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INTRODUCTION
Direct reciprocity has been an essential mechanism for potentially explaining why animals sometimes behave cooperatively 

even toward non-kin animals [1]. Direct reciprocators punish defectors by withholding cooperation in the future. Therefore, 
cooperation can be better off than defection and the evolution of cooperation becomes possible.

Axelrod and Hamilton [2] were conceived tit-for-tat (TFT) strategy as a reciprocal strategy. In the repeated prisoner’s dilemma 
game, the interaction continues on and a player chooses either to cooperate or defect in every round. On one hand, a cooperator 
confers a benefit b to the other player at a cost c to oneself, where b>c>0 (, which is sometimes called a donation game or a 
simplified prisoner’s dilemma). On the other hand, a defector provides nothing. We denote the probability that in each interaction, 
any given pair continues on to play the prisoner’s dilemma by w, where 0<w<1. Their relationship is broken with probability 1-w. 
This assumption means that the expected number of interactions is given by 1/(1-w). TFT tries to cooperate in the first move and 
in the following rounds, tries to cooperate if the opponent player cooperated in the previous round; otherwise, TFT defects. Let us 
consider the case where players are paired at random.

At first, let us look back the previous studies which considered the case where there are no execution errors. While TFT can 
be stable against the invasion by unconditional defectors, TFT is not evolutionary stable in the population consisting of TFT, ALLC 
(unconditional cooperators), and ALLD (unconditional defectors) strategy. In this case, TFT can be invaded by an ALLC mutant 
since TFT and ALLC are neutral. And then when the frequency of ALLC is over the threshold, an ALLD mutant can invade the 
population. Thus, TFT is likely to be invaded [3]. 

Secondly, let us look back the previous studies which considered the case where there execution errors are present [3-8]. We 
use μ, where 0<μ<1 to denote the probability that execution errors (or mistakes in behavior) occur, i.e., that a player who intends 
to cooperate actually fails to do so. In addition, we assume that there are no errors in which a player who intends to defect actually 
fails to do so and cooperates (but see also [9-11] for previous works studying this kind of errors). In this case, TFT is invaded by ALLD 
when (c/b-(1-μ)w)>0 is met, and TFT is invaded by ALLC when (c/b-(1-μ)w)<0 is met. Thus, one of these two inequalities is met. 
This means that TFT is invaded by either ALLD or ALLC, irrespective of the cost-to-benefit ratio (see [9,12,13] Brandt and Sigmund, 
Kurokawa, Nowak and Sigmund for related works).

However, this study examined the case where the intruders are ALLC or ALLD. Our previous study [14] considered the case 
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where an invader is not limited to ALLC or ALLD. Our previous study [14] has found that when TFT is a resident strategy, when a 
mutant player cooperates “more” than TFT in the game played by the mutant strategy and TFT, (c/b-(1-μ)w)>0 is the stability 
condition for TFT, while when a mutant player cooperates “less” than TFT in the game played by the mutant strategy and TFT, (c/b-
(1-μ)w)<0 is the stability condition for TFT. However, the condition under which TFT is stable against the invasion by a concrete 
strategy under a concrete condition (μ,w) has not been revealed yet even though this topic is important since TFT can be stable 
when the cost-to-benefit ratio is higher than the threshold if only strategies by whom TFT is stable when the cost-to-benefit ratio is 
higher than the threshold against the invasion invade the population of TFTs (similarly, TFT can be stable when the cost-to-benefit 
ratio is lower than the threshold if only strategies by whom TFT is stable when the cost-to-benefit ratio is lower than the threshold 
against the invasion invade the population of TFTs). In this paper, we tackle on this problem.

The paper is organized as: in MODEL AND RESULTS, we introduce a variety of mutants and obtain the stability condition for 
TFT; and in DISCUSSION, we summarize the results and suggest a future work to be undertaken.

