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INTRODUCTION
First hitting time models are a technique of modeling a stochastic process as it approaches or avoids a boundary, also known as a 

threshold. The process itself may be unobservable, making this a difficult problem. Regression techniques, however, can be employed to 
model the data as it compares to the threshold, creating a class of first hitting time models called threshold regression models. Survival 
data, measuring the amount of time before an event occurs, is widely used in modeling medical and manufacturing data. To analyze and 
model the data at hand, one commonly used method is the proportional hazards model, but this requires a strong proportional hazards 
assumption, one that is often lacking in practice. In place of the proportional hazards model, first hitting time models can be employed. 
First hitting time models do not require such strong assumptions and can be extended to become threshold regression models. Threshold 
regression has many advantages over the proportional hazards model, including its flexibility in both its assumptions and utilization and 
its application to stochastic processes so often evident in measuring survival. This paper describes the process of threshold regression 
modeling and compares its results and utility against that of the proportional hazards model.

 Section 2 gives a brief overview of survival data and some important vocabulary associated with the area of study. Section 3 
outlines the basics of the proportional hazards model and describes its advantages and shortcomings. Section 4 describes the first hitting 
time model and its application to longitudinal and other types of data. Section 5 considers the specific case of the threshold regression 
model and the different ways it can be utilized for different data. Section 6 provides examples of threshold regression and compares the 
results to the proportional hazards model. Finally, Section 7 provides a conclusion and a short discussion of the results.

SURVIVAL DATA
Survival data, or time-to-event data, measures the amount of time before some event, usually referred to as a failure, occurs. 
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ABSTRACT

First hitting time models are a technique of modeling a stochastic 
process as it approaches or avoids a boundary, also known as a threshold. 
The process itself may be unobservable, making this a difficult problem. 
Regression techniques, however, can be employed to model the data 
as it compares to the threshold, creating a class of first hitting time 
models called threshold regression models. Survival data, measuring 
the amount of time before an event occurs, is widely used in modeling 
medical and manufacturing data. To analyze and model the data at hand, 
one commonly used method is the proportional hazards model, but this 
requires a strong proportional hazards assumption, one that is often 
lacking in practice. In place of the proportional hazards model, first hitting 
time models can be employed. First hitting time models do not require 
such strong assumptions and can be extended to become threshold 
regression models. Threshold regression has many advantages over the 
proportional hazards model, including its flexibility in both its assumptions 
and utilization and its application to stochastic processes so often evident 
in measuring survival. This paper describes the process of threshold 
regression modeling and compares its results and utility against that of 
the proportional hazards model. This approach is presented in a some 
interesting applications. 
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Survival analysis, encompassing the various methods used to model and analyze survival data, is useful in a multitude of areas, especially 
in modeling medical and engineering data.

Failure and Censoring in Survival Data

A failure can be any event of interest to the researcher, in many cases referring to a biological death or mechanical breakdown. In 
medical applications, a failure is usually the death of a patient from a disease or injury of interest, the time of diagnosis or the time when 
a patient is cured (i.e., the event of interest is full recovery from an illness). In engineering, failure most commonly refers to a piece of 
machinery no longer being able to adequately perform its function.

In most studies, a failure does not occur for one or more subjects. For example, a patient may remain in good health or a machine 
may continue to function properly at the end of the study. In these cases, the subject’s status is measured for the final time at a censoring 
time, usually when the study is completed, though individual subjects can have personal censoring times as well. These censored 
observations must be considered separately from those that meet the failure criteria, as will be reflected in the partial likelihood function 
for the process, as discussed later.

Observable and Latent Survival Data

Observable data, that which can be measured and recorded, are by far the most convenient to implement. For many studies 
involving human subjects, however, measurements may be missing or impossible to determine. Unobservable, or latent, data are the 
result of conditions that are too complex, subtle or difficult to record [1]. In these cases, other, observable variables must be used to obtain 
as much relevant information as possible about the missing measurements.

PROPORTIONAL HAZARDS MODEL
Proportional hazards models are often used for prediction in survival analysis. These models require an appropriate hazard function 

as well as a strong proportional hazards assumption. This assumption states that the covariates are multiplicatively related to the hazard 
function [2]. The hazard function, ( )h t , gives the instantaneous rate of failure as [3]: 

0
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where t  is the time in question, T  is the failure time, ( )f t  is the failure density function and ( )s t  is the survival function, i.e., the 
probability of surviving until at least time t .

