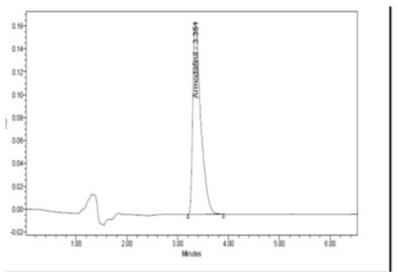
Influence of small changes in chromatographic conditions such as change in flow rate (\pm 0.1 ml/min), Temperature (\pm 2 °C), Wavelength of detection (\pm 2 nm) & buffer in mobile phase (\pm 2%) studied to determine the robustness of the method are also in favor of (**Table 4**, % RSD < 2%) the developed RP-HPLC method for the analysis of Armodafinil API. Results obtained are shown in **Figure 10** and **Table 8**.

Linearity

In the linearity, correlation coefficient obtained is 0.999. Chromatograph of calibration curve is shown in **Figure 2** and observe **Table 4**.

LOD & LOQ

The Minimum concentration level at which the analyte can be reliable detected (LOD) & quantified (LOQ) were found to be



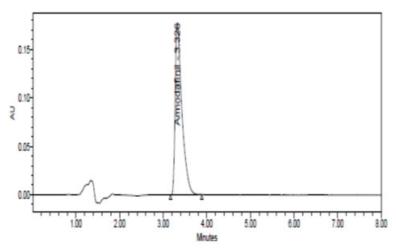

Figure 3. Chromatograph of optimized trial.

Table 4. Calibration of the HPLC method for armodafinil.

Linearity Level (%)	Concentration (ppm)	Area
20	12.5	524067
50	25	1056889
70	37.5	1616960
100	50	2120262
120	62.5	2647995
150	75	3210254
	Linearity concentration	12.5-75PPM
	Slope	42691
	Intercept	4295
	Correlation coefficient	0.999

Table 5. Results of accuracy.

Accuracy	Area	% Recovery	Mean Recovery	
S1: 50%	919713	101.11	Mean=100.72%	
S2: 50%	913107	100.38	S.D. = 0.365	
S3: 50%	915759	100.67	% RSD = 0.36	
S4: 100%	1810501	99.52	Mean = 99.88%	
S5: 100%	1824997	100.31	S.D. = 0.404	
S6: 100%	1815611	99.80	% RSD = 0.40	
S7: 150%	2725468	99.87	Mean =99.98%	
S8: 150%	2735077	100.23	S.D. = 0.2119	
S9: 150%	2734699	99.84	% RSD = 0.21	

Figure 4. Chromatogram of System suitability standard.

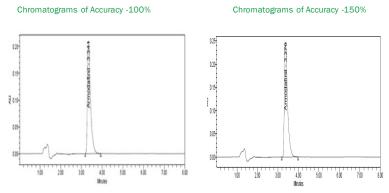


Figure 5. Chromatogram of accuracy.

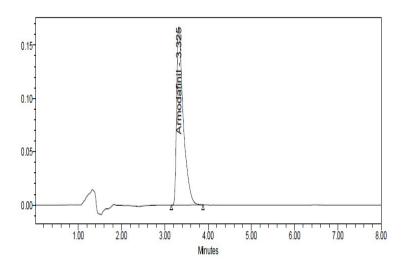


Figure 6. Chromatogram of System precision.

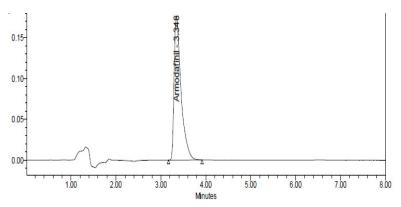


Figure 7. Chromatogram of Method precision.

Table 6. Results of system precision.

System Suitability	Areas
1	1822152
2	1825225
3	1810134
4	1810210
5	1810976
6	1815203
AVG	1815650
SD	6573.01
% RSD	0.36

 $0.33 \, \mu g/ml$ and $1.006 \, \mu g/ml$ respectively. Chromatograms obtained are shown in **Figure 8**.

Specificity: No peak was found at the retention time of armodafinil peak. Observe the peaks in Figure 9.0, 9.1, 9.2.

