
Volume 3, No. 11, November 2012

Journal of Global Research in Computer Science

REVIEW ARTICLE

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 44

TRUSTED CLOUD – A SOLUTION FOR CLOUD CARTOGRAPHY
E. Kanimozhi

Assistant Professor,
Dept of Computer Science and Engineering,

Vivekanandha Engineering college for women,Sankari, India
kanivijay@gmail.com

Abstract: Cloud computing provides people a way to share large mount of distributed resources belonging to different organizations. That is a
good way to share many kinds of distributed resources, but it also makes security problems more complicate and more important for users than
before. Cloud cartography could be used by an attacker who wanted to place his own VM next to a target's VM and exploit vulnerabilities. To
create the map, the attacker would deploy a large number of VMs in the service provider's cloud. He could then use the information he gets back
from the service provider about his deployments to get a sense of how the provider assigns IP addresses for different instance types and
accounts.

Key words: cloud computing, trusted computing, cartography, network probing, brute – force attack, side- channel attack.

INTRODUCTION

Seven of the specific security issues Gartner says customers
should raise with vendors before selecting a cloud vendor.
Privileged user access: Sensitive data processed outside the
enterprise brings with it an inherent level of risk, because
outsourced services bypass the "physical, logical and
personnel controls" IT shops exert over in-house programs.
Get as much information as you can about the people who
manage your data. "Ask providers to supply specific
information on the hiring and oversight of privileged
administrators, and the controls over their access," Gartner
says.

Regulatory compliance: Customers are ultimately
responsible for the security and integrity of their own data,
even when it is held by a service provider. Traditional
service providers are subjected to external audits and
security certifications. Cloud computing providers who
refuse to undergo this scrutiny are "signaling that customers
can only use them for the most trivial functions," according
to Gartner.

Data location: When you use the cloud, you probably won't
know exactly where your data is hosted. In fact, you might
not even know what country it will be stored in. Ask
providers if they will commit to storing and processing data
in specific jurisdictions, and whether they will make a
contractual commitment to obey local privacy requirements
on behalf of their customers, Gartner advises.

Data segregation: Data in the cloud is typically in a shared
environment alongside data from other customers.
Encryption is effective but isn't a cure-all. "Find out what is
done to segregate data at rest," Gartner advises. The cloud
provider should provide evidence that encryption schemes
were designed and tested by experienced specialists.
"Encryption accidents can make data totally unusable, and
even normal encryption can complicate availability,"
Gartner says.

Recovery: Even if you don't know where your data is, a
cloud provider should tell you what will happen to your data
and service in case of a disaster. "Any offering that does not
replicate the data and application infrastructure across
multiple sites is vulnerable to a total failure," Gartner says.
Ask your provider if it has "the ability to do a complete
restoration, and how long it will take."

Investigative support: Investigating inappropriate or illegal
activity may be impossible in cloud computing, Gartner
warns. "Cloud services are especially difficult to investigate,
because logging and data for multiple customers may be co-
located and may also be spread across an ever-changing set
of hosts and data centers. If you cannot get a contractual
commitment to support specific forms of investigation,
along with evidence that the vendor has already successfully
supported such activities, then your only safe assumption is
that investigation and discovery requests will be
impossible."

Long-term viability: Ideally, your cloud computing provider
will never go broke or get acquired and swallowed up by a
larger company. But you must be sure your data will remain
available even after such an event. "Ask potential providers
how you would get your data back and if it would be in a
format that you could import into a replacement
application," Gartner says.

THE EC2 SERVICE

By far the best known example of a third-party compute
cloud is Amazon’s Elastic Compute Cloud (EC2) service,
which enables users to flexibly rent computational resources
for use by their applications [5]. EC2 provides the ability to
run Linux, FreeBSD, Open Solaris and Windows as guest
operating systems within a virtual machine (VM) provided
by a version of the Xen hypervisor [9].1 The hypervisor
plays the role of a virtual machine monitor and provides
isolation between VMs, intermediating access to physical
memory and devices. A privileged virtual machine, called
Domain0 (Dom0) in the Xen vernacular, is used to manage

E.Kanimozhi, Journal of Global Research in Computer Science, 3 (11), November 2012,44-51

© JGRCS 2010, All Rights Reserved 45

guest images, their physical resource provisioning, and any
access control rights. In EC2 the Dom0 VM is configured to
route packets for its guest images and reports itself as a hop
in trace routes.

When first registering with EC2, each user creates an
account—uniquely specified by its contact e-mail address
and provides credit card information for billing compute and
I/O charges. With a valid account, a user creates one or
more VM images, based on a supplied Xen-compatible
kernel, but with an otherwise arbitrary configuration. He can
run one or more copies of these images on Amazon’s
network of machines. One such running image is called an
instance, and when the instance is launched, it is assigned to
a single physical machine within the EC2 network for its
lifetime; EC2 does not appear to currently support live
migration of instances, although this should be technically
feasible. By default, each user account is limited to 20
concurrently running instances.