The hazard functions in proportional hazards models are proportional to a baseline hazard, 0 ( )h t , which yields a useful property. 
Suppose we have subjects with covariate values 1 1=Y y  and 2 2=Y y . Then [3]: 
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Therefore the hazard ratio at any time t  does not depend on t  [2]. Under the proportional hazards assumption, the survival 
funcitons for observations with different covariate values do not intersect [3].

 Due to the strong nature of this proportional hazards assumption, though, many proportional hazards models fail. Nonproportional 
hazards can be caused by unexplained similarities in the risk or covariates that change over time within subjects [2]. Using proportional 
hazards also limits the outcome of the model. Most notably, survival curves for a proportional hazards model cannot cross, so that if one 
group is outperforming another, that trend will remain intact for the remainder of the study, according to the model.

FIRST HITTING TIME MODEL
A first hitting time model explains event times using a stochastic process { ( ), 0}Y t t ≥  that reaches a boundary B , also known as a 

threshold [3]. The first hitting time S  of the data is given by 

= inf{ | ( ) }S t Y t B∈

Note that { ( )}Y t  can be one- or multi-dimensional, could have different properties such as stationarity, independence of increments 
or a continuous sample path and has no guarantee of ever hitting the threshold, that is, 

( < ) = 1 ( = )∞ − ∞P S P S may be less than 1 [5]

This stipulation accounts for censored subjects for whom ( = )P S ∞  is greater than 0. First-hitting time models do not require the 
proportional hazards assumption, giving them more freedom of application than corresponding proportional hazard models.

 For a latent process { ( )}Y t , we have both process parameters and a baseline level. The process parameters, given as the vector 
2= ( , )θ µ σ , outline the mean drift µ  and the variance 2σ . For simplicity, 2σ  is usually set to equal 1. The baseline level of the process, 

0y , is simply the value of (0)Y .
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Applicable Data for First Hitting Time Models

The data used usually consists of = 1, ,j n  subjects with independent health processes { ( )}, = 1, ,ij jY t i m  where jm  is the final time 
recorded for subject j . The boundary sets of individual subjects may also vary, but for the purposes of this paper, we will assume a 
common threshold. For each of the n  subjects, the data provide observation pairs 

1( , ), = 1, , , ,ij ij j j m jj
t y i m t t≤ 

the thi  longitudinal reading ijy  on the level of { ( )}jY t  at time ijt , accompanied by an overall failure indicator jI  which is 1 if =m jj
t S  and 

0 if =m jj
t C . After the boundary set is reached, the level of the process, ij , is only read if = ji m , that is, if it is the first hitting time of 

the subject [4].

Restricted Data in First Hitting Time Models

In many cases, longitudinal data are not available, so = 1jm  for all j , and the only information available is the observation pair 
( , )j jt y  and the failure indicator jI  as above. In more extreme cases of restricted data, the only information available is jt  with jI , 
conveying if the subject failed or was censored and when [4].

Likelihood Function for First Hitting Time Models

Each subject in a study contributes to part of the overall likelihood for the data, depending on whether the subject experienced a 
failure or was censored. If the subject fails at time =S s , then its contribution is given by 

0( | , ) = (first hitting time ( , ))µ δ∈ +f s y P s s s

If the subject survives beyond the censoring time C , its contribution is given by 

01 ( | , ) = (no first hitting time before C)µ− F C y P

So, with a failure indicator jI , we have the likelihood function 
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Markov Decomposition of Observations

Multiple observations in survival data for a single subject are often decomposed into a series of smaller entries covering a set 
amount of time with initial and final data entries, creating a longitudinal sequence that can be used in first-hitting time models [1]. When 
longitudinal data, sequential observations on the same measurable time-varying covariates, are used, some useful properties arise that 
simplify the process of predicting survival. The sequence of time points for which observations are obtained is denoted 0 1{ , , }t t   with 

0 1t t≤ ≤ . This sequence ends when one of two events occur: the subject either fails or is censored.

 The censoring time C  will coincide with one of the time points in our sequence, so we can create both a failure code sequence 
{ , = 0, , }with = 0if > and = 1if ≤i j i i i if i m f S t f S t

and a censoring code sequence 
{ , = 0, , }with = 0if >  and = 1if =i j i i i ic i m c C t c C t

with 0 0= = 0f c .