Sample No	Sample Areas	%Assay
1.	1815404	99.79
2.	1811942	99.60
3	1819899	100.03
4	1816055	99.82
5	1815040	99.77
6	1816870	99.87
AVG	1815868	99.81
Standard Deviation	2592.30	0.1425
Relation standard Deviation (% RSD)	0.10	

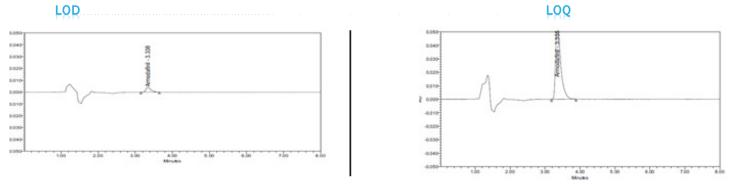


Figure 8. Chromatogram of LOD and LOQ.precision.

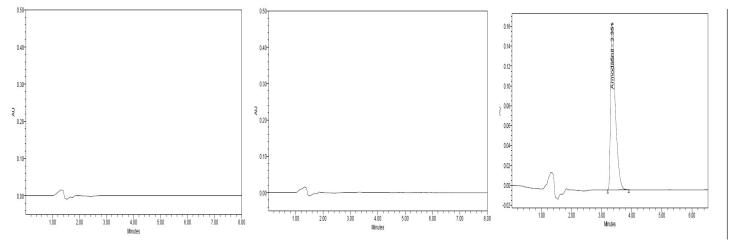


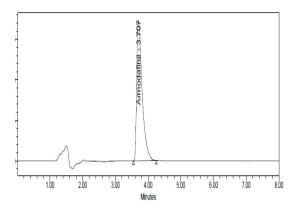
Figure 9.0. Chromatography of Mobile phase Figure 9.1. Chromatography of placebo Figure 9.2. Chromatographyof drug peak

System Suitability: Theoretical plates are about 2500 and tailing factor obtained was 1.64. Observe the **Table 3** and chromatograms obtained are shown in **Figure 4.**

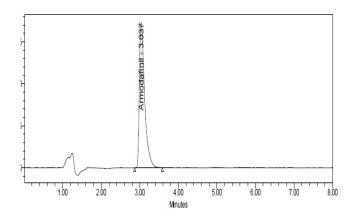
Summary: Method validation parameters are shown in Table 9.

Stability in Analytical Solution

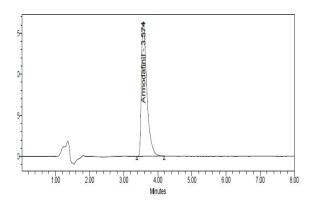
It is important to mention here that the armodafinil API was stable in solution form up to 72 hours at 25°C.

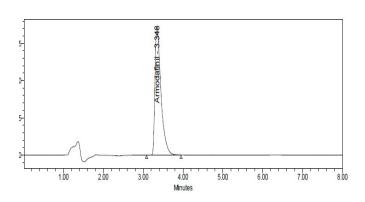

Forced Degradation Studies

Forced degradation studies based on peak purity results, obtained from the analysis of force degradation samples using described method, it can be concluded that the absence of co-eluting peak along with the main peak of armodafinil indicated that the developed method is specific for the estimation of armodafinil in presence of degradation products. The results of the forced degradation studies were given in **Table 10** and **Figures 11-15**.


Estimation of Armodafinil in Tablet Dosage Form

Assay was performed by using the regression equation (y = 100769x + 27300, R2=0.9991) obtained from the standard curve of temozolomide API. Results obtained are given in **Table 5**. The assay of containing armodafinil was found to be 99.8% as per the method.

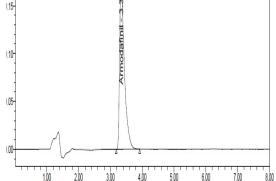

Flow minus Chromatograms


Flow plus Chromatograms (1.0 ml/min)

Mobile phase changes Chromatograms (70:30)

Mobile phase changes Chromatograms (60:40)

Temperature changes chromatograms (35°C)


Temperature changes chromatograms (25°C).

4.00

Minutes

5.00

Minutes

Figure 10. Chromatograms of robustness.

1.00

2.00

Table 8. Results of robustness.

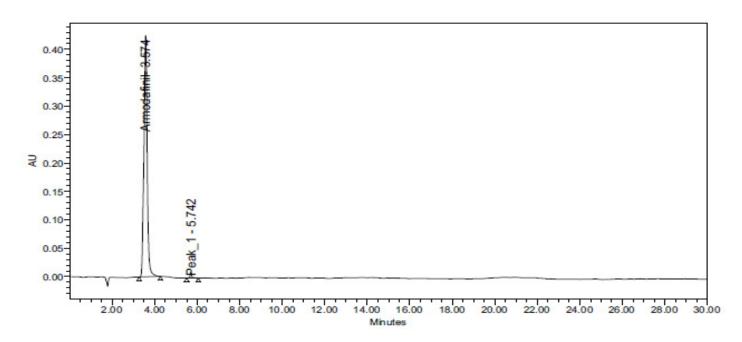
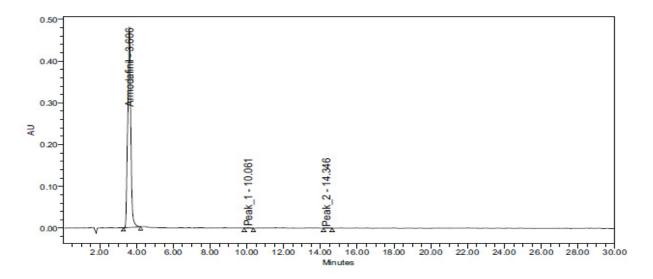

