
Volume 2, No. 7, July 2011

Journal of Global Research in Computer Science

REVIEW ARTILCE

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 114

TO DESIGN A SIMULATOR FOR PERFORMANCE COMPARISION OF COST

MODELS

Manpreet Kaur
Department of Computer Science and Systems Engineering

University-CDLU, SIRSA, India

manpreet.beaty@gmail.com

Abstract: In Cost Estimation Models we estimate the cost. Software Cost Estimation is the process of predicting the amount of effort required to

build a software system. In this dissertation, I will design a simulator that compare the cost models i.e COCOMO81 and COCOMO2.0 and find

the which one is better in terms of cost, effort, persons per month and source lines of codes. In this work, random number generator is used for

input. The output is shown in the form of graphs. All work is done in java language. The performance of cost models is a series of simulations

reveal that the proposed scheme provides a better solution.

Keywords: Cocomo81, Cocomo2.0, Software Cost estimation, Software Effort Estimation, SLOC, Function Points.

INTRODUCTION

Software cost estimation is one of the most critical tasks in

managing software projects. There is inevitable gap between

the estimated costs and the actual costs derived from

software projects and hence accurate cost estimates are

highly desired during the early stages of development. The

precision of the effort estimate is very important for

software industry because both overestimates and

underestimates of the software effort are harmful to software

companies. If a manager's estimate is too low, then the

software development team will be under considerable

pressure to finish the product quickly. On the other hand, if

a manager's estimate is too high, then too many resources

will be committed to the project. In point of fact, estimating

software development effort remains a complex problem

and it is very important to investigate novel methods for

improving the accuracy of such estimates. The most popular

techniques used for software cost estimation is algorithmic

models such as COCOMO [4, 5, 6].

Software cost estimation is the process of predicting the

amount of effort required to build a software system. Over

the years many have attempted to determine a priori what

the cost of a developing a specific application will be. Why

has it been so important? Not only is the budget on the line,

but many times a manager's job or reputation as well. The

make or buy decision must be made.

What cost is this that we are trying to estimate, determine or

"predict"? We know that the cost of developing software, up

until the point that it is accepted, is only a fraction of the

total cost of the system over the typical life cycle of the

product. However, for the purpose of this study, we will

exclude the maintenance costs, and will speak only of the

development costs up until acceptance. This position is

consistent with that taken by those having done research in

this field. Though, many membership functions were used in

the literature [10] to represent the cost drivers, many of them

are not appropriate to clear the vagueness in the cost drivers.

We will first review and discuss the most main published

methods (lines of code, function points, and objects), and

some basic terminology relating them, followed by a

discussion of current trends, and finally the implications of

these trends for software cost estimation.

LITERATURE REVIEW

Frank Freiman, while at RCA:

In the 1960s Frank Freiman developed the concept of

parametric estimating, and this led to the development of

PRICE model for hardware. This was the first generally

available computerized estimating tool. It was extended to

handle software in 1970s.

Berry W. Boehm:

First, Barry Boehm (developer of the COCOMO model, a

model eventually se!ected for this study) has written a

widely cited book entitled Software Engineering Economics

[5] in which he provides an analysis of eight important

models. This list was used to generate candidates.

The prototypical model of this type is the Constructive Cost

Model (COCOMO) developed by Berry W. Boehm in the

late 1970s and described in his classical book “Software

Engineering Economics”. Various implementations of

COCOMO continue to be widely used throughout the world.

PRICE so, a software cost estimation model, was developed

in the late 1970s by Robert Park.

Allan Albrecht:

The Function Points. Measurement method was developed

by Allan .Albrecht at IBM and first published in 1976 [2].

Albrecht was interested in the general problem of

productivity measurement in systems development and

created the Function Points method as an alternative to

estimating SLOC. Albrecht’s Function Points are at a more

macro level than SLOC, capturing things like the number of

input transaction types and the number of unique reports. He

Manpreet kaur , Journal of Global Research in Computer Science,Volume 2 No (7), July 2011,114-115

© JGRCS 2010, All Rights Reserved 115

believes Function Points offer several significant advantages

over SLOC counts.

ESTIMACS:

Model developed by Howard Rubin of Hunter College and

marketed by Management and Computer Services during the

period when these data were being collected [1,3]. Both of

these models were selected, bringing the total number of

models compared to four.