In addition, there are three degrees of freedom in specifying
the physical infrastructure upon which instances should run.
At the time of this writing, Amazon provides two “regions”,
one located in the United States and the more recently
established one in Europe. Each region contains three
“availability zones” which are meant to specify
infrastructures with distinct and independent failure modes.

(e.g., with separate power and network connectivity). When
requesting launch of an instance, a user specifies the region
and may choose a specific availability zone (otherwise one
is assigned on the user’s behalf). As well, the user can
specify an “instance type”, indicating a particular
combination of computational power, memory and
persistent storage space available to the virtual machine.
There are five Linux instance types documented at present,
referred to as ‘m1.small’, ‘c1.medium’, ‘m1.large’,
‘m1.xlarge’, and ‘c1.xlarge’. The first two are 32-bit
architectures, the latter three are 64-bit. To give some sense
of relative scale, the “small compute slot” (m1.small) is
described as a single virtual core providing one ECU (EC2
Compute Unit, claimed to be equivalent to a 1.0–1.2 GHz
2007 Opteron or 2007 Xeon processor) combined with 1.7
GB of memory and 160 GB of local storage, while the
“large compute slot” (m1.large) provides 2 virtual cores
each with 2 ECUs, 7.5GB of memory and 850GB of local
storage. As expected, instances with more resources incur
greater hourly charges (e.g., ‘m1.small’ in the United States
region is currently $0.10 per hour, while ‘m1.large’ is
currently $0.40 per hour). When launching an instance, the
user specifies the instance type along with a compatible
virtual machine image.

Given these constraints, virtual machines are placed on
available physical servers shared among multiple instances.
Each instance is given Internet connectivity via both an
external IPv4 address and domain name and an internal RFC
1918 private address and domain name. For example, an
instance might be assigned external IP 75.101.210.100,
external name ec2-75-101-210 100. compute1.
amazonaws.com, internal IP 10.252.146.52, and internal
name domU-12-31-38-00-8D-C6.compute-internal. Within
the cloud, both domain names resolve to the internal IP

address; outside the cloud the external name is mapped to
the external IP address.

NETWORK PROBING

Network probing is used, both to identify public services
hosted on EC2 and to provide evidence of co-residence (that
two instances share the same physical server). In particular,
we utilize nmap, hoping, and get to perform network probes
to determine liveness of EC2 instances. We use nmap to
perform TCP connect probes, which attempt to complete a
3-way hand-shake between a source and target. We use
hoping to perform TCPSYN trace routes, which iteratively
sends TCP SYN packets with increasing time-to-lives
(TTLs) until no ACK is received. Both TCP connect probes
and SYN trace routes require a target port; we only targeted
ports 80 or 443. We used wget to retrieve web pages, but
capped so that at most 1024 bytes are retrieved from any
individual web server.

We distinguish between two types of probes: external
probes and internal probes. A probe is external when it
originates from a system outside EC2 and has destination an
EC2 instance. A probe is internal if it originates from an
EC2 instance (under our control) and has destination another
EC2 instance. This dichotomy is of relevance particularly
because internal probing is subject to Amazon’s acceptable
use policy, whereas external probing is not.

We use DNS resolution queries to determine the external
name of an instance and also to determine the internal IP
address of an instance associated with some public IP
address. The latter queries are always performed from an
EC2 instance.

CLOUD CARTOGRAPHY

In this section we ‘map’ the EC2 service to understand
where potential targets are located in the cloud and the
instance creation parameters needed to attempt establishing
co-residence of an adversarial instance. This will speed up
significantly adversarial strategies for placing a malicious
VM on the same machine as a target

To map EC2, we begin with the hypothesis that different
availability zones are likely to correspond to different
internal IP address ranges and the same may be true for
instance types as well. Thus, mapping the use of the EC2
internal address space allows an adversary to determine
which IP addresses correspond to which creation
parameters. Moreover, since EC2’s DNS service provides a
means to map public IP address to private IP address, an
adversary might use such a map to infer the instance type
and availability zone of a target service—thereby
dramatically reducing the number of instances needed
before a co-resident placement is achieved.