These sequences lead to three possible code configurations at each time point. If the subject is surviving and has not been censored 
at time it , then = = 0i if c . If the subject fails on or before time it , then = 1if  and = 0ic . If the subject has not failed by the censoring time, 
then = 0if  and = 1ic . These sequences are used in conjunction with the observable process sequence for the threshold-crossing variable 
given by { , = 1, , }ij jy i m  and with the sequence of vectors of additional observed covariates, denoted { , = 1, , }ij jx i m  for each subject j
. Our assumptions require that these values are observed at the censoring time, but not after a failure.

Under a Markov assumption, we can assign baseline covariate values 1iy −  and 1ix −  to time increments 1( , ]i it t−  to find the initial 
health status for the interval at time 1it − . Let = ji m  be the last observation for a subject, that is, the first observation for which either ic  
or if  is 1. With events = ( , , , ), = 0, ,i i i i i jA y x f c i m , we have 

1 0 0 1 0 0 1
=1 =1

( , , , ) = ( ) ( | , , ) = ( ) ( | )
m mj j

m m i i i ij j
i i

P A A A P A P A A A P A P A A− − −∏ ∏ 

by the Markov assumption. By construction, the longitudinal record is broken into a series of one-step records with initial conditions 
for the thi  entry given by 1iA −  and iA  as the final conditions on the interval. Explicitly, this is written as 

1 0 0 0 0 0 1 1 1 1
=1

( , , , ) = ( , , = 0, = 0) ( , , , | , , = 0, = 0)
m j

m m i i i i i i i ij j
i

P A A A P y x f c P y x f c y x f c− − − − −∏
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with 0( ) = 1P A  unless the initial conditions are random [1].

Types of First Hitting Time Models

Although many types of first hitting time models exist, some processes are used more often than others. One of the most common 
is the one-dimensional Wiener process with an inverse Gaussian first hitting time. The Wiener process has parameters µ  and σ  and 
begins with an initial value of (0) = 0Y . When µ , the mean drift rate, is nonnegative, ( < ) = 1P S ∞ , and the first hitting time S  has 
an inverse Gaussian distribution. When µ  is negative, 2( < ) = < 1P S e αµ∞ , and { | ( < )}S S ∞  has an inverse Gaussian distribution with 
parameters | |µ  and σ  [4].

Another common process is the two-dimensional Wiener model for a marker and first hitting time. Here, the process { ( )}Y t  is 
latent, but is accompanied by a marker process, { ( )}wX t , that covaries with { ( )}Y t  in time. Jointly, the two processes form the two-
dimensional Wiener diffusion process { ( ), ( )}wY t X t  that has initial values 0{ (0), (0)} = {0, }wY X x  and is distributed multivariate normally as 

2

(0)
{ ( ), ( )} ,
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Y YY YX

w
w X XY XX

Y t t t
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X t t t
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The threshold is set at 0, and the marker change process { ( )}X t  is given by ( ) = ( ) (0)w wX t X t X−  [4].

The process is observed from the initial time 0 until the set censoring time C , so either the subject is surviving at C  and the marker 
level ( ) = ( )X C x C  is recorded or the subject fails at some time S  and ( ) = ( )X S x S  is recorded.

THRESHOLD REGRESSION
A class of first hitting time models known as threshold regression models incorporate covariate data into the original first hitting 

time model using regression structures for the parameters of the process used [2]. In threshold regression, the effects on the hazard vary 
with time, so the proportional hazards assumption is not necessary [2]. Threshold regression institutes a regression structure that utilizes 
the same 2= ( , )θ µ σ  process parameters with mean drift parameter 1 1= ( , , )pg x xµ   and baseline level 0 2 1= ( , , )py g x x . Here, 1, , px x  
are values of the covariates 1, , pX X  for the subject and 1g  and 2g  are selected link functions for the data at hand. Many different 
link functions can be used, including linear and polynomial combinations of 1, , pX X , semi-parametric regression splines, penalized 
regression splines, random effects models and Bayesian models [3]. 

The three building blocks of threshold regression, then, are: 1) the process, { ( ), 0}Y t t ≥ , which could be a Wiener process, a Gamma 
process or some other applicable process; 2) the boundary, which could be a straight line or some curve; and 3) the time scale, which 
could be based on calendar time, running time or analytical time.

