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INTRODUCTION
Sextic equations are part of polynomial equations. Polynomial equations have many real world applications. The aim of this 

contribution is to further contribute to understanding of methods of solving sextic equations.

From literature polynomial equations were first investigated more than four thousand years ago[1,2]. 

The general sextic equation takes the form 
6 5 4 3 2

5 4 3 2 1 0 0x a x a x a x a x a x a+ + + + + + =                      1

Abel and Ruffini showed that proved that it impossible to solve over a field of rational numbers[3].

Motlotle[4], in his 2011 master’s thesis managed to present a formula for solving the Bring-Jerrard quintic equation using 
the Newton’s sum formula. In his contribution Motlotle convincingly argued that Abel’s impossibility proof has been misconstrued 
by many as meaning that no general algebraic solution of the quintic equation is attainable. He showed that such a formula in 
unattainable only within a field of Rational numbers. He then moved on to deriving a formula. The importance this contribution is 
that formulae of higher degree polynomials are attainable at least over a field of algebraic numbers. Algebraic numbers include 
at least both radical and rational numbers. Algebraic numbers are solutions to polynomials with rational coefficients. The number 
field is constituted by both transcendental and algebraic numbers.

Thabo’s contribution is that for higher degree polynomial to have general solvable Galois group then the integral domain F 
(containing the parameters) should also contain the roots in the extension field. Dummit[5] also contributed to sextic equations in 
his proof theorem.   

In his theorem, he asserted that the irreducible quantic 5 3 2( )f x x px qx rx s= + + + +  is solvable in radicals if and only if the 
sextic equation ( ) ( )6 5 2 4 3 3 4 2 5 4 6 48 40 160 400 512 3125 256 9375   0x ax a x a x a x a ab x a ab+ + + + + − + − =  has a rational root. If this is the case, the 
sextic factors into the product of a linear polynomial (x - θ) and an irreducible quintic, g(x). 

I present a method of solving the sextic equation: 
6 0x px q+ + =                          2

In this contribution I present a solvable factorized form to which the above sextic equation can be converted to make it 
solvable. I will factor the above sextic into solvable quadratic and cubic factors. 

The Sextic Equation, its Algebraic Solution by Conversion to 
Solvable Factorized Form

Samuel Bonaya Buya*
Department of Mathematics/Physics Ngao Girls Secondary School, Kenya

Research Article

ABSTRACT

I present a method of solving the sextic equation by converting it to 
a solvable factorized form. The factorized form will consist of two cubic 
and their five parameters. The factorized form is selected such that four 
of its parameters are functionally related to the two parameters of the 
reduced sextic equation. The fifth parameter will be a rational number

Received date: 07/08/2017
Accepted date: 16/09/2017
Published date: 30/09/2017

*For Correspondence

Samuel BB, Department of Mathematics/
Physics Ngao Girls Secondary School, 
Kenya

E-mail: sbonayab@gmail.com

Keywords: Sextic equation; Algebra; Septic 
equations



2

Research & Reviews: Journal of Applied Science and Innovations 

RRJASI | Volume 1 | Issue 3 | July, 2017

The factorized form will carefully be selected so that their parameters can be correlated to those of the above quintic 
equation. If the parameters of the two auxiliary cubic factors are a, b, d, e and f and those of the sextic equation are p and q, the 
sextic equation has general algebraic solution if four of the parameters of the cubic and quadratic factors are functionally related 
to the two parameters of the sextic equation and the fifth parameter is a rational number. 

METHODOLOGY
Consider the sextic equation:

6 0x px q+ + = 												                       3

Factorized form selected: 

( ) ( )
2

23 2 3 0q fax dx ex f x x a bx
f

 +
+ + + − + + + = 

 

							       	         	               4

The form selected above is similar to that used by [6] in his attempt to present a method to solve the general quintic equation. 

