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ABSTRACT 

Graph invariants can be used to infer molecular structural properties of 

graphs. In this work, a new distance metric between vertices of a graph is 

proposed to find the structural similarity between graphs. For this, a new 

distance matrix (known as IE matrix) is constructed based on the inverse 

Euclidean distance between graph vertices. This new representation directly 

depicts the skeletal structure of the vertices in the n-dimensional space. In 

this space, minimal distance between vertices implies high topological 

proximity between them. Based on IE matrix, a unique signature is generated 

for every graph which is used to find similarity between graphs. A new concept 

“Topological Stress” is introduced that reveals the topological variation of a 

vertex with other vertices. Using this stress concept, similar topological 

stressed vertices between different graphs are identified and further explains 

the methylalkane interconversion reactions with the help of signature and 

dominant Eigen value. The entirety of the matrix is represented as a 

singularity which may serve as a unique molecular index (IEG
Pr) for chemical 

graphs. Similarity between graphs are calculated based on their 

corresponding IEG
Pr values. The resultant quantified similarity score lies 

between 0 and 1, referring value 1 for exact isomorphic. From the 

computational study, it is observed that IEG
Pr value is generally very low 

implying a low-value nomenclature of chemical graphs. Empirical study shows 

that the computational time required for the similarity identification procedure 

is scalable. From this it can be inferred that by improvising/reframing this 

measure a few application oriented graph matching problems can be tackled 

in polynomial time/near-polynomial time. 
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INTRODUCTION 

This study emphasises on the fundamental entity of representing any chemical molecule and proposes a new invariant 

representations of chemical graphs (graph signatures) for finding similarity between graphs. In petro chemical industry, 

hydrocarbon is processed among which heptane (and its isomers) is one of the petrochemical entities. In this study, seven 

isomers of heptane are taken for consideration which vary with molecular structural topologies, boiling points and other 

physical properties. For each heptane isomers, a unique molecular descriptor is derived (graph signature) from which a 

topological index is framed. It is observed that the obtained signatures and their topological indexes are unique for individual 

isomers and are graph invariant. These descriptors are in turn used to check for structural similarity between heptane 

isomers, in polynomial time. Further investigation revealed that the signature not only depicts the structural properties but 

also embed some interesting features like topological stresses for each vertex which may be useful for solving sub-graph 

isomorphism problems. The philosophy of this work is to convey, if mathematical properties are coupled with physical 

properties of chemical graphs then more information can be inferred. 

 

LITERATURE REVIEW 

Generally, mathematical properties are expressed as numbers whereas matrices are most suited to represent chemical 

structures. Janezic et al., listed out various representation of graph theoretical matrices used in chemical graph theory (Table 

1). 

 

Table 1. A set of matrices used in chemical graph theory. 

Matrices 

used in 

chemistry 

 

Brief outline 

 

 

 

Path 

Matrix elements defined by shortest paths 

[ ]    {
  (   )

 
                  

                                       

 

 

 p’(i,j)–Total number of paths in the sub-graphs G’ obtained by removing the edge e(i,j) 

 p–Total number of paths in G 

 

 

 

 

Wiener 

(Edge-Wiener 

matrix) 

 

Matrix elements are given by the product of the number of vertices on each side of path from vertex 

i to vertex j. A sparse symmetric square matrix (denoted by    ) introduced mainly for acyclic graphs 

whose elements are defined by 

[  ]   {
                            

                              
 

Where 

Vie and Vje-The number of vertices in two sub-graphs after and edge e(i,j) is removed from the acyclic 

graph 

 

Random walk Asymmetrical matrix determined by probability of random walk from vertex i to vertex j 

Natural Distance 

(ND) matrix 

Distance between vertices in n-dimensional space 

 

 

 

Hosoya matrix 

It is a sparse symmetric square V x V matrix (denoted by Z) derived in the similar manner of W whose 

elements for a tree are defined as: 

[ ]   {
                                               

                                                                      
 

Where 

Zi and Zj - Hosoya Z-indices of the two sub-graphs after an edge e(i,j) is removed from the acyclic 

graph. 
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Distance/Distance 

 

The distance/distance matrixi (denoted by D/D) unify the topological and topographic (geometric) 

information on the structure of a graph. It is an asymmetric V x V matrix in which the topographic 

information-g(i,j) is represented in upper–triangle matrix and graph-theoretical distance-l(i,j) 

(topological distance) on the lower-triangle matrix. 

[    ⁄ ]    {

 (   )              
                      

 (   )             
 

 

 

Table 1 represents various forms of matrices that are used in chemical graph theory. Generally molecular descriptors 

obtained from the above mentioned matrices are unique. So structural comparison between chemical molecules is done by 

comparing the indexes or signatures that are generated from these matrices, which belongs to a subset of exact graph 

matching problem. 

From the computational study of Janezic et al., it is inferred that the classical exact graph matching algorithms employ the 

concepts of GI and sub-graph isomorphism which requires a bijective node mapping between two (sub) graphs which are 

computationally expensive (exponential time) as there is a possibility of having O(2n) subgraphs for every graph of ‘n’ 

vertices. In agreement with that as of now, no efficient algorithm has been found to determine if two general graphs are 

isomorphic topologically. There are special cases of graphs like triconnected planar graphs, planar graphs, interval graphs, 

and trees for which GI can be solved in polynomial time. Theoretical proof of Babai, shows that there may exist quasi-

polynomial time algorithms that solve GI problem. Mostly chemical graphs may not meet these special cases and therefore 

we cannot use those algorithms. 