Log-Likelihood Function for Threshold Regression

Threshold regression uses the log-likelihood function to determine survival time of a subject as follows: 

0 0 0
=1

( , ) = { ( | , ) (1 ) (1 ( | , )}
n

j j j j
j

lnL y I lnf t y I ln F t yθ θ θ+ − −∑

where jI  is the failure indicator for subject j , jt  is the censored survival time with =jt s  if the subject failed, f  and F  are the 
first hitting time probability density function and cumulative distribution function, respectively [3].

Let LD  be the event that the threshold B  is eventually reached. Then the mean survival time for subject j  can be found by 

02
0[ | , , , ] = for 0

| |
µ σ µ

µ
≠j

j j j L
j

x
E s y D [2]

In Bayesian analysis, the nonidentifiability of these parameters can lead to either noninformative priors, which allows that parameter 
to drift to extremes, causing unstable estimates, or overinformative priors that do not allow for any Bayesian updating or learning [2].

Implementing Threshold Regression

In place of these problems, fixing 2 = 1σ  allows us to model the remaining two parameters, jµ  and 0 jy , using regression. Here, 
threshold regression reveals one of its greatest advantages: distinguishing between the two types of covariate effects [2]. Threshold 
regression designates its covariates as having an effect prior to the study, that is, on 0y , or as having an effect on the degradation of the 
subject, that is, on µ . A common regression structure uses the following equations: 

0ln( ) =j jy x β′

=j jxµ γ′

where 1= (1, , , )j j jpx x x ′
  is the covariate vector and 0= ( , , )pβ β β ′

  and 0= ( , , )pγ γ γ ′
  are the respective covariate effects [2].

EXAMPLES
Using the SAS code from [5], we will investigate first a simple data set concerning myelomas, then a larger, similar data set 
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regarding melanomas and finally an expansive data set dealing with ventilator-associated pneumonia in hospitals.

Myeloma Data

A hypothetical illustration of threshold regression involves 49 patients who have been diagnosed with myeloma, an accumulation 
of cancerous plasma cells. In this simple example, only three covariates accompany the time variable, measuring the time until death or 
censoring, and the failure indicator: the age of the patient at enrollment, the gender of the patient and the treatment applied to the patient 
[5]. These data are presented as highly restricted, so we are only given the value of these covariates at the end of the study and the time 
of failure or censoring. There is no opportunity to use longitudinal data or any Markov decomposition.

 Using linear link functions, the program finds the coefficients for the expressions 
0 0 1 2 3ln( ) = ( ) ( ) ( )y b b age b gender b treatment+ + +

0 1 2 3= ( ) ( ) ( )g g age g gender g treatmentµ + + +

The Newton-Raphson method is used to maximize the log-likelihood function 
2

31 ( 1) 1 2 1ln( ) = ln(2 ) (1 ) ln
2fail fail

dt dt d dtL I vt I exp
vt vvt vt

π
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to retrieve the above coefficients. The nonlinear maximization procedure uses t -tests with = 0.05α  to determine which coefficients 
are significant, and we obtain the following Table 1.

Process  Regression  Significant

Parameter  Parameter  Variable  Estimate p -value  at = 0.05α

0y  0b  — 4.204297 103.75 10−×  Yes

1b  age -0.021501 0.019915 Yes

2b  gender -0.326445 0.049655 Yes

3b  treatment -0.172050 0.015926 Yes

µ
0g  — -8.872168 0.002937 Yes

1g  age 0.052843 0.248092 No

2g  gender 1.715020 0.037285 Yes

3g  treatment 0.717975 0.030115 Yes

Table 1. The nonlinear maximization procedure uses t -tests with = 0.05α  to determine which coefficients are significant, and we obtain the 
following table.

Thus, we obtain the necessary regression coefficient estimates, yielding 

0ln( ) = 4.204297 0.021501 ( ) 0.326445 ( ) 0.172050 ( )y age gender treatment− − −

= 8.872168 0.052843 ( ) 1.715020 ( ) 0.717975 ( )age gender treatmentµ − + + +

Using the lifetest procedure in SAS, we can obtain survival plots (Figure 1). We now compare these plots with those generated 
by our regression.

According to our regression, gender is significant to both the initial health status 0y  and the mean drift of the health process µ . 
Using the lifetest procedure in SAS, we see from the Kaplan-Meier survival estimates that males have a higher initial health status than 
females, but also that just before the median survival time the two curves cross twice. This means that near 3.3 years into the study, the 
males lost their health advantage, but quickly regained it. Males continued to out-survive females for the remainder of the study, with 
both groups having similar drifts, as evident by the close steepness in the two curves.