We evaluate this theory using two data sets: one created by
enumerating public EC2-based web servers using external
probes and translating responsive public IPs to internal IPs
(via DNS queries within the cloud), and another created by
launching a number of EC2 instances of varying types and
surveying the resulting IP address assigned. To fully
leverage the latter data, we present a heuristic algorithm that

E.Kanimozhi, Journal of Global Research in Computer Science, 3 (11), November 2012,44-51

© JGRCS 2010, All Rights Reserved 46

helps label /24 prefixes with an estimate of the availability
zone and instance type of the included Internal IPs. These
heuristics utilize several beneficial features of EC2’s
addressing regime. The output of this process is a map of the
internal EC2 address space which allows one to estimate the
availability zone and instance type of any target public EC2
server. Next, we enumerate a set of public EC2-based Web
servers
a. All IPs from a /16 are from the same

availability zone.
b. A /24 inherits any included sampled

instance type.
c. A /24 containing a Dom0 IP address only

contains Dom0 IP addresses. We associate
 to this /24 the type of the Dom0’s associated instance.

d. All /24’s between two consecutive Dom0 /24’s inherit
the former’s associated type.

The last heuristic, which enables us to label /24’s that have
no included instance, is derived from the observation that
Dom0 IPs are consistently assigned a prefix that
immediately precedes the instance IPs they are associated
with. There were 869 /24’s in the data, and applying the
heuristics resulted in assigning a unique zone and unique
type to 723 of these; a unique zone and two types to 23 of
these; and left 123 unlabeled. These last were due to areas
(such as the lower portion of 10.253.0.0/16) for which we
had no sampling data at all.

While the map might contain errors (for example, in areas of
low instance sample numbers), we have yet to encounter an
instance that contradicts the /24 labeling and we used the
map for many of the future experiments. For instance, we
applied it to a subset of the public servers derived from our
survey, those that responded to wget requests with an HTTP
200 or 206. The resulting 6 057 servers were used as stand-
ins for targets in some of the experiments in Section 7.

Preventing cloud cartography: Providers likely have
incentive to prevent cloud cartography for several reasons,
beyond the use we outline here (that of exploiting placement
vulnerabilities). Namely, they might wish to hide their
infrastructure and the amount of use it is enjoying by
customers. Several features of EC2 made cartography
significantly easier. Paramount is that local IP addresses are
statically (at least over the observed period of time)
associated to availability zone and instance type. Changing
this would likely make administration tasks more
challenging (and costly) for providers. Also, using the map
requires translating a victim instance’s external IP to an
internal IP, and the provider might inhibit this by isolating
each account’s view of the internal IP address space (e.g. via
VLANs and bridging). Even so, this would only appear to
slow down our particular technique for locating an instance
in the LAN—one might instead use ping timing
measurements or trace routes (both discuss more in the next
section) to help “triangulate” on a victim.

DETERMINING CO-RESIDENCE

Given a set of targets, the EC2 map from the previous
section educates choice of instance launch parameters for
attempting to achieve placement on the same physical
machine. Recall that we refer to instances that are running

on the same physical machine as being co-resident. In this
section we describe several easy-to-implement co-residence
checks. Looking ahead, our eventual check of choice will be
to compare instances’ Dom0 IP addresses. We confirm the
accuracy of this (and other) co-residence checks by
exploiting a hard-disk-based covert channel between EC2
instances.

Network-based co-residence checks: Using our experience
running instances while mapping EC2 and inspecting data
collected about them, we identify several potential methods
for checking if two instances are co-resident.
Namely, instances are likely co-resident if they have
a. matching Dom0 IP address,
b. small packet round-trip times, or
c. numerically close internal IP addresses (e.g. within 7).

As mentioned, an instance’s network traffic’s first hop is the
Dom0 privileged VM. An instance owner can determine its
Dom0 IP from the first hop on any route out from the
instance. One can determine an uncontrolled instance’s
Dom0 IP by performing a TCP SYN trace route to it (on
some open port) from another instance and inspecting the
last hop. For the second test, we noticed that round-trip
times (RTTs) required a “warm-up”: the first reported RTT
in any sequence of probes was almost always an order of
magnitude slower than subsequent probes. Thus for this
method we perform 10 probes and just discard the first. The
third check makes use of the manner in which internal IP
addresses appear to be assigned by EC2. The same Dom0 IP
will be shared by instances with a contiguous sequence of
internal IP addresses.

Veracity of the co-residence checks. We verify the
correctness of our network-based co-residence checks using
as ground truth the ability to send messages over a cross-
VM covert channel. That is, if two instances (under our
control) can successfully transmit via the covert channel
then they are co-resident, otherwise not. If the checks above
(which do not require both instances to be under our control)
have sufficiently low false positive rates relative to this
check, then we can use them for inferring co-residence
against arbitrary victims. We utilized for this experiment a
hard-disk-based covert channel. At a very high level, the
channel works as follows.

To send a one bit, the sender instance reads from random
locations on a shared disk volume. To send a zero bit, the
sender does nothing. The receiver times reading from a
fixed location on the disk volume. Longer read times mean a
1 is being set, shorter read times give a 0.

We performed the following experiment.
Three EC2 accounts were utilized: a control, a victim, and a
probe. (The “victim” and “probe” are arbitrary labels, since
they were both under our control.) All instances launched
were of type m1.small.