In computational chemistry, for dealing with molecular graphs some randomized frameworks have been proposed. In 

general, randomized techniques are used for fast computation and to enhance simplicity. From the previous literatures, it is 

observed that randomized algorithms, in some cases, leads to poor accuracy and are closely related to probabilistic 

analyses of the corresponding (deterministic) computational procedures. Moreover, probabilistic analyses have been used 

to explain the phenomenon of difficult problems (e.g., NP-hard problems). Some existing frameworks of random graphs that 

model chemical graphs can be found in the literatures [1]. There is a significant body of work done to representing chemical 

graphs as linear text strings (canonical label) and computing the structural similarity between two chemical graphs [2]. In 

line with literatures it is evident that for each chemical molecular graph, if a unique canonical labelling can be computed, 

then it would imply that efficient polynomial-time algorithms exists for GI problem. From the experimental study of Luks, it is 

observed for some special cases of chemical graphs, canonical labelling is well suited for solving GI problem, but may fail in 

some cases (Miyazaki graphs, for example) [3]. A polynomial time algorithm is proposed by Furer et al., for bounded valence 

graph having computational complexity as  (  ( ))ii. 

J.L Faulon et al., prescribed algorithms that generate unique signatures for molecules and use them as molecular 

descriptors for comparisons. To solve GI problem, experimental study are conducted by taking alternate ideas like 

representing graphs as distance matrices (based on their vertex distance from one another) and computing graph similarity 

by using distance metrics. Klein and DJ Randic, proposed a method that represents a graph as a resistance distance 

matrix. The distance between vertices in a resistance matrix is measured by electric resistance by assuming each edge 

carrying a unit resistance. Computational studies based on resistance matrix show that resistance matrix is more a 

meaningful representation [4-9]. A subset of matrices of Table 1 (say path matrices) introduced in represents the number of 

sub-graphs of each graph [10]. From the empirical investigation of Plavsic et al., it has been showed that Weiner index and 

P’/P index obtained from path matrix correlated with the graph-theoretical invariants of cycles and trees. 

 

Graph invariants as numerical representations 

Graph invariants embeds the structural properties of Graphs. Among them, the vertex connectivity index known as Randic 

connectivity index and Hosoya index are often used in the structure-property-activity modelling: the Randić connectivity 

indexiii [11]. The Hosoya index is used mostly for graphical matrices along with other molecular descriptors. de Piero et al. 

proposed a node-to-node mapping which is based on the powers of graph adjacency matrix [12]. Computational studies 

conducted by Randic et al., on molecular indexing considered a variation of distance matrix known as line distance matrix 

which is determined by information given in their first row. As Wiener index (molecular descriptor) is defined generally for 
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acyclic graphs, a few categories of methods are evolved by constructing matrices like Szeged and revised-Szeged by 

generalizing Wiener index to consider polycyclic structures.  

Based on the findings, Gutman et al., noticed that the Szeged index does not give good regression as it does not properly 

reflect molecular size dependence. From the experimental study of Klein et al., it is observed that both Szeged and revised 

Szeged indexes give a measure of how much a graph depart from the bipartite graph. Among various topological indexes 

(connectivity indexes) of graphs which characterize their topologies, Balaban J index, can be considered as one of the highly 

discriminative molecular indexes which is simple to compute. From the critical literature review and motivated by the above 

studies, it is observed that the availability of finding similarity between graph that supports GI problem is quite scarce. 

Hence this problem has been considered for computational study. The objective of our work is to generate a unique 

signature for a given graph. Using this signature, a topological molecular index is computed by which similarity between 

graphs is presented as a quantized value. 

 

Proposed work 

For an adjacency matrix AG of a graph G, solving the Eigen value problem AGx-λx=0 is equivalent to identifying the set of 

vectors, which is used as the coordinate basis for producing the diagonal matrix of AG. Here, X is considered as unknown 

Eigen vectors and λ are the eigenvalues of AG which is referred as the graph spectra. This framework is similar to HMO 

model of quantum chemistry. Thus, AG can be interpreted as a set of vectors which represents graph in the |V|-dimensional 

space, ‘|V|’ being the total number of vertices of G. In order to describe the distance between vertices of G in the |V|-

dimensional space, an attempt is made to propose a new measure of distance in this work. In general, a graph G having 

|V| vertices can be represented by |V| points in |V|-dimensional space and will result in symmetric |V|x|V| distance 

matrix. A new matrix (say Inverse Euclidean matrix) is proposed in which each and every row of the matrix represents the 

inverse of distance from one vertex to all the other vertices of G. So the new Inverse Euclidean matrix (IE) can be 

constructed by having 
 

√∑ (       )
    

    

 in the (i, j) entry of IE matrix. Here the inverse of the distance is taken so as to find the 

similarity. When the distance is large, the similarity lessens and vice-versa. 