In our regression model, however, the females begin with a very slight advantage in initial health, but it is quickly lost when the 
female curve takes a steep turn downward. Both curves approach the threshold steadily, as in the lifetest procedure, and the median 
survival times are well predicted by the regression.

In our next set of curves (Figure 2), separated by treatment, we again focus on a variable that is significant to both 0y  and µ
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. Using the lifetest procedure, we see that treatment 2 has a considerable disadvantage in initial health status. We also observe that all 
three curves cross each other multiple times, but are closest around 3.5 years after the study begins.

 

Figure 1. Survival Curves by Gender.

Figure 2. Survival Curves by Treatment.

This behavior is also found in our regression model, where the three curves reverse their order: treatment 0 goes from being the 
strongest to the weakest all within year three, while treatment 2 does the opposite. In our model, treatments 0 and 1 have approximately 
the same curve until the end of the third year. In all cases, the differences in the treatments are not evident until at least three years into 
the study, and the threshold is reached for both treatments 0 and 1.

Melanoma Data

Our second data set, from a true study of melanoma patients, is observed in the same way as the previous data, that is, with only 
one set of observations per subject. Here, the time until death or censoring is measured along with several covariates: sex of the patient, 
amount of inflammatory cell infiltrate (ICI), an epithelioid cell type indicator (ecells), an ulceration indicator, thickness of the tumor 
(mm) and age of the patient.

Again, linear link functions were used to solve for the coefficients of 

0 0 1 2 3 4 5 6ln( ) = ( ) ( ) ( ) ( ) ( ) ( )y b b sex b ICI b ecells b ulceration b thickness b age+ + + + + +

0 1 2 3 4 5 6= ( ) ( ) ( ) ( ) ( ) ( )g g sex g ICI g ecells g ulceration g thickness g ageµ + + + + + +

The same method is used to maximize the same likelihood function, and the coefficients are found and presented in the following 
Table 2, with = .05α , :
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Process  Regression  Significant

Parameter  Parameter  Variable  Estimate  p -value  at = 0.05α

0y 0b   —  3.712694  213.85 10−×   Yes

1b   sex  0.083293  0.643372  No

2b   ICI  0.068664  0.567643  No

3b   ecells  0.325755  0.102563  No

4b   ulceration  -0.519078  0.022768  Yes

5b   thickness  -0.076300  0.029923  Yes

6b   age  0.007756  0.073207  No

µ
0g   —  0.057569  0.000675  Yes

1g   sex  -0.011437  0.137872  No

2g   ICI  -0.007273  0.151122  No

3g   ecells  -0.023115  0.007301  Yes

4g   ulceration  -0.000073  0.993298  No

5g   thickness  0.000988  0.467040  No

6g   age  -0.000586  0.007374  Yes

Table 2. The coefficients are found and presented in the following table with = .05α .

These coefficients yield the functions 

0ln( ) = 3.712694 0.083293 ( ) 0.068664 ( ) 0.325755 ( )y sex ICI ecells+ + +

0.519078 ( ) 0.076300 ( ) 0.007756 ( )ulceration thickness age− − +

= 0.05756 0.011437 ( ) 0.007273 ( ) 0.023115 ( )sex ICI ecellsµ − − −

0.000073 ( ) 0.000988 ( ) 0.000586 ( )ulceration thickness age− + −

Our regression tells us that ulceration is significant only for 0y , the initial state of the health process of the patients. That difference 
is evident in the curves (Figure 3) provided by the lifetest procedure in SAS, but there also seems to be a rather large discrepancy 
between the drift of the two curves, which is absolutely not true in our regression. In the Kaplan-Meier estimates, the two curves do not 
cross, while in our regression model, the two curves are exactly the same. This holds for the insignificance of drift in our model, but 
does not account for the differences in initial health. The regression model does, however, accurately predict the median survival time 
for ulcerated patients and demonstrates that neither group reaches the threshold.