MODEL AND RESULTS
In this paper, we consider memory-one strategies, and specify the stability condition for TFT against the memory-one 

strategies (Note that we do not give the stability condition for TFT against every memory-one strategy because of its difficulty for 
calculation). We consider the following reactive strategy whose memory is one. The space of strategies for a game for the current 
case would be a vector of five probabilities: f, PCC, PCD, PDC and PDD. f represents the probability of trying to cooperate in the first 
round. Pij represents the probability of trying to cooperate when the focal player did i and the opponent did j in the last move, 
where i is C (cooperation) or D (defection) and j is C or D. f, PCC, PCD, PDC and PDD are not less than 0 and not more than 1 since f, 
PCC, PCD, PDC and PDD are probabilities. 

2-1 The stability condition for TFT when being invaded by famous strategies (e.g., WSLS, grim, STFT, ATFT)

In this section, we obtain the conditions under which TFT is stable against the invasion by several famous strategies.

When an invader is a TFT (f, PCC, PCD, PDC, PDD)= (1,1,0,1,0) mutant, the mutant strategy has the same payoff as the payoff the 
resident strategy gets when a mutant strategy invades a population. 

When an invader is an ALLC (f, PCC, PCD, PDC, PDD) = (1,1,1,1,1) mutant, a GTFT mutant (see [15]), a firm but fair ((f, PCC, PCD, PDC, PDD) = 
(1,1,0,1, PDD )) mutant [10,16], or a Tweedledee ((f, PCC, PCD, PDC, PDD) = (1,1,0,1,1) mutant [17,18] the stability condition for TFT is given by

(1 ) 0c w
b

 − −µ > 
   												                       (1)

When an invader is an ALLD ((f, PCC, PCD, PDC, PDD) = (0, 0, 0, 0, 0) mutant, a Grim (f, PCC, PCD, PDC, PDD) = (1, 1, 0, 0, 0) mutant [17], or 
a STFT (f, PCC, PCD, PDC, PDD) = (0, 1, 0, 1, 0) mutant [19], the stability condition for TFT is given by

(1 ) 0c w
b

 − −µ < 
   												                     (2)

When an invader is a wins-stay, lose-shift (WSLS) ((f, PCC, PCD, PDC, PDD) = (1, 1, 0, 0, 1)) mutant [20-26], the stability condition 
for TFT is given by

*(1 ) ( ) 0c w
b

 − −µ µ −µ > 
 

 											                     (3) 

where 
2

* 1 1 w w
w

− − +
µ =

On one hand, when µ is larger than µ*, the inequality (3) becomes (1). On the other hand, when µ is smaller than µ*, the 
inequality (3) becomes (2). 

When an invader is an anti-reciprocation (ATFT) ((f, PCC, PCD, PDC, PDD) = (1, 0, 1, 0, 1)) mutant [27], the stability condition for 
TFT is given by

**(1 ) ( ) 0c w
b

 − −µ µ −µ > 
   											                     (4) 

where ** 1
2

w
w

−
µ =

−

On one hand, when µ is larger than µ**, the inequality (4) becomes (1). On the other hand, when µ is smaller than µ**, the 
inequality (4) becomes (2). 
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Figure 1 illustrates the parameter regions for which TFT is stable against the invasion by a various strategy mutant. When an 
invader is an ALLC, a GTFT, a firm but fair, or a Tweedledee (or the strategies which cooperate more than TFT in a game played by 
the strategy and TFT), the stability condition for TFT is (1) (see Figure 1a). On the other hand, when an invader is an ALLD, a Grim, 
or a STFT (or the strategies which cooperate less than TFT in a game played by the strategy and TFT), the stability condition for TFT 
is (2) (see Figure 1b). When a cooperative mutant and a defective mutant invade the population of TFTs at the same time, either 
of them can successfully invade the population of TFTs (Remember that TFT is subject to the invasion by ALLC or to the invasion 
by ALLD, as previous studies pointed out). When an invader is WSLS, the stability condition for TFT is (3) (see Figure 1c1). When 
an invader is ATFT, the stability condition for TFT is (4) (see Figure 1c2).