Inj. Sample	Change parameter	modification	Peak area 1	Peak area 2	mean	% RSD
	Flow rate	0.8 ml/min	2018950	2008764	2008857	0.1
	Flow rate	1.1 ml/min	1620562	1615142	1617852	0.23
Armodeficil	Mahila nhasa	60:40	1805335	1811345	1808340	0.23
Armodafinil	Mobile phase	70:30	1816046	1815471	1816258	0.1
	tomporatura	25°C	1803514	1807444	1805479	0.2
	temperature	35°C	1799955	1798639	1799297	0.1

Table 9. Summary of method validation parameters.

S. No	Parameters	Limit	Observation
1	System suitability	Theoretical plates should not less than 2000 Tailing factor should not more than 2.0	Theoretical plates 2500 Tailing factor 1.64
2	Precision	RSD NMT 2.0%	0.1
3	Linearity	Correlation coefficient NLTO.99	0.999
4	Accuracy	%Recovery range 98-102	100.19
5	Robustness (flow, mobile phase)	System suitability parameters should comply	Complies


Table 10. Summary of forced degradation studies.

Made of degradation	Conditions			
Mode of degradation	Conditions	% Degradation w.r.t. control	Purity angle	Purity Threshold
Control	No treatment	-	-	-
Acid degradation 1N HCI	60°C/30 min	4.04	0.350	0.495
Alkali degradation 0.1N NaOH	60°C/30 min	7.97	0.12	0.30
Peroxide degradation 10% W/V H O	60°C/30 min	10.02	0.131	0.353
Thermal degradation	105°C/6 hrs	7.4	0.271	0.456
Photolytic	UV/7 days	6.4	0.252	0.492

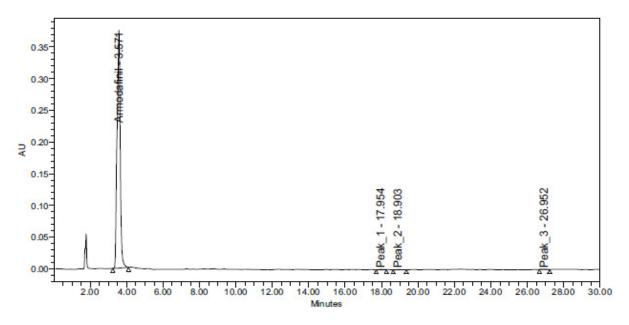

	Peak Name	RT	Area	% Area	USP Plate Count	USP Tailing	Purity1 Angle	Purity1 Threshold
1	Armodafinil	3.574	1749932	98.59	2644	1.02	0.350	0.495
2	Peak_1	5.742	14054	1.41	4000	1.12	0.140	0.210

Figure 11. Chromatogram of Acid Degradation (1N HCL).

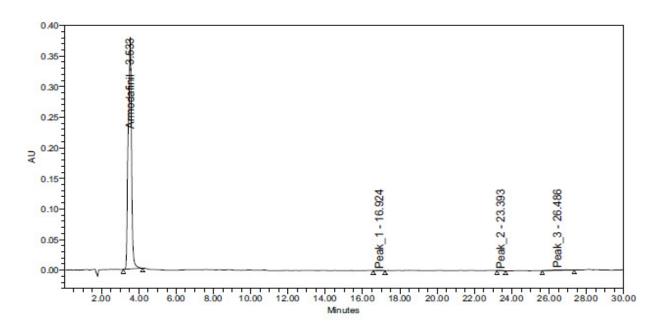

	Peak Name	RT	Area	% Area	USP Plate Count	USP Tailing	Purity1 Angle	Purity1 Threshold
1	Armodafinil	3.606	1678315	98.18	1875	1.03	0.121	0.304
2	Peak_1	10.061	10804	0.92	6766	1.16	0.008	0.183
3	Peak_2	14.346	10000	0.88	19669	1.29	0.062	0.161

Figure 12. Chromatogram of base degradation (0.1 N NaOH).

