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INTRODUCTION
The nature of experimental data consists of several elements, e.g. the data points are subjected to large uncertainties and/

or large scatter. Therefore finding the most reliable curve describing data points may be not a trivial task. However, once such 
a goal is achieved, the scientists can come up with general conclusions or theories about the examined object or phenomenon.

The form of the fitted curve corresponds as a rule to the theory aimed at describing the data. However, the scatter and 
uncertainties of experimental data points imply that many potential models can describe those data equally well. Thus one has to 
decide which model (amongst other good ones) is the most reliable one in light of the analyzed data.

This paper discusses the robust Bayesian approach to two important elements of data analysis: fitting of a curve to the data 
(regression analysis) and the model selection algorithm.

ROBUST CURVE FITTING
The robust data fit (or robust regression analysis) is a part of what is known as the robust statistics, representing statistical 

methods that are not unduly affected by outliers [1]. In this case an outlier is a data point which significantly deviates from the 
main trend of points, e.g. due to a strong systematic error. The main goal of all robust analyses is to find the best fit of the curve 
to existed data points, which is least sensitive to such potential outliers. 

Simple comparison between the results obtained using robust Bayesian and classical least squares methods [2] is presented 
in Figure 1. One can clearly see that outliers in classical least squares method would result in very misleading conclusion, while 
Bayesian fit clearly reproduces the main trend as if the outliers were not present in the data. This results from the fact that 
each i-th data point appears with the probability whose probability density function (PDF), Pi, is composed of a proper Gaussian 
distribution (so called likelihood function) around its expected value as well as the prior function for its probability σi 

[3]. If one 
suspects that the real uncertainty may be larger than originally quoted one, 0σ i , one can choose such a prior as 2

0 /σ σi i  , which 
finally results in:
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The paper presents the robust Bayesian approach to the experimental 
data analysis. Firstly, the algorithm of the curve fitting to data points 
is introduced. The method is based on the robust Bayesian regression 
analysis, which substantially reduces the role of outlying data points 
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Figure 1. The example of robust Bayesian (black solid line) and least squares (grey dashed line) fits to some virtual 
experimental data with three outliers (outstanding points) [4,6].
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The symbol Di corresponds to the i-th experimental data value, where Mi is a model (theoretical) curve, e.g. the polynomial 
Mi=𝜆1+𝜆2 xi+𝜆3 xi

2+…+𝜆n xi
n-1, where xi is the i-th independent variable, and 𝜆i denotes i-th parameter. The right-side prior function 

for σi in eq. (1) assumes that the i-th analyzed probability σi lies between the original one (σ0i) and infinity [3,4], as mentioned earlier. 
Its particular choice presented above leads to closed form solution. As shown by Sivia and Skilling [3] this form may be different, 
however, it does not affect final conclusions. The procedure makes the weights of all outliers insignificantly low in calculation of 
the posterior probability distribution P for measuring of all N points, where, according to the maximum likelihood method [4,5] one 
can also use a sum instead of a product:

     ln= ⇔ =∏ ∑i iP P S P                                                                                                                                                                   (2)

where Pi is a result of the integration of eq. (1) for single point i:

( )
( )20

2 2
0

1 exp
22

σ
σπ

  − −  = −
  −   

i ii
i

ii i

M D
P

M D
                                                                                                                                      (3)

After the differentiation of logarithmic probability S over all n fitting parameters λ={λ1, λ2, …, λn}, one can find the final and 
general form of a Bayesian fitting equation [3] :
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where aforementioned weights gi of the points are:
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The equation (4) can be implemented directly into the computational algorithm to find the best Bayesian fit to all N 
experimental data points (xi,Di) with vertical uncertainties σ0i each. As mentioned earlier, the Mi means the theoretical value 
predicted by the assumed model and the best fitted n parameters, Mi(λ1, λ2, …, λn). Just this technique was used in fitting of a linear 
function Mi=𝜆1+𝜆2 xi presented in Figure 1. 

This method, presented by Sivia and Skilling [3] and not often used in the studies of e.g. epidemiological data, was extensively 
used in our papers [4-10].

MODEL SELECTION ALGORITHM
The Bayesian analysis allows one to assess relative reliability of two chosen models that can describe the data (the classical 

methods of model selection, like AIC1, or other Bayesian ones, like BIC2, will be omitted here). Examples of the use of such analysis 
can be found [4-10].

1Akaike Information Criterion
2Bayesian Information Criterion
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The Bayes theorem connects the probabilities of P(Model|Data)~P(Data|Model), which can be used to estimate the relative 
reliability of two models, Ms, in the case of the same data, D. The reliability of a model M with the fitting parameter λ, using the 
marginalization procedure can be written as [3]: 

( ) ( ) ( ) ( ) ( )| | , |  | , |  λ λ λ λ λ∝ = = ×∫ ∫P M D P D M P D M d P D M P M d                                                                                                         (6)

The P(D|λ,M) corresponds to the likelihood function, represented by the Gaussian distribution around the expected value λ0 ± σλ 
with maximum probability of likelihood function equals P(D|λ0, M). The prior probability P(λ|M) can be assumed as a uniform 
distribution U(λmin, λmax). Because such form of P(λ|M) is independent of λ, the integral (6) can be written as [3]: 
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The result of the integral (7) can be approximated by ( )0| ,  2λλ σ πP D M because “the sharp cut-offs at λmin and λmax do not cause 
a significant truncate on of the Gaussian” probability distribution from eq. (7) [3]. Because λ0 corresponds to the parameter found by the 
robust Bayesian best fit method for model M (see eq. (4)), the maximum value of likelihood function P(D|λ0, M) can be replaced by the 
set of Pi given by eq. (1) or (3) and the final form of the reliability function can be approximated by [7-8]: 
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The right-hand term in eq. (8) is called an Ockham factor. Equation (8) corresponds to the situation, where model M has only 
one (n=1) fitting parameter, λ0 ± σλ. In the case of a model which contains no parameters the Ockham factor equals 1 and model 
M is just a constant value (Mi=const). Thus, if such a model describes the data equally well as a model containing one parameter, 
the Ockham factor will always favor the former one. 