  

 

(a)       (b)

(c1)       (c2)

Figure 1. The condition for TFT to be stable against the invasion by a variety of strategy mutants. In the region colored in blue, TFT is an ESS. 
(a) when the invader is an ALLC, a GTFT, a firm but fair, or a Tweedledee. (b) when the invader is an ALLD, a Grim, or a STFT. (c1) when the 

invader is a WSLS. (c2) when the invader is an ATFT.

The stability condition for TFT when being invaded by strategies belonging to a more broad strategy set

In the previous section, we examined the conditions under which TFT is stable against the invasion by famous strategies. 
However, examining the case where other strategies invade the population consisting of TFTs also seems interesting. In the 
following sections, we examine this.

The case where an invader satisfies PCC+ PDD = PCD+PDC 

We consider the case where a mutant satisfies the constraint PCC+ PDD = PCD+PDC as a special case1,2. Strategies which do not 
refer to its own previous action are included in this strategy set since they satisfy the two constraints (PCC= PDC and PDD = PCD). ALLC, 
GTFT, STFT, ALLD, TFT, and ATFT are included in this strategy set. When this reactive strategy with this constraint is an invader, the 
stability condition for TFT becomes

*(1 ) ( ) 0c w f f
b

 − −µ − > 
      											                    (5)
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where * (1 ) ( )1
1 (1 ) 1 1 (1 )

CC DDDD w P PwPf
w w w

−µ −
= − −

− −µ − − −µ

When f is larger than the threshold (f*), (5) becomes (1). On the other hand, when f is smaller than the threshold (f*), (5) 
becomes (2). It is also apparent that (5) does not contain either PCD or PDC.

The case where each probability (PCC, PDC, PDD, PCD) for an invader is either 0 or 1

In this section, we remove the constraint PCC+ PDD = PCD+PDC. Here, we consider the restricted space where f is 1, and each 
probability (PCC, PDC, PDD, PCD) is either 0 or 1, and the number of strategies which belong to the strategy space is 24 (16) [19]. ALLC, 
Tweedledee, trigger, TFT, ATFT, and WSLS are included in this strategy set. These 16 strategies are classified into the following 
four groups.

Firstly, we list up the strategies which have the same payoff as the payoff the resident strategy gets when a mutant strategy 
invades a population. We name the strategy sets Category A. The strategies belonging to Category A are: (1, 1, 1, 0, 0) and (1, 1, 
0, 1, 0).

Secondly, we list up the strategies whose stability condition is (1). We name the strategy sets Category B. The strategies 
belonging to Category B are: (1, 1, 0, 1, 1), (1, 1, 1, 0, 1), (1, 1, 1, 1, 0) and (1, 1, 1, 1, 1). 

Thirdly, we list up the strategies whose stability condition is (2). We name the strategy sets Category C. The strategies 
belonging to Category C are: (1, 1, 0, 0, 0), (1, 0, 1, 0, 0), (1, 0, 0, 1, 0) and (1, 0, 0, 0, 0).

Fourthly, we list up the other strategies. We name the strategy sets Category D. The strategies belonging to Category D are: 
(1, 1, 0, 0, 1), (1, 0, 1, 1, 0), (1, 0, 0, 0, 1), (1, 0, 1, 1, 1) and (1, 0, 0, 1, 1). 

The condition under which the strategy TFT is stable against the invasion by a mutant wins-stay, lose-shift (1, 1, 0, 0, 1) is 
given by (3), as described above.

The condition under which the strategy TFT is stable against the invasion by a mutant (1, 0, 1, 1, 0) is given by

***(1 ) ( ) 0c w
b

 − −µ µ −µ > 
   											                    (6)

where *** 1 1w w
w

− + + −
µ =

The condition under which the strategy TFT is stable against the invasion by a mutant (1, 0, 0, 0, 1) is given by

*(1 ) ( ) 0c w w w
b

 − −µ − > 
  											                    (7)

where
2 2 3 4

*
2

3 4 8 9 2
2(1 )

w
− µ +µ + − µ + µ − µ +µ

=
−µ

The condition under which the strategy TFT is stable against the invasion by a mutant (1, 0, 1, 1, 1) is given by

**(1 ) ( ) 0c w w w
b

 − −µ − > 
   	 										                   (8)

where 
2

**
2

1 3
(1 ) (1 )

w − µ +µ
=

−µ +µ

The condition under which the strategy TFT is stable against the invasion by a mutant (1, 0, 1, 0, 1) is given by (4), as 
described above.