Two instances were launched by the control account in each
of the three availability zones. Then 20 instances on the
victim account and 20 instances on the probe account were
launched, all in Zone 3.

E.Kanimozhi, Journal of Global Research in Computer Science, 3 (11), November 2012,44-51

© JGRCS 2010, All Rights Reserved 47

We determined the Dom0 IPs of each instance. For each
(ordered) pair (A,B) of these 40 instances, if the Dom0 IPs
passed (check 1) then we had A probe B and each control to
determine packet RTTs and we also sent a 5-bit message
from A to B over the hard-drive covert channel.

EXPLOITING PLACEMENT IN EC2

Consider an adversary wishing to attack one or more EC2
instances. Can the attacker arrange for an instance to be
placed on the same physical machine as (one of) these
victims? In this section we assess the feasibility of achieving
co-residence with such target victims, saying the attacker is
successful if he or she achieves good coverage (co-residence
with a notable fraction of the target set).

The brute-force strategy has an attacker simply launch many
instances over a relatively long period of time. Such a naive
strategy already achieves reasonable success rates (though
for relatively large target sets). A more refined strategy has
the attacker target recently-launched instances. This takes
advantage of the tendency for EC2 to assign fresh instances
to the same small set of machines.

Brute-forcing placement:
We start by assessing an obvious attack strategy: run
numerous instances over a (relatively) long period of time
and see how many targets one can achieve co-residence
with. While such a brute-force strategy does nothing clever
(once the results of the previous sections are in place), our
hypothesis is that for large target sets this strategy will
already allow reasonable success rates.

The strategy works as follows. The attacker enumerates a set
of potential target victims. The adversary then infers which
of these targets belong to a particular availability zone and
are of a particular instance type using the map Then, over
some (relatively long) period of time the adversary
repeatedly runs probe instances in the target zone and of the
target type. Each probe instance checks if it is co-resident
with any of the targets. If not the instance is quickly
terminated.

We experimentally gauged this strategy’s potential efficacy.
We utilized as “victims” the subset of public EC2- based
web servers surveyed in Section 5 that responded with
HTTP 200 or 206 to a wget request on port 80.

The gap in time between our survey of the public EC2
servers and the launching of probes means that new web
servers or ones that changed IPs were not detected, even
when we in fact achieved co-residence with them.

Our results suggest that even a very naive attack strategy
can successfully achieve co-residence against a not-so-small
fraction of targets. Of course, we considered here a large
target set, and so we did not provide evidence of efficacy
against an individual instance or a small sets of targets. We
observed very strong sequential locality in the data, which
hinders the effectiveness of the attack. In particular, the
growth in target set coverage as a function of number of
launched probes levels off quickly. This suggests that fuller
coverage of the target set could require many more probes.

Abusing Placement Locality:
We would like to find attack strategies that do better than
brute-force for individual targets or small target sets. Here
we discuss an alternate adversarial strategy. We assume that
an attacker can launch instances relatively soon after the
launch of a target victim. The attacker then engages in
instance flooding: running as many instances in parallel as
possible (or as many as he or she is willing to pay for) in the
appropriate availability zone and of the appropriate type.
While an individual account is limited to 20 instances, it is
trivial to gain access to more accounts. As we show, running
probe instances temporally near the launch of a victim
allows the attacker to effectively take advantage of the
parallel placement locality exhibited by the EC2 placement
algorithms.

But why would we expect that an attacker can launch
instances soon after a particular target victim is launched?
Here the dynamic nature of cloud computing plays well into
the hands of creative adversaries. Recall that one of the main
features of cloud computing is to only run servers when
needed. This suggests that servers are often run on instances,
terminated when not needed, and later run again.

So for example, an attacker can monitor a server’s state
(e.g., via network probing), wait until the instance
disappears, and then if it reappears as a new instance,
engage in instance flooding. Even more interestingly, an
attacker might be able to actively trigger new victim
instances due to the use of auto scaling systems. These
automatically grow the number of instances used by a
service to meet increases in demand.

Patching placement vulnerabilities:
The EC2 placement algorithms allow attackers to use
relatively simple strategies to achieve co-residence with
victims (that are not on fully-allocated machines). As
discussed earlier, inhibiting cartography or co-residence
checking (which would make exploiting placement more
difficult) would seem insufficient to stop a dedicated
attacker. On the other hand, there is a straightforward way to
“patch” all placement vulnerabilities: offload choice to
users. Namely, let users request placement of their VMs on
machines that can only be populated by VMs from their (or
other trusted) accounts.

In exchange, the users can pay the opportunity cost of
leaving some of these machines under-utilized. In an
optimal assignment policy (for any particular instance type),
this additional overhead should never need to exceed the
cost of a single physical machine.