In the case of n fitting parameters λ={λ1, λ2, …, λn} with their estimated uncertainties σλ={σ1, σ2, …, σn}, the most general form 
of eq. (8) can be presented as [6,8] :
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Let us recall that N represents the number of experimental points (xi,Di) with “vertical” uncertainties σ0i each, to which model 
M is fitted using n fitting parameters λ ± σλ. The most problematic is the choice of values λmin and λmax, for all λs. In the simplest 
case they can be taken as minimum/maximum possible values of the considered parameter λ using the largest span that can be 
tolerated by the data. In order not to extend the range of λ in the case of a substantial scatter of data, not more than e.g. three 
points are allowed to lie outside the range [8].

In the final step of analysis one can calculate the relative value of each two models, say A and B, to check which of them 
is more likely to describe the data:
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When WM is greater than 1, model A wins over B. When WM≈1, both models have the same degree of belief. In general, 
WM can quantify the preference of one model with respect to the other one. In practice, the real values of WM may show that the 
plausibility of models can differ by orders of magnitude Fornalski and Dobrzyński [8].

DISCUSSION AND PRACTICAL APPLICATIONS

The Bayesian model selection algorithm may be applied in all cases when the clear distinction between the models is hard 
to obtain or even impossible. A good example of that process is presented in Figure 2 where both linear and parabolic models 
seem to be appropriate ones. In considered situation the eq. (10) is described by [5] :
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where the straight line and parabola are implemented as RAi=a(A) xi+b(A) - Di and RBi=a(B) xi²+b(B) xi+c(B) - Di, respectively. In this 
ituation the value of Wm ≈ 30, which means that model A (line) is approximately 30 times more likely than B (parabola) (Figure 2).

In fact, the r.h.s. of eq. (11) could be also multiplied by W0=P0(A)/P0(B) – the ratio of prior beliefs in a model A with respect 
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to the model B. For example, if one knows that linear relation should not describe the data, such extra factor stemming from 
Bayesian analysis will change aforementioned conclusion. However, in the example above it was assumed, that W0=1.

Figure 2. The fitting of two models: linear (black line) and parabolic one (grey line) to widely scattered data. The model 
selection algorithm prefers the linear model, Wm ≈ 30 [5].

Presented example shows a study popular in various sciences. As mentioned earlier, the model selection fitting the existing 
data is a matter of great importance. However, the most common approach concerns fitting the model to one’s assumptions, 
irrespective of its real plausibility. For instance the parabolic relation may be the outcome of some physical or biological theory, 
tested by the experiment (data source). On the other hand, in the absence of a strong information, giving no preference to any 
model (W0=1) is sensible. In the example given in Figure 2 the linear model turns out to be sufficient for such the description of 
widely scattered data. 

Similar case is presented in Figure 3, where one can observe the straight line and the part of the sinusoid. The sinusoid 
function is some theory’s outcome (e.g. mechanical oscillations) where the linear fitting is the simplest approximation of widely 
scattered data in some very limited range. In this example the robust statistics with W0=1 results in the linear relation as the most 
probable fitting. This is rather not consistent with the assumed theory and shows the deficiency of not using prior preference to 
the sinusoidal model. 

Figure 3. The linear fit (solid line) as a good approximation of sinusoid relationship (dashed line) in the light of scattered 
data, Wm ≈ 5 [5].

Very important and real case is presented in Figure 4, where one can find the actual physical description of the observed 
phenomenon (here: the cancer mortality ratio among irradiated nuclear workers). The precise model concerns the human health, 
which is a matter of great importance. However, in many regulations, e.g. radiation protection standards, some initial assumption 
is taken into account. In global standards more often the linear relationship is used, which comes from mentioned assumption, 
that all radiation is harmful. However, from the purely statistical point of view, such statement is nothing more than non-
mathematical degree-of-belief in the existing data. Thus, similarly to the previous example, the simpler model (here: the constant 
value, M=const) is more likely to fit than the linear relationship [9]. This is because of the fact, that the huge scatter of points makes 
more complicated models an assumptions only, not real effects. Analogical case can be found when cancer mortality in natural 
background radiation is analyzed using Bayesian reasoning [10]. 
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The Bayesian model selection algorithm can be applied to various cases, whenever one needs to choose the most proper 
curve. The latest application of that method was introduced in the cytogenetic biological dosimetry [11] to find the best calibration 
curve for chromosomal aberration testing of incidentally irradiated people. Nevertheless, it is just another example, not the 
complete range of possible applications.

Figure 4. The algorithm’ application to the cancer mortality ratio of irradiated nuclear workers [9]. The one-parametric 
constant model (grey horizontal line) is more likely than a linear one (black line), Wm ≈ 2.

Concluding the paper, robust Bayesian regression method (curve to data fitting) and the model selection algorithm were 
described and illustrated by some examples. Both methods work well in the situation of duff data, and can be recommended for 
use in such cases. 
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