The condition under which the strategy TFT is stable against the invasion by a mutant (1, 0, 0, 1, 1) is given by (4).

In this section, we considered the case where various mutants invade a population of TFT. Let us observe the strategies 
belonging to category B. Strategies whose PCC + PCD + PDC + PDD is not less than 3, and whose (PCC, PDD) is not (0, 1) belong to 
category B. In that case, the mutant strategy cooperates more than TFT in a game between the strategy and TFT in a pair, and 
the resident strategy is stable when the cost-to-benefit ratio is high. Next, let us observe the strategies belonging to category C. 
Strategies whose PCC + PCD + PDC + PDD is not more than 1, and whose (PCC, PDD) is not (0, 1) belong to category C. In that case, the 
mutant strategy cooperates less than TFT in a game between the strategy and TFT in a pair, the resident strategy is stable when 
the cost-to-benefit ratio is low. Other strategies (i.e., PCC + PCD + PDC + PDD is two or (PCC, PDD) = (0, 1); e.g., WSLS) belong to category 
A or category D. In that case, the strategies have the same payoff as the payoff the resident strategy gets when a mutant strategy 
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invades a population, or whether the resident strategy is stable when the cost-to-benefit ratio is high or low depends on the 
combination of parameters (µ and w).

The case where three probabilities among the four parameters PCC , PCD, PDC and PDD are either 0 or 1, and the rest is more 
than 0 and but less than 1 

In this section, we consider the restricted space where f is 1, and three probabilities among the four parameters (PCC , PCD, 
PDC and PDD) are either 0 or 1, and the rest is more than 0 and but less than 1. Firm but fair is included in this strategy set. In this 
case, strategies are classified into the following three groups.

Firstly, we list up the strategies whose stability condition is (1 ) 0c w
b

 − −µ > 
 

. The strategies are: (1, 1, 1, 0, PDD), (1, 1, 1, 1, PDD), 

(1, 1, 0, 1, PDD), (1, 1, 1, PDC, 0), (1, 1, 1, PDC, 1), (1, 1, PDC, 1, 1) and (1, 1, PDC, 1, 0). These strategies cooperate “more” than the 
strategy TFT in a game between the strategies and TFT in a pair. TFT can be stable against the invasion by these cooperative 
strategies if the cost-to-benefit ratio is higher than the critical value. 

Secondly, we list up the strategies whose stability condition is (1 ) 0c w
b

 − −µ < 
 

. The strategies are: (1, 0, 0, PDC, 0), (1, 1, 0, PDC, 

0), (1, 0, PDC, 0, 0), (1, 1, PDC, 0, 0), (1, PDC, 0, 0, 0), (1, PDC, 1, 0, 0), and (1, PDC, 0, 1, 0). These strategies cooperate “less” than 
the strategy TFT in a game between the strategies and TFT in a pair. TFT can be stable against the invasion by these defective 
strategies if the cost-to-benefit ratio is smaller than the critical value. 

Thirdly, we list up the other strategies. The strategies are: (1, 0, 0, 0, PDD), (1, 0, 0, 1, PDD), (1, 0, 1, 0, PDD), (1, 0, 1, 1, PDD), 
(1, 1, 0, 0, PDD), (1, 0, 0, PDD), (1, 0, 0, PDC, 1), (1, 0, 1, PDC, 0), (1, 1, 1, PDC, 1), (1, 1, 0, PDC, 1), (1, 0, PCD, 0, 1), (1, 0, PCD, 1, 0), (1, 
0, PCD, 1, 1), (1, 1, PCD, 0, 1), (1, PCC, 0, 0, 1), (1, PCC, 0, 1, 1), (1, PCC, 1, 0, 1), (1, PCC, 1, 1, 0) , and (1, PCC, 1, 1, 1). These strategies 
cooperate “more” in some case and “less” in some case than the strategy TFT when in a game between the strategies and TFT 
in a pair.