Figure 3: Survival Curves by Ulcerations.
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The regression model states that the age of the patient is significant to both µ  only. The age variable breaks the data into smaller 
groups, making some of the curves less informative. Groups with small sample sizes, such as those over 80 and those under 20, 
have curves that react strongly to a small number of failures, so these curves are often misleading in the Kaplan-Meier estimates. 
Accounting for this, we see that the differences in initial health are mostly due to these smaller groups and that there is otherwise a rather 
straightforward correlation between age and drift: the older the patient, the steeper the survival curve. It is also evident that earlier in 
the trial, before 1000 days, the survival curves of most of the age groups are rather tight, with much crossing and overlap, but after the 
1000 day mark, the curves are considerably more separated, demonstrating that as time progresses, age plays a greater role in recovery 
and failure. It should also be noted that around 3000 days, the 40-80 year-olds have similar curves, but return to their previous pattern 
as the study progresses.

Our regression does not demonstrate any differences in initial health status, but is consistent with the major pattern found in the 
Kaplan-Meier estimates. Again, due to smaller sample sizes, the median survival times are not well-predicted for our data, but all the 
curves (Figure 4) stay well above the threshold, as is consistent with the data.

Figure 4: Survival Curves by Age.

Ventilator-associated Pneumonia Data

 In a recent study of ventilated patients taken to the intensive care unit (ICU) at a local hospital, 246 patients were observed to 
measure the time until ventilator-associated pneumonia occurred. Again, no longitudinal data were used, but one observation per subject 
was recorded with the time variable observed being the length of time on the ventilator and an indicator variable stating whether or 
not the patient contracted ventilator-associated pneumonia. The other covariates of note include: a chlorohexidine indicator (chx), the 
length of stay in the hospital in days (hstay), the length of stay in the ICU in days (icustay), the intubation site (intsite), an unplanned 
extubation indicator (uext), a reintubation indicator (reint), the age of the patient, the sex of the patient, the race of the patient, the 
admission diagnosis of the patient (adx) and a co-morbidity COPD indicator (copd). Note that a failure in this example is not a death 
due to a disease, but simply being diagnosed with ventilator-associated pneumonia, demonstrating that “failure" can have a number of 
meanings in first hitting time models.

 Once more, linear link functions were used to solve for the regression coefficient given in 
0 0 1 2 3 4 5 6ln = ( ) ( ) ( ) ( ) ( ) ( )y b b chx b hstay b icustay b intsite b uext b reint+ + + + + +

7 8 9 10 11( ) ( ) ( ) ( ) ( )b age b sex b race b adx b copd+ + + + +

0 1 2 3 4 5 6= ( ) ( ) ( ) ( ) ( ) ( )g g chx g hstay g icustay g intsite g uext g reintµ + + + + + +

7 8 9 10 11( ) ( ) ( ) ( ) ( )g age g sex g race g adx g copd+ + + + +

These link functions yielded the results in the following Table 3 with = .05α :
Table 3. Linear link functions yielded the results in the following table with = .05α

Process  Regression  Significant

Parameter  Parameter  Variable  Estimate  p -value  at = 0.05α

0y 0b   —  1.665716  0.141792  No

1b   chx  -0.371571  0.091315  No

2b   hstay  -0.022946  0.000203  Yes
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3b   icustay  0.084248  0.000075  Yes

4b   intsite  -0.174623  0.648771  No

5b   uext  -0.446989  0.600274  No

6b   reint  0.691716  0.128498  No

7b   age  0.006569  0.278683  No

8b   sex  0.148908  0.719271  No

  race  0.223836  0.125714  No

10b   adx  -0.287720  0.000617  Yes

11b   copd  0.229706  0.141650  No

µ
0g   —  0.934383  0.581538  No

 1g   chx  0.464599  0.163287  No

2g   hstay  0.021135  0.005082  Yes

3g   icustay -0.059852  0.112031  No

  intsite  0.223942  0.628369  No

5g   uext  1.490779  0.294132  No

6g   reint  -1.818343  0.031547  Yes

7g   age  -0.004731  0.653904  No

8g   sex  -0.773485  0.238621  No

9g   race  -0.440232  0.132053  No

10   adx  0.418632  0.016785  Yes

11g   copd  -0.435665  0.131208  No

So we have the functions 
0ln = 1.665716 0.371571 ( ) 0.022946 ( ) 0.084248 ( )y chx hstay icustay− − +

0.174623 ( ) 0.446989 ( ) 0.691716 ( ) 0.006569 ( )intsite uext reint age− − + +

0.148908 ( ) 0.223836 ( ) 0.287720 ( ) 0.229706 ( )sex race adx copd+ + − +

= 0.934383 0.464599 ( ) 0.021135 ( ) 0.059852 ( )chx hstay icustayµ + + −

0.223942 ( ) 1.490779 ( ) 1.818343 ( ) 0.004731 ( )intsite uext reint age+ + − −

0.773485 ( ) 0.440232 ( ) 0.418632 ( ) 0.435665 ( )sex race adx copd− − + −

We will again compare the survival curves (Figure 5) for our regression with the Kaplan-Meier estimates generated by the lifetest 
procedure in SAS.