  (   )   
 

√∑ (       )
    

    

  (2.1) 

Let the sum of the ith row of IE matrix be denoted as: 

    ∑   (   )
   
       (2.2) 

 

It represents the inverse of the total distance from the ith vertex to all the other vertices of G. In this work, an attempt is 

made to describe a new molecular atomic descriptor based on matrix row (or) column sums of the obtained IE matrix. 

These descriptors may be used to describe the local atomic environments in a molecule. As these descriptors reveal the 

local molecular structural properties they can be used in identifying the active substructure in molecular mining and 

Pharmacophore. Hence these molecular descriptors act like unique graph signatures for an individual molecule. Hence the 

signature of G can be represented as a |V| x 1 column vector as shown below: 

  
   [             ]

 
  (2.3) 

Here * denotes the set of all vertices taken for consideration. When two graphs    and    are isomorphic, the 

corresponding points in |V|-dimensional space will coincide, resulting in same signatures    
         

  with values shuffled. 

A set of vertices of    and    share a same value, if and only if they are node-surjective i.e., every vertex         has at 

least one matching        . It is inferred that any formulated distance function d(x,y) in a metric space should have the 

following three properties: 

 d(x,y)=d(y,x)>0 if x not equal to y–distance is non-negative and does not depend on direction in which it is 

measured. 

 d(x,y)=0 if x=y–distance is zero only if x=y. 

 d(x,y)+d(y,z) >=d(x,z)–triangle inequality. 

Above three conditions have to be satisfied as the obtained IE matrix has considered the inverse of Euclidean distance 

between any two vertices. The first condition is satisfied as the IE matrix is a Symmetric Positive Semidefinite Matrix (PSD). 

All the diagonal elements of IE matrix are zeros as d(x,x)=0 and hence satisfying the second condition. A few pair of vertices 
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may share common neighbours resulting in some off-diagonal elements as zeros. Such pairs of vertices are termed as 

“Pseudo-Similar” vertices and our IE matrix does contain Pseudo-Similar vertices (Figure 1). 

 

Figure 1. Topological structure of 3-Methylhexane. 

 

 

 

In Figure 2, the IE matrix and the natural distance matrix of 3-methylhexane graph (Figure 1.), obtained based upon Eq. 

(2.1) are shown. This chemical molecule is shown because as its one of the smallest trees with trivial automorphism group. 

The isomers of this molecule are represented and discussed in the below sections (Figure 3). 

 

Figure 2. IE Matrix of 3-Methyl-hexane (left); the std. distance matrix (D)-distance entries for adjacent vertices (right). 

 

 

Figure 3. Isomers of n-heptane 
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Devillers and Balaban, suggested to ignore hydrogen atoms in the computation of such indices as organic chemists usually 

do when they write a benzene ring as a hexagon. 

    
            

In Table 2, the inverse of the row sum for the novel IE matrices of isomers of heptane (illustrated in Figure 3), is shown. 

They act like unique signatures (  
 ) (by Equation. 2.2 and 2.3) for the specified heptane-isomers. In order to provide a 

quantized value for any graph, a unique individual score (called as ARS score) is generated for each graph. The Average 

Row Sum (ARS) score of any   
  is generated by the below formula:  

                    ∑
  
 

    
                      (2.4) 

 

Moreover, it can also be observed that the (i,j) entry of IE matrix (calculated based upon Eq. 2.1) is same as that of 

 

√    (  )     (  )    (     )
                                          (2.5) 

 

with    (  )      (  ) as degrees of vertices i and j respectively and     (     )  as the number of vertices adjacent to both 

i and j. Along with     , a new quantized value known as    
   index is computed which may serve as a unique graph 

(molecular) topological index. This    
   index computed based upon Equation. (2.6) is simple, scalable and can be used to 

compare two graphs directly 

               
     

∑ ∑   (     )              

    
                                                  (2.6) 

 

From the experimental study (Ref. Section 3), it is found that    
   index value is more or less same as that of    and takes 

less computational time. It is also observed that both    
            scores are proportional to   . These two quantized 

values (   
           ) may act as molecular descriptors for any graph ‘G’. 

 

Quantizing the similarity between graphs based on    
   and       

In our graph comparison approach, affine invariance property plays a vital role in comparing graphs. When Graphs are 

represented in matrix forms, approaches like Affine Invariant Riemannian Metric (AIRM) and Log-Euclidean Riemannian 

Metric (LERM) may be taken for consideration as both the measures induce a Riemannian geometry; the former induces a 

curved geometry when the latter “flattens” the manifold by mapping into the tangent space at the identity matrix (which is 

Euclidean). Arsigny et al., formulated LERM metric which involves in taking logarithm for a matrixiv (covariance matrix) that 

represents a graph. In our case,     
            are single values which act like topological indexes of any graph G, the 

LERM metric is reframed to find the similarity score. Putting it altogether, the similarity score between two graphs is 

quantified as 

   (     )   {
                                            
[   )                                              

 

 

The similarity between two graphs G1 and G2 can be defined as 

 

   (    
       

  )  |       
           

  |                 (2.7) 

   (     )      
    (    

       
  )

                 (2.8) 

 

Here | x | denotes the absolute value of x, it is observed that the row sum of the Euclidean distance matrix for the 

considered n-heptane isomers along with its Average Row Sum (ARS) are tabulated in the Tables 2 and 3. 
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Table 2. Row sum of the euclidean distance matrix. 