The condition under which the strategy TFT is stable against the invasion by these mutants is given respectively as follows.

The condition under which the strategy TFT is stable against the invasion by a mutant (1, 0, 0, 0, PDD) is given by

2 2 3 2 2 2 2 3 2(1 ) ((1 )(1 ) ( 4 4 3 3 )) 0DD
c w w w P w w w w w w w w w
b

 − −µ −µ − + −µ + − µ + µ −µ − + µ − µ +µ < 
                          	            (9)

The condition under which the strategy TFT s stable against the invasion by a mutant (1, 0, 0, 1, PDD) is given by

2 2 2 3 2 2 2 2 3 2(1 ) ((1 ) (1 )(1 (1 )) ( 4 4 3 3 )) 0DD
c w w w P w w w w w w w w
b

 − −µ −µ − − −µ + −µ + − µ + µ −µ − + µ − µ +µ < 
    	         (10)

The condition under which the strategy TFT is stable against the invasion by a mutant (1, 0, 1, 0, PDD) is given by

( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )2 3 2 21 1 1 1 2 5 3 1 6 3 0DD
c w w P w w w w w w w w
b

µ µ µ µ µ − − − − − + − − − − + − − + + − + > 
         (11)

The condition under which the strategy TFT is stable against the invasion by a mutant (1, 0, 1, 1, PDD) is given by

2 3 2 2(1 ) ( (1 )(1 )( 1 2 (1 ) ) ( ( 2 ) (1 ) ( 5 3 ) ( 1 6 3 ))) 0DD
c w w w w w P w w w w w w w w
b

 − −µ − −µ − − + µ − + +µ + µ − + + − +µ − + +µ − + − < 
          (12)

The condition under which the strategy TFT is stable against the invasion by a mutant (1, 1, 0, 0, PDD) is given by

2(1 ) ((1 )(1 ) ( )) 0DD
c w w P w w
b

 − −µ − −µ + −µ −µ +µ < 
   								               (13)

+The condition under which the strategy TFT is stable against the invasion by a mutant (1, 0, 0, PDC, 1) is given by

( ) ( ) ( )( )( )2 2 3 2 2 2 2 3 2 2 2 2 2 21 1 3 4 3 3 1 3 2 0DC
c w w w w w w w w P w w w w w w
b

µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ − − − − − + − − + − + − − + − + − + − < 
        (14)

The condition under which the strategy TFT is stable against the invasion by a mutant (1, 0, 1, PDC, 0) is given by

( ) ( ) ( )( )21 1 2 0DC
c w w P w w w w
b

µ µ µ µ µ − − − + − − + − < 
             					      	         (15)
The condition under which the strategy TFT is stable against the invasion by a mutant (1, 0, 1, PDC, 1) is given by

( ) ( )( ) ( )( )( )2 2 2 2 2 21 1 2 1 2 1 3 2 0DC
c w w w w w w P w w w w w w
b

µ µ µ µ µ µ µ µ µ µ µ − − − − − + − − + − − − + − + − + − < 
       (16)
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The condition under which the strategy TFT is stable against the invasion by a mutant (1, 1, 0, PDC, 1) is given by

( ) ( ) ( ) ( )( )21 1 2 1 1 0DC
c w w w w P w w
b

µ µ µ µ µ µ − − − − − + + − − > 
  					            (17)

The condition under which the strategy TFT is stable against the invasion by a mutant (1, 0, PCD, 0, 1) is given by

( ) ( ) ( ) ( )( )2 2 3 2 2 2 2 3 2 21 1 3 4 3 3 1 0CD
c w w w w w w w w w P w w
b