CROSS-VM INFORMATION LEAKAGE

The previous sections have established that an attacker can
often place his or her instance on the same physical machine
as a target instance. In this section, we show the ability of a
malicious instance to utilize side channels to learn
information about co-resident instances. Namely we show
that (time-shared) caches allow an attacker to measure when
other instances are experiencing computational load.

Leaking such information might seem innocuous, but in fact
it can already be quite useful to clever attackers. We

E.Kanimozhi, Journal of Global Research in Computer Science, 3 (11), November 2012,44-51

© JGRCS 2010, All Rights Reserved 48

introduce several novel applications of this side channel:
robust co-residence detection (agnostic to network
configuration), surreptitious detection of the rate of web
traffic a co-resident site receives, and even timing
keystrokes by an honest user (via SSH) of a co-resident
instance. For the keystroke timing attack, we performed
experiments on an EC2-like virtualized environment.

On stealing cryptographic keys. There has been a long line
of work on extracting cryptographic secrets via cache-based
side channels. Such attacks, in the context of third-party
compute clouds, would be incredibly damaging—and since
the same hardware channels exist, are fundamentally just as
feasible. In practice, cryptographic cross-VM attacks turn
out to be somewhat more difficult to realize due to factors
such as core migration, coarser scheduling algorithms,
double indirection of memory addresses, and unknown load
from other instances and a fortuitous choice of CPU
configuration

The side channel attacks we report on in the rest of this
section are more coarse-grained than those required to
extract cryptographic keys. While this means the attacks
extract less bits of information, it also means they are more
robust and potentially simpler to implement in noisy
environments such as EC2. Other channels; denial of
service. Not just the data cache but any physical machine
resources multiplexed between the attacker and target forms
a potentially useful channel: network access, CPU branch
predictors and instruction cache

The Hadoop Approach:
Hadoop is designed to efficiently process large volumes of
information by connecting many commodity computers
together to work in parallel. The theoretical 1000-CPU
machine described earlier would cost a very large amount of
money, far more than 1,000 single-CPU or 250 quad-core
machines. Hadoop will tie these smaller and more
reasonably priced machines together into a single cost-
effective compute cluster.

Comparison to Existing Techniques:
Performing computation on large volumes of data has been
done before, usually in a distributed setting. What makes
Hadoop unique is its simplified programming model
which allows the user to quickly write and test distributed
systems, and its efficient, automatic distribution of data
and work across machines and in turn utilizing the
underlying parallelism of the CPU cores.

Grid scheduling of computers can be done with existing
systems such as Condor. But Condor does not automatically
distribute data: a separate SAN must be managed in addition
to the compute cluster. Furthermore, collaboration between
multiple compute nodes must be managed with a
communication system such as MPI. This programming
model is challenging to work with and can lead to the
introduction of subtle errors.

Data Distribution:
In a Hadoop cluster, data is distributed to all the nodes of the
cluster as it is being loaded in. The Hadoop Distributed File
System (HDFS) will split large data files into chunks which
are managed by different nodes in the cluster. In addition to

this each chunk is replicated across several machines, so that
a single machine failure does not result in any data being
unavailable. An active monitoring system then re-replicates
the data in response to system failures which can result in
partial storage. Even though the file chunks are replicated
and distributed across several machines, they form a single
namespace, so their contents are universally accessible.

Data is conceptually record-oriented in the Hadoop
programming framework. Individual input files are broken
into lines or into other formats specific to the application
logic. Each process running on a node in the cluster then
processes a subset of these records. The Hadoop framework
then schedules these processes in proximity to the location
of data/records using knowledge from the distributed file
system. Since files are spread across the distributed file
system as chunks, each compute process running on a node
operates on a subset of the data. Which data operated on by
a node is chosen based on its locality to the node: most data
is read from the local disk straight into the CPU, alleviating
strain on network bandwidth and preventing unnecessary
network transfers. This strategy of moving computation to
the data, instead of moving the data to the computation
allows Hadoop to achieve high data locality which in turn
results in high performance.

Map Reduce: Isolated Processes:
Hadoop limits the amount of communication which can be
performed by the processes, as each individual record is
processed by a task in isolation from one another. While this
sounds like a major limitation at first, it makes the whole
framework much more reliable. Hadoop will not run just
any program and distribute it across a cluster. Programs
must be written to conform to a particular programming
model, named "MapReduce."

In Map Reduce, records are processed in isolation by tasks
called Mappers. The output from the Mappers is then
brought together into a second set of tasks called Reducers,
where results from different mappers can be merged
together.

Figure 1

Distributed File System Basics:
A distributed file system is designed to hold a large amount
of data and provide access to this data to many clients
distributed across a network. There are a number of

E.Kanimozhi, Journal of Global Research in Computer Science, 3 (11), November 2012,44-51

© JGRCS 2010, All Rights Reserved 49

distributed file systems that solve this problem in different
ways.
NFS, the Network File System, is the most ubiquitous
distributed file system. It is one of the oldest still in use.
While its design is straightforward, it is also very
constrained. NFS provides remote access to a single logical
volume stored on a single machine. An NFS server makes a
portion of its local file system visible to external clients. The
clients can then mount this remote file system directly into
their own Linux file system, and interact with it as though it
were part of the local drive.