If in the expansion of 4:

The 5x  coefficient equated to zero then

1d = 													                          5

The 4x  coefficient is equated to zero and substituting 5 into the resulting equation:
 2 1b a= + 												                 	             6

The 3x  coefficient is equated to zero and substituting 5 then we obtain the equation:

( )2 1 0q f f e a+ − − + = 											                      7

Equating the 2x coefficient to zero and simplifying: 

( ) 0q f e f+ − = 							        					                8

Equating the x coefficient to p and simplifying: 
2eq f pf+ = 												                       9

From 8
2f qe
f
−

= 													                      10

Substituting 10 into 9 and simplifying: 

( )3 2 2 0f f q p q+ − − = 											                    11

Taking  
3

p qf y −
= +   										           	          12

( ) ( )2 3
3 2 0

3 9
p q p q

y y q
− −

− − − = 									          	          13

( ) ( ) ( ) ( ) ( ) ( )
2 23 3 6 3 3 6

2 2 2 23 3
1 1 1 1
2 9 4 9 729 2 9 4 9 729 3

p q p q p q p q p q p q p qf q q q q
       − − − − − − −

= + + + − − − + + + − +       
       
       

	           14

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2
2 23 3 6 3 3 6

2 2 2 23 3

23 3 6 3 3
2 2 2 23

1 1 1 1
2 9 4 9 729 2 9 4 9 729 3

1 1 1 1
2 9 4 9 729 2 9 4 9

p q p q p q p q p q p q p qq q q q q

e

p q p q p q p q p q
q q q q

 
       − − − − − − − + + + − − − + + + − + −                           

 =
     − − − − −

+ + + − − − + + +          
     

( )
2 6

3  
729 3

p q p q
 

  − −
− +     

 
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From 15: 

1qa f e
f

= ± − − − 											                    16
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 23 3 6 3 3 6
2 2 2 23 3

23 3 6 3 3
2 2 2 23

1 1 1 1
2 9 4 9 729 2 9 4 9 729 3

1 1 1 1
2 9 4 9 729 2 9 4 9

p q p q p q p q p q p q p qq q q q

p q p q p q p q p q
q q q q

a

 
       − − − − − − −

+ + + − − − + + + − + −                       
 

       − − − − −
+ + + − − − + + +             

       

= ±

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2
2 6

3

2 23 3 6 3 3 6
2 2 2 23 3

23 3 6
2 23

729 3

1 1 1 1  
2 9 4 9 729 2 9 4 9 729 3

1 1 1
2 9 4 9 729 2

p q p q q

p q p q p q p q p q p q p qq q q q

q

p q p q p q
q q

 
− − − + −     

 
 

       − − − − − − −
+ + + − − − + + + − +                       

 

−
   − − −

+ + + − − −      
   

( ) ( ) ( )
23 3 6

2 23

1

1
9 4 9 729 3

p q p q p q p qq q

−
 

   − − − −
+ + + − +           

 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 23 3 6 3 3 6
2 2 2 23 3

23 3 6 3 3
2 2 2 23

1 1 1 1
2 9 4 9 729 2 9 4 9 729 3

1 1 1 1
2 9 4 9 729 2 9 4 9

2

p q p q p q p q p q p q p qq q q q

p q p q p q p q p q
q q q q

b

 
       − − − − − − −

+ + + − − − + + + − + −                       
 

       − − − − −
+ + + − − − + + +             

       

=

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2
2 6

3

2 23 3 6 3 3 6
2 2 2 23 3

23 3 6
2 23

729 3

1 1 1 1  
2 9 4 9 729 2 9 4 9 729 3

1 1 1
2 9 4 9 729 2

p q p q q

p q p q p q p q p q p q p qq q q q

q

p q p q p q
q q

 
− − − + −     

 
 

       − − − − − − −
+ + + − − − + + + − +                       

 

−
   − − −

+ + + − − −      
   

( ) ( ) ( )
23 3 6

2 23

1

1
9 4 9 729 3

p q p q p q p qq q

−
 

   − − − −
+ + + − +           

 
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