Isomers 

of 

heptane 

 

 

1 

 

 

2 

 

 

3 

 

 

4 

 

 

5 

 

 

6 

 

 

7 

ARS 

based on 

euclidean 

dist. 

matrix 

H 9.3424 10.8783 10.1463 10.2925 10.1463 10.8783 9.3424 10.1466 

2-M M2-

322-M 

7.8783 12.2042 9.3823 10.1962 10.8464 9.2925 7.8783 9.6683 

3-M 9.4388 10.1144 11.6184 9.3823 10.9282 9.2925 8.5605 9.905 

2,3-M 7.9747 11.5958 10.9282 10.1643 9.3889 7.9747 8.6569 9.5262 

2,4-M 7.8284 12.2361 8.4721 12.2361 7.8284 7.8284 7.8284 9.1797 

3,3-M 9.4388 9.3278 12.8352 9.3278 9.4388 7.0645 7.0645 9.2139 

2,2,3-M 6.4787 12.8181 10.8884 7.9747 6.4787 6.4787 7.9747 8.4417 

 

H: n-Heptane, 2-M: 2-Methyl Hexane, 3-M: 3-Methyl Hexane , 3-E: 3-Ethyl Pentane, 2,3-M: 2,3-Dimethyl Pentane, 2,4-M: 2,4-

Dimethyl Pentane, 3,3-M: 3,3-Dimethyl Pentane and 2,2,3-M: 2,2,3-Trimethyl Butane 

Table 3. The row sums for the novel IE matrices of n-heptane isomers. 

Signatures (  
 ) for isomers of n-heptane 

Heptane and its isomers 1 2 3 4 5 6 7 

2,4-M 3.4141 2.9472 4.8947 2.9472 3.4141 3.4141 3.4141 

3,3-M 3.8535 4.2698 2.8653 4.2698 3.8535 3.8535 3.8535 

3-M 3.8535 3.8095 3.1786 4.2319 3.309 4.0683 4.4923 

2,3-M 3.1989 3.1928 3.477 3.7565 3.9062 3.1989 4.329 

2-M 3.3613 2.9717 4.2319 3.7327 3.3863 4.0683 3.3613 

3-E 3.8535 3.5932 3.4626 3.5932 3.8535 3.5932 3.8535 

2,2,3–M 3.1987 3.4993 2.8743 2.5685 2.5685 2.5685 3.1987 

 

From Table 2, it is observed that 2-Methyl hexane is comparatively more similar to 3–methyl hexane, heptane and 2-4 

dimethyl pentane. This is due to the fact that the 2nd vertex of 2-methyl hexane is having more topological stress (defined 

below) similar to 2nd and 3rd vertices of 3-methyl hexane and 2nd and 4th vertices of 2,4-dimethyl pentane. Similarly, for 2,4-

dimethyl pentane the 2nd and 4th vertices have topological stress as that of 3rd vertex of both 3-ethyl pentane and 3,3-dimethyl 

pentane. It is evident from the tabulated result that as the ith vertex (Vi) row sum increases the topological stress for Vi also 

increases. 

From Table 3 specified above, it is inferred that the 2nd vertex value of 2-methyl hexane is as lower as that of the 3rd vertex of 

3-methyl hexane and 2nd and 4th vertices of 2,4-dimethyl pentane which in turn leads to high similarity scores between them. 

Similarly, the 2nd and 4th vertices of 2,4-dimethyl pentane have lesser values same that of the 3rd vertex of both 3-ethyl 

pentane and 3-methyl hexane which in turn leads to high similarity scores between them which is discussed later. It leads to 

the fact that as the topological stress increases, it gives lower signature value. These similarity scores implicit convey that 

there exist one or more common subgraphs with in these graphs such that they are isomorphic. 

 

Graph signatures generating algorithms 

Algorithm 1 along with its subroutines 2.1, 2.2 and 2.3 are deployed in C language and Matlab R2011 in a core i3 processor 

with 4GB internal memory. The parse() function mentioned in Algorithm 1 is deployed in python 2.7.13 to parse gxl files. For 

experimental study, along with heptane isomer graphs, a portion of benchmark dataset is taken from IAM Graph database. 
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Algorithm 1: Graphs similarity score calculation 

 
// Checks whether a test graph ‘gt’ has similarity score (above a threshold) or not in a given Graph Database’ GD’  

// It returns 1,   gi   GD which are isomorphic to ‘gt’ or any other graphs gx   GD which similarity score with gt is above a given threshold. 