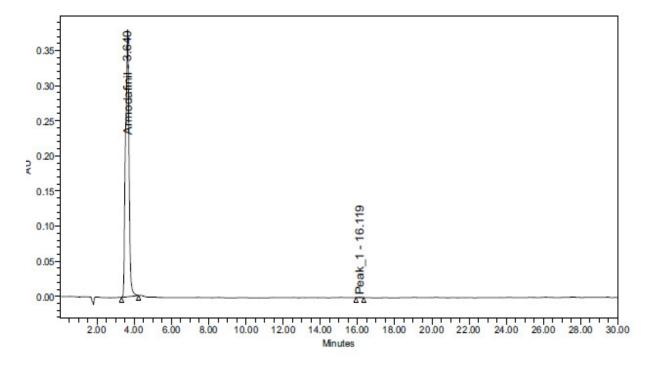

	Peak Name	RT	Area	% Area	USP Plate Count	USP Tailing	Purity1 Angle	Purity1 Threshold
1	Armodafinil	3.571	1637637	97.21	1039	0.97	0.131	0.353
2	Peak_1	17.954	10188	0.64	44121	1.13	0.120	0.202
3	Peak_2	18.903	12466	1.08	19775	1.41	0.124	0.407
4	Peak_3	26.952	12054	1.07	36571	0.96	0.010	0.212

Figure 13. Chromatogram of oxidation degradation (10% H₂O₂).

	Peak Name	RT	Area	% Area	USP Plate Count	USP Tailing	Purity1 Angle	Purity1 Threshold
1	Armodafinil	3.533	1689303	98.38	2896	0.95	0.271	0.456
2	Peak_1	16.924	4674	0.84	14141	0.91	0.220	0.449
3	Peak_2	23.393	4071	0.72	34674	1.18	0.228	0.642
4	Peak_3	26.486	4816	2.95	7337	1.02	0.200	0.303

Figure 14. Chromatogram of thermal degradation.

	Peak Name	RT	Area	% Area	USP Plate Count	USP Tailing	Purity1 Angle	Purity1 Threshold
1	Armodafinil	3.640	1706934	98.91	1005	0.96	0.252	0.492
2	Peak_1	16.119	7870	1.09	30593	0.98	0.052	0.133

Figure 15. Chromatogram of photolytic degradation.

CONCLUSION

From the above results furnished, the proposed RP-HPLC method was found to be simple, precise, accurate and sensitive for the determination of armodafinil in pharmaceutical dosage form. These are within short analysis time and the low value of RSD in comparison to the previous papers published; indicate that the proposed method is highly precise and accurate. High percentage of recoveries suggests that the proposed method is accurate. Forced degradation studies based on peak purity results, obtained from the analysis of force degradation samples using described method. It can be concluded that the absence of co-eluting peak along with the main peak of armodafinil indicated that the developed method is specific for the estimation of armodafinil in the presence of degradation products.

REFERENCES

- 1. http://www.rxlist.com/nuvigil-drug/side-effects-interactions.html
- 2. http://www.drug bank.com
- 3. http://RXList-nuvigil
- 4. Rao N, et al. "Enantioselective HPLC resolution of synthetic intermediates of armodafinil and related substances." J sep sci. 2008;31:981-989.
- 5. Ramakrishna S and Habibuddin M. "Development and Validation of New LC-MS/MS Method for the Determination of armodafinil in Human Plasma." Curr Pharm Anal. 2012;8:295-305.
- 6. Vivek Sagar P, et al. Stability Indicating RP HPLC Method for the estimation of Armodafinil in Tablet Dosage Form. Int J Pharm Pharm Sci. 2014;6:604-609.
- 7. Nagappan KV, et al. "Development and Validation of Stability Indicating RP HPLC method for the estimation of armodafinil and Characterization of its base Degradation Product by LC-MS/MS." J Adv Med. 2017;2:556-569.
- 8. Sehrawat R and Singh R. "Regulatory aspects in development of stability-indicating methods: a review." Chromatographia. 2010;72:1-6.
- 9. Kumar SA, et al. "Method development and validation for estimation of Naproxen in bulk samples as well as in tablet dosage forms by using RP-HPLC." PharmaTutor. 2016;4:33-39.
- 10. Guideline ICH Harmonized Tripartite. "Validation of analytical procedures: text and methodology." J Pharm Biomed Anal. 2005;1:5.
- 11. Nagappan KV, et al. "Development and Validation of Stability Indicating RP HPLC method for the estimation of armodafinil and Characterization of its base Degradation Product by LC-MS/MS." J Adv Med. 2017;2:542-548.