µ µ µ µ µ µ µ µ µ µ µ µ − − − − − − + − − + − + − − − + > 
        (18)

The condition under which the strategy TFT is stable against the invasion by a mutant (1, 0, PCD, 1, 0) is given by

( ) ( ) ( )( )( )1 1 1 1 0CD
c w w w P w
b

µ µ µ µ − − − − + − + > 
     						             (19)

The condition under which the strategy TFT is stable against the invasion by a mutant (1, 0, PCD, 1, 1) is given by

( ) ( ) ( ) ( )( )21 1 2 1 0CD
c w w w w P w w
b

µ µ µ µ µ µ − − − − − + − − − + > 
  					            (20)

The condition under which the strategy TFT is stable against the invasion by a mutant (1, 1, PCD, 0, 1) is given by

( ) ( ) ( ) ( )( )21 1 2 1 1 0CD
c w w w w P w w
b

µ µ µ µ µ µ µ − − − − + − − − < 
   					              (21)

The condition under which the strategy TFT is stable against the invasion by a mutant (1, PCC, 0, 0, 1) is given by

( ) ( ) ( ) ( )( )22 2 3 2 2 2 2 3 2 2 21 1 3 4 3 3 1 1 2 0CC
c w w w w w w w w w P w w w w
b

µ µ µ µ µ µ µ µ µ µ µ µ − − − − − − + − − + − + + − − − + > 
        (22)

The condition under which the strategy TFT is stable against the invasion by a mutant (1, PCC, 0, 1, 1) is given by

( ) ( ) ( ) ( )( )21 1 2 1 1 0CC
c w w w w P w w w
b

µ µ µ µ µ − − − − − + + − − − > 
   				           (23)

The condition under which the strategy TFT is stable against the invasion by a mutant (1, PCC, 1, 0, 1) is given by

( ) ( )( ) ( ) ( )( )22 2 21 1 2 1 2 1 1 2 0CC
c w w w w w w w P w w w w
b

µ µ µ µ µ µ µ µ − − − − − + − − + − + − − + + − < 
       (24)

The condition under which the strategy TFT is stable against the invasion by a mutant (1, PCC, 1, 1, 0) is given by

( ) ( ) ( )( )2 21 1 2 2 1 2 0CC
c w w w w w P w w w w
b

µ µ µ µ µ µ µ − − − − + − + − + + − + < 
   			           (25)

The condition under which the strategy TFT is stable against the invasion by a mutant (1, PCC, 1, 1, 1) is given by

( ) ( ) ( ) ( )( )22 2 31 1 3 1 1 0CC
c w w w w w w P w w w
b

µ µ µ µ µ µ µ µ − − − − + − + − − + + − − + + < 
 

 		          (26)

DISCUSSION
Our previous study has found that when TFT is a resident strategy, when a mutant player cooperates “more” than TFT in 

the game played by the mutant strategy and TFT, (1 ) 0c w
b

 − −µ > 
 

is the stability condition for TFT, while when a mutant player 

cooperates “less” than TFT in the game played by the mutant strategy and TFT, (1 ) 0c w
b

 − −µ < 
 

is the stability condition for TFT. 

In this paper, we obtained the condition under which TFT is stable against the invasion by concrete strategies.

Previous studies [9,12,13] pointed out that TFT is subject to the invasion by ALLC or to the invasion by ALLD. However, this 
instability is due to that ALLC is a cooperative strategy and ALLD is a defective strategy. If the invaders are only cooperative 
strategies (e.g., ALLC, GTFT, firm but fair, Tweedledee) or if the invaders are only defective strategies (e.g., ALLD, Grim, STFT), then 
this is not the case.

This paper made a stability analysis assuming infinite populations. However, in reality, the population size is finite, and in 
finite populations, the effect of genetic drift is present [28-43]. Regarding the stability analysis in finite populations, further study is 
required.
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FOOTNOTE
1 According to some previous studies [44,45], some animals satisfy PCC+PDD≅PCD+PDC though the previous studies did not point 

it out.

2 See Kurokawa [46] for a related work
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