Procedure Check_Test_Graph_Presence(gt, GD, Δ) 

// gt - test graph 

// GD - Graph Database 

// Δ – Threshold value [0,1] 

[ 

// Parse gt and generate adjacency matrices and corresponding feature vectors  

[     |   
  ] = Parse(gt); 

   
  = Call gen_graph_signature (     , num_of_nodes(gt)); 

// Import( GD )   - Imports graph data from the Specified Path 

//  Ԍ  - A set that stores isomorphic graphs / isomers of gi 

Ԍ =  Ø 

for each gi  GD do 

[ 

[     |   
  ] = Parse(gi);  

   
  =Call graph_sign_gen (     ,num_of_nodes(gi));  //subroutine 2.1 

sim_score = Call compute_weight(   
     

 );     //subroutine 2.2  

if(sim_score >= Δ ) then 

if ( ! Call Compare_Features(   
     

 )) then 

            
]//end for 

//populate graphs whose similarity score  with gt is <= Δ 

Populate Δ along with their characteristic features; 

]//end procedure 

 

Assuming that all graphs are stored in a Graph database (GD), algorithm 1 computes similarity score between any two 

graphs. For a given test graph ‘gt’, it scans a graph database GD and identifies a set of graphs gi   GD whose similarity score 

is equal to or above a particular threshold value. The parse(gi) function of algorithm 1, parses the given graph and 

generates its corresponding adjacency matrix and an ’o’ sized vector which reveals the gi features. The subroutine 2.1 

generates a unique signature for the given graph. The subroutine 2.2 computes the similarity score between given graphs. 

If the score is greater than a particular threshold it is appended in a set ‘ ’. The auxiliary function compare_features()vi 

compares two feature vectors of any two graphs and can be solved in polynomial time. As this paper focus more on the 

topological structures of graphs, the feature comparison task is not discussed in detail. 

 

Subroutine 2.1: Generate Graph 

Signature based on measure of proximity 

 Sub Routine 2.2: Computes 

Similarity score based on Log 

Euclidean Distance 

1. Procedure graph_sign_gen ( A, n)  

2. // A – Adjacency Matrix of size  

       (   )       
3. // n – number of nodes of A 

[ 

4. for ( i = 1 .. n) do 

5. [ 

6. for (j = 1..n) do 

7. [  

// Compute    (   ) based upon Eq. 2.1 

  (   )   
 

√∑ (       )
    

    

       

8. ]//end for 

9. ]//end for 

10. for each vi  VG  do 

11. [ 

     ∑   (   )
   
    ;     

        
12. ]//end for 

13. // Generate Signature 

14.   
   [           ]

   [where   
  

      ] 

15. return   
   

16. ] //end procedure 

  

1. // Similarity Measure – Based 

on Log  

2. //Euclidean Riemannian 

Distance 

3. Procedure 

compute_weight(   
     

 ) 

4. //    
     

  – Graph signatures of 

g1 ,g2 

5. [ 
6. // Compute       and       based on 

Eq. 2.4 

7.       ∑
  
 

    
 

8.  

9. // Compute     
   and     

   based on 

Eq. 2.6 

10.    
     

∑ ∑   (     )              

    
 

11.             (    
  )  

    (    
  )  

12.         ‖       ‖ ; 

13.              (     )  

    (     )  

14.      []     
15.       [              ]   
16. return score; 

17. ] //end procedure 

 

The subroutine 2.1 generates signature based on the equations 2.1 and 2.2 with time complexity as O(n2), n being the 

number of vertices of a graph. It can be proved   
  as graph invariant. The molecular indexes created from the signature is 
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used to find the similarity score. The execution time, computational complexity and inferences are discussed in the 

following sub sections. The subroutine 2.2 compute the similarity score based on both    
           . The computational 

complexity of this subroutine is O(1). So the total time taken to identify the similarity score between graphs is O(n2). 

Depending upon graph database (GD) size the computational time increases yielding O(|GD|.n2) where n being the 

maximum number of vertices present in a large graph gi   GD.  

It is also necessary to identify a subgraph within two graphs which are isomorphic. Let us consider Si be a subgraph of Gi. 

We are interested in finding out S1, S2 subgraphs of G1 and G2 respectively such that S1 and S2 are isomorphic. Initially, it is 

necessary to find out a vertex say v1   S1 that maps to v2   S2 (one-to-one correspondence). This process is repeated until 

all the vertices of S1 uniquely map to all the vertices of S2. To map a set of vertices between two graphs a new term is 

introduced known as “Topological Stress” (TS). The topological stress of each vertex is defined as  

 

  (  )   
 

  
 (  )

            (2.9) 

Where, 

  (  ) – Topological stress pertaining to vertex    of a graph G. 

  
 (  ) – Signature value at the    component of G (i.e.    ) 
          an arbitrary weightvi between [0,1]. 

 

So based upon the topological stress values, a vertex, vi   G1 can be mapped to vj of G2 by which a permutation matrix can 

be framed in linear time- O(n)[49] for GI problem. It is also observed that similar topological stressed vertices shows 

similarity not only in their structure but also in their properties (Ref. subsection 3.1). Below is an algorithm that finds one or 

more matching vertices of any graph for the give vi   Gi that exhibit similar topological stress values between different 

graphs. 

Sub routine 2.3: Identifying similar vertices between graph signatures 

 
// Find_Similar_Vertices – This procedure finds similar vertices // of different heptane isomers graphs which have similar and minimal topological stress. 