One of the primary advantages of this model is its
transparency. Clients do not need to be particularly aware
that they are working on files stored remotely. The existing
standard library methods like open(), close(), fread(), etc.
will work on files hosted over NFS.

But as a distributed file system, it is limited in its power.
The files in an NFS volume all reside on a single machine.
This means that it will only store as much information as
can be stored in one machine, and does not provide any
reliability guarantees if that machine goes down (e.g., by
replicating the files to other servers). Finally, as all the data
is stored on a single machine, all the clients must go to this
machine to retrieve their data. This can overload the server
if a large number of clients must be handled. Clients must
also always copy the data to their local machines before they
can operate on it.

HDFS is designed to be robust to a number of the problems
that other DFS's such as NFS are vulnerable to. In
particular:

a. HDFS is designed to store a very large amount of
information (terabytes or petabytes). This requires
spreading the data across a large number of
machines. It also supports much larger file sizes
than NFS.

b. HDFS should store data reliably. If individual
machines in the cluster malfunction, data should
still be available.

c. HDFS should provide fast, scalable access to this
information. It should be possible to serve a larger
number of clients by simply adding more machines
to the cluster.

d. HDFS should integrate well with Hadoop Map
Reduce, allowing data to be read and computed
upon locally when possible.

But while HDFS is very scalable, its high performance
design also restricts it to a particular class of applications; it
is not as general-purpose as NFS. There are a large number
of additional decisions and trade-offs that were made with
HDFS. In particular:

a. Applications that use HDFS are assumed to
perform long sequential streaming reads from files.
HDFS is optimized to provide streaming read
performance; this comes at the expense of random
seek times to arbitrary positions in files.

b. Data will be written to the HDFS once and then
read several times; updates to files after they have
already been closed are not supported. (An
extension to Hadoop will provide support for

appending new data to the ends of files; it is
scheduled to be included in Hadoop 0.19 but is not
available yet.)

c. Due to the large size of files, and the sequential
nature of reads, the system does not provide a
mechanism for local caching of data. The overhead
of caching is great enough that data should simply
be re-read from HDFS source.

d. Individual machines are assumed to fail on a
frequent basis, both permanently and intermittently.
The cluster must be able to withstand the complete
failure of several machines, possibly many
happening at the same time (e.g., if a rack fails all
together). While performance may degrade
proportional to the number of machines lost, the
system as a whole should not become overly slow,
nor should information be lost. Data replication
strategies combat this problem.

The design of HDFS is based on the design of GFS, the
Google File System. Its design was described in a paper
published by Google.

HDFS is a block-structured file system: individual files are
broken into blocks of a fixed size. These blocks are stored
across a cluster of one or more machines with data storage
capacity. Individual machines in the cluster are referred to
as Data Nodes. A file can be made of several blocks, and
they are not necessarily stored on the same machine; the
target machines which hold each block are chosen randomly
on a block-by-block basis. Thus access to a file may require
the cooperation of multiple machines, but supports file sizes
far larger than a single-machine DFS; individual files can
require more space than a single hard drive could hold.

Starting HDFS:
Now we must format the file system that we just configured:
user@namenode:hadoop$ bin/hadoop namenode -format
This process should only be performed once. When it is
complete, we are free to start the distributed file system:
user@namenode:hadoop$ bin/start-dfs.sh

This command will start the NameNode server on the master
machine (which is where the start-dfs.sh script was
invoked). It will also start the DataNode instances on each
of the slave machines. In a single-machine "cluster," this is
the same machine as the NameNode instance. On a real
cluster of two or more machines, this script will ssh into
each slave machine and start a DataNode instance.

Interacting With HDFS:
This section will familiarize you with the commands
necessary to interact with HDFS, loading and retrieving
data, as well as manipulating files. This section makes
extensive use of the command-line.

The bulk of commands that communicate with the cluster
are performed by a monolithic script named bin/hadoop.
This will load the Hadoop system with the Java virtual
machine and execute a user command. The commands are
specified in the following form:
user@machine:hadoop$ bin/hadoop moduleName -cmd
args...

http://developer.yahoo.com/hadoop/tutorial/module2.html#ref_gfs�

E.Kanimozhi, Journal of Global Research in Computer Science, 3 (11), November 2012,44-51

© JGRCS 2010, All Rights Reserved 50

The moduleName tells the program which subset of Hadoop
functionality to use. -cmd is the name of a specific command
within this module to execute. Its arguments follow the
command name.

Two such modules are relevant to HDFS: dfs and dfsadmin.
Their use is described in the sections below.