In recent decade, many software effort estimation

techniques have been proposed to evaluate their estimation

performances. Some of these widely used techniques

include the estimation by expert [7], analogy-based

estimation [9],algorithmic method [11], rule induction [8],

artificial neural network [12]

RELATED WORK

In this paper I will do the Comparision between cocomo81

and cocomo2.0. All the work is done in java

language.Comparision between cocomo81 and cocomo2.0 is

shown in different graphs. Cost and effort depends upon

cost drivers values and inputs. Inputs are generated using

random numbers.

In this paper inputs are taken as source lines of code, avg

lines per program, programs, adaptation factor and labour

per hour. It calculates the total cost, month duration, person

month effort. For input we have to just click on random

button. This dissertation compare the total cost, total effort

and duration of cocomo81 and cocomo2.0. Comparision is

depends upon the cost drivers values. We can set the cost

drivers value using radio buttons.

It is important to stress that uncertainty at the input level of

the COCOMO model yields uncertainty at the output [7].

This becomes obvious and, more importantly, bears a

substantial significance in any practical endeavor. Cost

drivers are often expressed through an unclear category

which needs subjective assessment. The effort multipliers

and scale factors of the COCOMO were described in natural

language as very low, low, nominal, high, very high and

extra high and these were represented by fixed numerical

values [6]. More conventionally, the problem of software

cost estimation using COCOMO relies on a single (numeric)

value of cost driver of a given software project to predict the

effort. But it is not an appropriate way to fix numerical

number to each of these scales.

CONCLUSIONS AND FUTURE RESEARCH

A crucial issue for project managers is the accurate and

reliable estimates of the required software development

effort, especially in the early stages of the software

development life cycle. Software effort drivers usually have

properties of uncertainty and vagueness when they are

measured by human judgment. Cost drivers in algorithmic

software cost estimation are often expressed through

linguistic assessments and they usually represent high level

concepts for which a single, precise measurement scale is

not available. This motivates the use of simulator to

estimation inputs and their assessment procedures.

In this paper, it is projected an improved approach to

estimate the software project effort by the use of simulator

rather than classical intervals in the COCOMO model. In

conclusion, the success of any software project relies on

accurate estimations and a soft-computing technique such as

simulator is a feasible choice as an estimation model for

improving estimation accuracies.

REFERENCES

[1] Rubin, H.A. Macroestimation of software development

parameters: The Estimacs system. In SOFTFAIR

Conference on Software Deuelopment Took,

Techniques and AIternatiues (Arlington, Va., July 25-

28). IEEE Press, New York, 1983. pp. 109-118.

[2] IEEE Softw. 3,4 (July 19861, 70-75).Albrecht, A.J.

Measuring application development productivity.

[3] Robin, H.A. Using ESTIMACS E. Management and

Computer Services, Valley Forge, Pa., Mar. 1984.

[4] Boehm, B.W., Royce, W.W., Le COCOMO Ada, Genie

logiciel & Systemes experts, 1989.

[5] Boehm, B.W. Software Engineering Economics.

Prentice-Hall, Englewood Cliffs, N.J.. 1981.

[6] Boehm, B.W., et al., “Cost models for future software

life cycle processes: COCOMO2.0,” Annals of

Software Engineering on Software Process and Product

Measurement, Amsterdam, 1995.

[7] Jorgenson M, Sjoberg D.I.K., The impact of customer

expectation on software development effort estimates.

International Journal of Project Management, 22(4)

:317–325.

[8] Jeffery R, Ruhe M,Wieczorek I, “Using public domain

metrics to estimate software development effort,” In

Proceedings of the 7th International Symposium on

Software Metrics, (April 04 - 06, 2001), IEEE

Computer Society, Washington, DC, pp 16–27.

[9] Chiu NH, Huang SJ, “The adjusted analogy-based

software effort estimation based on similarity

distances,”Journal of Systems and Software, Volume

80, Issue 4, April 2007, Pages 628-640.

[10] Musflek P, Pedrycz W., Succi G., Reformat M,

2000,“Software cost estimation with fuzzy models,”

Applied Computing Review, Vol. 8, No. 2, pages 24-

29.

[11] Kaczmarek J, Kucharski M, “Size and effort estimation

for applications written in Java,” Journal of Information

and Software Technology, Volume 46, Issue 9, 1 July

2004, Pages 589-601.

[12] Heiat A, “Comparison of artificial neural network and

regression models for estimating software development

effort,” Journal of Information and Software

Technology, Volume 44, Issue 15, 1 December 2002,

Pages 911-922.