1. Procedure find_similar_vertices(      ) 
2. //    - set of signatures of all heptane isomers 

3. // UB – Upper Bound i.e., tolerate level 

4. //    
     

  – signatures of Graph g1 and g2 

5. [ 

6. for each    
     do 

7. [ 

//find minimal topological stress of    
  

x = find_min(   
 ); 

for all    
            

   do 

[ 

//set that stores similar vertices of  x 

       
//find minimal topological stress of    

  

y = find_min(   
 ); 

min_threshold = |x-y| + UB; 

for every vertex        
  do 

[ 

if( |x-    
 ( )               ) then 

         ; 

end if 

]//end for 

populate    
]//end for 

]//end for 

8. ]//end procedure  
 

Subroutine 2.3 populates a set of pairs of vertices of different graphs that have more topological stress (i.e., low score in 

their corresponding signatures). The time complexity of this subroutine is  (
(         )

 
     ) where     the total number of 

signatures taken for consideration. In this computational study, |    value is number of heptane isomers and |v| is 7.  

Table 4 shows the ratio of topological stresses of each and every vertex against their high topological stress vertices for 
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each and every heptane isomers. These stress values are not influenced by the degree of the graph. Instead, it is highly 

influenced by the degree of topological variation of each vertex with others, in the sense, how far one vertex is topologically 

varied with the other vertex. 

 

Table 4. Ratio of topological stresses among various vertices of heptane isomers. 

Heptane isomers 

 

Ratio of topological stress among various vertices 

1 2 3 4 5 6 7 

2-M 1.1311 1 1.4241 1.2561 1.1395 1.369 1.1311 

3-E 1.1129 1.0377 1 1.0377 1.1129 1.0377 1.1129 

3-M 1.2123 1.1985 1 1.3314 1.041 1.2799 1.4133 

2,3-M 1.0019 1 1.089 1.1766 1.2234 1.0019 1.3559 

2,4-M 1.1584 1 1.6608 1 1.1584 1.1584 1.1584 

2,2,3-M 1.2454 1.3624 1.1191 1 1 1 1.2454 

H 1.1948 1 1.1261 1.0617 1.1261 1 1.1948 

From Table 4, the high topological stressed vertices have value 1 whereas other have value greater than 1. For example, in 

case of 2-Methylhexane, as vertex 2 is highly stressed its value becomes 1, whereas for vertex 3, the value is 1.4241 giving 

an inference that vertex 3 is approximately 40% less stressed than vertex 2 for 2-Methyl hexane meaning they have 60% 

common neighbourhood. 

 

RESULTS AND DISCUSSIONS 

Figure 4, shows the plotting of dominating Eigen values (  ) obtained from IE matrices of n-heptane isomers against ARSs. 

The observation here is    is directly proportional to ARS score of the corresponding   
 . 

Figure 4. Plotting of    against the ARS scores of n-heptane isomers. 

 

 

From this it can be inferred that ARS score of   
  are more close to    and hence it exhibits some statistical significance and 

fine tuning this metric may serve as a simple structural interpretation. Also ARS score is proportional to the average 

signature vector elements. Moreover,    
   score is also same as that of    (Table 5). Besides using    as a molecular 

descriptor (in some cases), from this empirical study, it is suggested to use the two descriptors defined by IE matrix namely 

ARS and    
   (listed for the isomers of heptane in column 1 and 4 of Table 3) can be used. It is also shown by Hoyasa 

index, the sum of the matrix elements above the main diagonal of the standard distance matrix D is termed as the Wiener 

number. This leads to suggest ARS and/or    
   score(s) can be used as a supportive substitute for the generalized Wiener 

number for heptane isomers as they are close in magnitude with     Computational Studies are carried out for other 

isomers viz., octane and nonane which shows satisfactory results. 
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Table 5.    of IE matrices for n-heptane isomers graphs along with    
   and      are listed out. 

n-heptane isomers ARSG score λ1 Balaban’s J index    
   

2,2,3–M 2.9252 2.9526 3.5412 3.7669 

2,4-M 3.4922 3.5823 2.9532 3.6993 

3,3-M 3.8313 3.8793 3.3606 3.7441 

3-M 3.849 3.896 2.832 3.6936 

2,3-M 3.5799 3.6168 3.1542 3.7399 

2-M 3.5879 3.6266 2.6783 3.6716 

3-E 3.6861 3.6914 2.9922 3.7107 

H 3.699 3.7155 2.4474 3.6473 

 

Table 5 tabulates     for n-heptane isomers graphs along with    
   and     . From the literature it can be inferred Eigen 

values of a graph characterize graph’s topological structure and the collection of all eigenvalues of G is denoted as the 

graph spectravii (spectrum of G). Among various topological indexes which serves as the molecular descriptors of molecules 

(connectivity indexes), Balaban’s J index is taken for consideration as it is one of the highly discriminative molecular index 
[13]. The third column shows Balaban’s J indexes which is based on the row sums of the standard distance matrix D. It can 

be noticed that    
   has a value equal to    and is somewhat very nearer to Balaban’s J index. Moreover, the 

computational time for calculating the circuit rank of any graph G in Balaban’s index  is high as it is necessary to find all 

connected components in G taking the O(V+E) time complexity.  

Using the Equation (2.8), the similarity score calculated based on    
   and      indexes of various isomers of heptane 

are tabulated in Tables 6 and 7. 