The regression output states that a patient’s length of stay in the ICU is significant only for the initial health status 0y . This variable 
is too varied to accurately depict all of the data, but with these limited sample sizes, we can see that the Kaplan-Meier estimates all have 
similar slopes for the first two weeks of the study. Furthermore, we can see that the initial health statuses do indeed differ, with those 
staying in the ICU for approximately two weeks outperforming those staying for three weeks by out three days, those staying for one 
week by about nine days and those staying for less than a week by more than ten days. In the Kaplan-Meier estimates, the only group 
reaching the threshold are those staying in the ICU for approximately one week.

 In our regression model, all three curves have nearly the exact same drift, with very similar steepness of the curves. The differences 
in initial health are evident from the length of time each curve takes to first drop from the 100% survival rate. As in the Kaplan-Meier 
estimates, the curves for one week and three weeks are nearly identical, while that for patients staying in the ICU for approximately two 
weeks has the highest median survival time, around 13.5 days. It is noteworthy that a patient staying in the ICU for three weeks can still 
have a failure time prior to 21 days into the study, as a failure in this case does not indicate a death, simply the contraction of a disease.
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Figure 5: Survival Curves by Length of Stay in the ICU. 

The admission diagnosis of a patient is perhaps the most informative of the variables in this study, as it accounts for much of what 
happens to the patient after arriving at the ICU. The admission diagnosis is considered by our regression to be significant for both 0y  
and µ . The Kaplan-Meier estimates provided by the lifetest procedure display clear differences in the initial health statuses of patients 
from all eight groups, but it should again be noted that small groups sizes for some diagnoses, especially 6, 7 and 8 (post-operative, 
sepsis and miscellaneous, respectively), make for dramatic turns or a complete lack thereof in some curves. Even with a large sample 
size, though, patients admitted with cardiovascular diagnoses were then diagnosed with ventilator-associated pneumonia very quickly 
and often. The cardiovascular group reaches the threshold by day 11.

The regression model shows that the three most common diagnoses, neurology, pulmonary and cardiovascular, have close but 
distinct curves (Figure 6), all of which reach the threshold by day 18. Patients initially diagnosed with neurological problems have an 
advantage over the other two in initial health, but have a steeper curve overall, showing the differences in mean drift of the processes. 
The differences in the drift for all the groups increase with time, as demonstrated by the drastic spread of the curves after day 8. 

Figure 6. Survival Curves by Admission Diagnosis

Finally, our regression marks reintubation of the patient as a significant variable for µ  only. In the Kaplan-Meier estimates, 
reintubated patients have some advantage in initial health status, but the curve drops quickly, reaching the threshold by day 18. Patients 
for whom the variable was not applicable, meaning there was no unplanned extubation to reverse, decreased the most slowly, indicating 
that avoiding reintubation and unplanned extubation altogether will result in the strongest survival curve (Figure 7).

The regression model seems to display three different initial health statuses, but the significant differences lie in the drift of the 
processes. As expected, once the reintubated patient’s curve begins to drop, it drops quickly and almost straight down to the threshold. 
The small size of this group could lead to this dramatic drop, which is almost exactly mirrored by the non-reintubated patient’s curve 
approximately three days earlier. The large group, for whom reintubation was not an issue, has a less steep slope to its curve, overtaking 
non-reintubated patients by day 8 and reintubated patients by day 11, proving its significantly different mean drift.
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Figure 7. Survival Curves by Reintubation.

CONCLUSION
 Although the proportional hazards model has its uses, it relies too heavily on the proportional hazards assumption, which can 

fail quickly in application. In implementing threshold regression, a specialized case of the first hitting time model, this assumption 
is avoided, creating more opportunities for practice and function. Threshold regression models can also help to emphasize specific 
components that lead to changes in the health status of a subject by identifying significant and insignificant covariates as they are applied 
in regression [3].
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