Shutting Down HDFS:
If you want to shut down the HDFS functionality of your
cluster (either because you do not want Hadoop occupying
memory resources when it is not in use, or because you want
to restart the cluster for upgrading, configuration changes,
etc.), then this can be accomplished by logging in to the
NameNode machine and running:
someone@namenode:hadoop$ bin/stop-dfs.sh
This command must be performed by the same user who
started HDFS with bin/start-dfs.sh.

USING HDFS IN MAPREDUCE

The HDFS is a powerful companion to Hadoop Map
Reduce. By setting the fs.default.name configuration option
to point to the Name Node (as was done above), Hadoop
Map Reduce jobs will automatically draw their input files
from HDFS. Using the regular File Input Format subclasses,
Hadoop will automatically draw its input data sources from
file paths within HDFS, and will distribute the work over the
cluster in an intelligent fashion to exploit block locality
where possible.

HDFS provides a decommissioning feature which ensures
that this process is performed safely. To use it, follow the
steps below:

Step 1: Cluster configuration: If it is assumed that nodes
may be retired in your cluster, then before it is started, an
excludes file must be configured. Add a key named
dfs.hosts.exclude to your conf/hadoop-site.xml file. The
value associated with this key provides the full path to a file
on the Name Node's local file system which contains a list
of machines which are not permitted to connect to HDFS.
Step 2: Determine hosts to decommission: Each machine to
be decommissioned should be added to the file identified by
dfs. hosts. exclude, one per line. This will prevent them
from connecting to the Name Node.
Step 3: Force configuration reload: Run the command
bin/hadoop dfsadmin -refreshNodes. This will force the
Name Node to reread its configuration, including the newly-
updated excludes file. It will decommission the nodes over a
period of time, allowing time for each node's blocks to be
replicated onto machines which are scheduled to remain
active.
Step 4: Shutdown nodes: After the decommission process
has completed, the decommissioned hardware can be safely
shut down for maintenance, etc. The bin/hadoop dfsadmin -
report command will describe which nodes are connected to
the cluster.
Step 5: Edit excludes file again: Once the machines have
been decommissioned, they can be removed from the
excludes file. Running bin/hadoop dfsadmin –refresh Nodes
again will read the excludes file back into the Name Node,
allowing the Data Nodes to rejoin the cluster after

maintenance has been completed, or additional capacity is
needed in the cluster again, etc.

Using the Map Reduce Plug in For Eclipse:
An easier way to manipulate files in HDFS may be through
the Eclipse plug in. In the DFS location viewer, right-click
on any folder to see a list of actions available. You can
create new subdirectories, upload individual files or whole
subdirectories, or download files and directories to the local
disk.

If /user/hadoop-user does not exist, create that first. Right-
click on the top-level directory and select "Create New
Directory". Type "user" and click OK. You will then need to
refresh the current directory view by right-clicking and
selecting "Refresh" from the pop-up menu. Repeat this
process to create the "hadoop-user" directory under "user."
Now, prepare some local files to upload. Somewhere on
your hard drive, create a directory named "input" and find
some text files to copy there. In the DFS explorer, right-
click the "hadoop-user" directory and click "Upload
Directory to DFS." Select your new input folder and click
OK. Eclipse will copy the files directly into HDFS,
bypassing the local drive of the virtual machine. You may
have to refresh the directory view to see your changes. You
should now have a directory hierarchy containing the
/user/hadoop-user/input directory, which has at least one
text file in it.

Partitioning Data:
"Partitioning" is the process of determining which reducer
instance will receive which intermediate keys and values.
Each mapper must determine for all of its output (key,
value) pairs which reducer will receive them. It is necessary
that for any key, regardless of which mapper instance
generated it, the destination partition is the same. If the key
"cat" is generated in two separate (key, value) pairs, they
must both be reduced together. It is also important for
performance reasons that the mappers be able to partition
data independently -- they should never need to exchange
information with one another to determine the partition for a
particular key.

Hadoop uses an interface called Partitioner to determine
which partition a (key, value) pair will go to. A single
partition refers to all (key, value) pairs which will be sent to
a single reduce task. Hadoop MapReduce determines when
the job starts how many partitions it will divide the data
into. If twenty reduce tasks are to be run (controlled by the
JobConf.setNumReduceTasks()) method), then twenty
partitions must be filled.
The Partitioner defines one method which must be filled:
public interface Partitioner<K, V> extends JobConfigurable
{
 int getPartition(K key, V value, int numPartitions);
}

The getPartition() method receives a key and a value and the
number of partitions to split the data across; a number in the
range [0, numPartitions) must be returned by this method,
indicating which partition to send the key and value to. For
any two keys k1 and k2, k1.equals(k2) implies
getPartition(k1, *, n) == getPartition(k2, *, n).