Table 7. Similarity score between graphs based on IEG
Pr. 

Isomers 2- M 3-E 3-M 2,3-M 2,4-M 3,3-M 2,2,3-M H 

2-M 1 0.9895 0.994 0.9817 0.9925 0.9806 0.9747 0.9934 

3-E 0.9895 1 0.9954 0.9922 0.9969 0.9911 0.9851 0.9829 

3-M 0.994 0.9954 1 0.9876 0.9985 0.9865 0.9805 0.9875 

2,3-M 0.9817 0.9922 0.9876 1 0.9891 0.9989 0.9928 0.9752 

2,4-M 0.9925 0.9969 0.9985 0.9891 1 0.988 0.9821 0.9859 

3,3-M 0.9806 0.9911 0.9865 0.9989 0.988 1 0.9939 0.9741 

2,2,3-M 0.9747 0.9851 0.9805 0.9928 0.9821 0.9939 1 0.9682 

H 0.9934 0.9829 0.9875 0.9752 0.9859 0.9741 0.9682 1 

 

Table 8. Similarity score between graphs based on ARSG. 

Isomers 2-M 3-E 3-M 2,3-M 2,4-M 3,3-M 2,2,3-M H 

2-M 1 0.9621 0.9327 0.9989 0.9622 0.938 0.8145 0.9621 

3-E 0.9621 1 0.9695 0.9611 0.9257 0.975 0.7837 1 

3-M 0.9327 0.9695 1 0.9317 0.8974 0.9943 0.7597 0.9695 

2,3-M 0.9989 0.9611 0.9317 1 0.9632 0.937 0.8154 0.9611 

2,4-M 0.9622 0.9257 0.8974 0.9632 1 0.9026 0.8466 0.9257 

3,3-M 0.938 0.975 0.9943 0.937 0.9026 1 0.7641 0.975 

2,2,3-M 0.8145 0.7837 0.7597 0.8154 0.8466 0.7641 1 0.7837 

H 0.9621 1 0.9695 0.9611 0.9257 0.975 0.7837 1 
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From Table 8, it is observed that the similarity scores based on    
   of 2-methylhexane, 3-methylhexane is 0.9940 with 

the second largest score of between 2-methyl hexane and 3-ethylpentane 0.9895; Similarly, the score between 2,3-

dimethyl and 2,4-dimethylpentane is 0.9755, highest among the scores when 2,4-dimethylpentane is compared with other 

isomers [14,15]. It is evident from the above results that the    
  score increases when two molecules have similar skeletal 

structures. Moreover, similar results referred in Table 7 show that the ARS similarity score results are less accurate 

compared to    
  score results. 

 

Topological stress in interconversion of methylalkanes 

From the experimental study of Maury et al., it is inferred that the interconversion of methylalkanes like 3-methylhexane 

and 2-methylhexane can be done using sulfuric and chlorosulfonic acids (Figure 5). 

 

Figure 5. Methylalkanes interconversion reactions. 
 

 

At -33.4˚C, the proportion of 2-methylhexane and 3-methylhexane are 65.5% and 34.5% respectively. From the signatures 

of the isomers (refer Table.4) the topological stresses of 2nd vertex of 2-methylhexane and 3rd vertex of 3-methylhexane are 

comparatively higher than other vertices, thus leading low values 2.9717 and 3.1786 respectively. Similarly, by analysing 

the signature of 2,4-dimethyl pentane, the 2nd and 4th vertices have more topological stresses yielding low values of 2.9472 

and 2.9472 respectively. Also the signature of 2,3-dimethylpentane shows more topological stresses in 2nd vertex (3.1928) 

and the 3rd vertex (3.4770). It can be noted, at -33.4˚C, the proportions of 2,4 and 2,3-dimethyl pentanes are 72.9% and 

27.1%. In case of both the interconversion reactions of 2-methylhexane/3-methylhexane and 2,4-dimethylpentane/2,3-

dimethylpentane possessing secondary carbon atoms with similar environment. By using these molecular descriptors, we 

can differentiate each atomic environment which is the usefulness of subgraph mapping. It is observed that the percentage 

of conversion is correlated with    obtained from the IE matrix. If    score is less, the conversion percentage is high and 

vice-versa. For example, in our studies, it confirms that the interconversion reaction between 2-methylhexane and 3-

methylhexane gives Eigen value 3.6266 and 3.8960 respectively. So it can be inferred that the signatures of graphs not 

only act like molecular descriptors but also embed topological structures along with the change of chain branching that 

occur during interconversion reaction of methylalkanes reversible processes which will open up new gate way for further 

investigations. 

 

Impact of signatures in complete graphs 

The graph isomorphism can be solved efficiently for almost all graphs having problems only when considering special family 

of graphs of bounded degree. Besides this, most algorithms of GI have significant problems with the graphs originated from 

projective planes. The good candidates belong to this family are strongly regular graphs. In this section, applying our 

method we try to distinguish a few special types of hard graphs by showing some variation in   
  and     

   score. 

Table 8 tabulates signatures of complete graphs (k|v|) with |V| vertices. Here all the vertices of all graphs are dominating 

vertices. It is inferred from the generated signatures that, though, for example, K4 and K5 have dominant vertices, their 

topological stress values are different. From this, it is evident that two complete graphs never map to the same signatures 
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which is one of the major hurdles in graph isomorphism checking. This signature generation is the first representation of its 

kind, to the best of our knowledge [16]. 

 

Table 8. Complete graphs signatures 

K|v| Signature IEGPr ARS 

K3 0.7071 0.7071 0.7071 - - - - - - - 1.3027 0.7071 

K4 0.4714 0.4714 0.4714 0.4714 - - - - - - 1.394 0.4714 

K5 0.3536 0.3536 0.3536 0.3536 0.3536 - - - - - 1.4947 0.3536 

K6 0.2828 0.2828 0.2828 0.2828 0.2828 0.2828 - - - - 1.5945 0.2828 

K7 0.2357 0.2357 0.2357 0.2357 0.2357 0.2357 0.2357 - - - 1.6909 0.2357 

K8 0.202 0.202 0.202 0.202 0.202 0.202 0.202 0.202 - - 1.7835 0.202 

K9 0.1768 0.1768 0.1768 0.1768 0.1768 0.1768 0.1768 0.1768 0.1768 - 1.8722 0.1768 

K10 0.1571 0.1571 0.1571 0.1571 0.1571 0.1571 0.1571 0.1571 0.1571 0.1571 1.9575 0.1571 

 

   
   and      scores for large graphs 

From the above Figure 4, it can be seen that the    
   index value and     score are relatively equal except for 2,2,3-

trimethyl-butane. Moreover, the computational complexity of     is  (    ) whereas for    
  can be calculated in  (    ) 

time. Figures 6 and 7, depicts the plotting of ARS scores of large graphs (sizes varying between 60 and 100) against   . It is 

observed that as |V| of graph increases the ARS score also increases [17]. 

 

Figure 6. Comparison of  λ1, IEG
Pr index and the Balaban J index of n-heptane isomers. 

 

Figure 7. Plotting of ARS Score against    for large graphs (|V| ranging between 60 to 100). 
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From Figure 8, it is evident that, the execution time taken to compute leading Eigen values increase with increase in graph 

size and, whereas the    
   computational time increases very slowly irrespective of graph size and comparatively lower 

than the other two. Moreover the computational time of finding    is  (    ) whereas ARS’s computational complexity is 

 (    ) which is evident from this empirical study. 

 

Figure 8. Time taken for computing   , ARS and    
   for large graphs. 

 

Figure 9 depicts the time taken to generate signatures for large graphs. It is observed that as the |V| size increases, the 

time taken also increases but in few milliseconds. This execution time can further be reduced by optimizing the working 

code. These promising results in execution time calculation give inference in applying these graph signatures in large graph 

databases mining [18]. 

 

Figure 9. Computation time taken for large graph signature generation. 

 

Figure 10 depicts the variations in average similarity score of large random graphs ranging 70 ≤ |V| ≤ 100. It is observed 

that as number of edges removed is more, the similarity score between graphs lessen. Also there are some peaks 

observed. This may be due to the fact that there are some highly influential edges which may act as bridges between two or 

more connected components [19]. By removing those edges, the similarity value decreases drastically which leads to an 

assumption that the edges are also topologically stressed and finding highly stressed edges from signatures (and/or other 

meaningful representations) opens new direction of research study that are more useful in network analysis [20]. 
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Figure 10. Variation in avg. similarity score based on removal of edges of large graphs. 

 

 

CONCLUSION 

In this work, graphs are represented as objects in n-dimensional space. Based on the distance between vertices, a new 

distance matrix, which is referred as IE matrix is constructed. This matrix is framed by considering the inverse of the distance 

between every pair of vertices in the graph as the distance between vertices is large, the similarity between them lessens and 

vice-versa. This representation directly represents the internal fixed geometry of the vertices of graphs in the n-dimensional 

space. In this space, if two vertices are near, then they are very similar. Based on this matrix, new topological index values 

(IEG
Pr and ARS) are generated for every graph. It is observed from the empirical study that among these values, IEG

Pr is more 

meaningful and may be used as index values of molecules in computational chemistry. Moreover, based on IEG
Pr, attempts are 

made to tackle GI problem. Empirical study shows that finding IEG
Pr and identifying similarity score between graphs are simple 

and scalable, in the sense, they can be computed in linear time in number of edges. The obtained IEG
Pr is compared with a 

state-of-the-art topological index which shows some improvisation in running time and accuracy. Experimental evaluations 

demonstrate the computational time taken to calculate IEG
Pr for large graphs is very minimal (in msec) which provides a right 

balance between computational tractability and expressiveness of graph representation. Also, from signatures, attempts are 

made to identify topologically highly stressed vertices of graphs. It is observed that signatures embed topological structures 

along with the change of chain branching that occur during many chemical processes, like interconversion reaction of 

methylalkanes and the percentage of conversion is highly correlated with λ1. Reliant on this IEG
Pr index and the similarity score, 

it is recommended to imbibe other factors like bond angles between atoms, molecular density, and columnar mass density to 

give more expressiveness to molecular graphs by which more inferences about any chemical molecule can be made and 

tackling GI problem in polynomial time. 
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