E.Kanimozhi, Journal of Global Research in Computer Science, 3 (11), November 2012,44-51

© JGRCS 2010, All Rights Reserved 51

The default Partitioner implementation is called
HashPartitioner. It uses the hashCode() method of the key
objects modulo the number of partitions total to determine
which partition to send a given (key, value) pair to.

CONCLUSIONS

In this paper, we argue that fundamental risks arise from
sharing physical infrastructure between mutually distrustful
users, even when their actions are isolated through machine
virtualization as within a third-party cloud compute service.

However, having demonstrated this risk the obvious next
question is “what should be done?”. There are a number of
approaches for mitigating this risk.

First, cloud providers may obfuscate both the internal
structure of their services and the placement policy to
complicate an adversary’s attempts to place a VM on the
same physical machine as its target. For example, providers
might do well by inhibiting simple network-based co-
residence checks. However, such approaches might only
slow down, and not entirely stop, a dedicated attacker.
Second, one may focus on the side-channel vulnerabilities
themselves and employ blinding techniques to minimize the
information that can be leaked. This solution requires being
confident that all possible side-channels have been
anticipated and blinded. Ultimately, we believe that the best
solution is simply to expose the risk and placement
decisions directly to users. A user might insist on using
physical machines populated only with their own VMs and,
in exchange, bear the opportunity costs of leaving some of
these machines under-utilized. For an optimal assignment
policy, this additional overhead should never need to exceed
the cost of a single physical machine, so large users—
consuming the cycles of many servers—would incur only
minor penalties as a fraction of their total cost. Regardless,
we believe such an option is the only foolproof solution to
this problem and thus is likely to be demanded by customers
with strong privacy requirements.

REFERENCES

[1]. O. Acıi¸cmez, ¸C. Kaya Ko ç, an d J.P. Seifert. On th e
power of simple branch prediction analysis. IACR
Cryptology ePrint Archive, report 2006/351, 2006.

[2]. O. Acıi¸cmez, ¸C. Kaya Ko¸c, and J.P. Seifert. Predicting
secret keys via branch prediction. RSA Conference
Cryptographers Track – CT-RSA ’07, LNCS vol. 4377,pp.
225–242, Springer, 2007.

[3]. O.Acıi¸cmez.Yet another microarchitectural
attack:exploiting I-cache. IACR Cryptology ePrint
Archive, report 2007/164, 2007.

[4]. O. Acıi¸cmez, and J.P. Seifert. Cheap hardware parallelism
implies cheap security. Workshop on Fault Diagnosis and
Tolerance in Cryptography – FDTC ’07, pp. 80–91,
IEEE,2007.

[5]. Amazon Elastic Compute Cloud (EC2).

http://aws.amazon.com/ec2/

[6]. Amazon Web Services. Auto-scaling Amazon EC2 with
Amazon SQS. http://developer.amazonwebservices.com/

connect/entry.jspa?externalID=1464

[7]. Amazon Web Services. Creating HIPAA-Compliant
Medical Data Applications with Amazon Web Services.
White paper, http://awsmedia.s3.amazonaws.com/AWS_

HIPAA_Whitepaper_Final.pdf, April 2009.

[8]. Amazon Web Services. Customer
Agreement.http://aws.amazon.com/agreemet/

[9]. P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,A.
Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and the
art of virtualization. SOSP ’03: Proceedings of the
nineteenth ACM symposium on Operating systems
principles, 2003.

[10]. D. Bernstein. Cache-timing attacks on AES. Preprint
available at http://cr.yp.to/papers.html#cachetiming,2005.

[11]. DentiSoft. http://www.dentisoft.com/index.asp

[12]. D. Grunwald and S. Ghiasi. Microarchitectural denial of
service: Insuring microarchitectural fairness. International
Symposium on Microarchitecture – MICRO ’02, pp. 409–
418, IEEE, 2002.

[13]. D. Hyuk Woo and H.H. Lee. Analyzing performance
vulnerability due to resource denial of service attack on
chip multiprocessors. Workshop on Chip Multiprocessor
Memory Systems and Interconnects, 2007.

[14]. W-H. Hu, Reducing timing channels with fuzzy time. IEEE
Symposium on Security and Privacy, pp. 8–20, 1991.

[15]. W-H. Hu, Lattice scheduling and covert channels. IEEE
Symposium on Security and Privacy, 1992

[16]. Thomas Ristenpart,Eran Tromer , Hovav Shacham, Stefan
Savage“ Hey, You, Get Off of My Cloud:Exploring
Information Leakage in Third-Party Compute Clouds”
CCS’09, November 9–13, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-352-5/09/11

	The Hadoop Approach:
	Comparison to Existing Techniques:
	Data Distribution:
	Map Reduce: Isolated Processes:

	Distributed File System Basics:
	Starting HDFS:

	Interacting With HDFS:
	USING HDFS IN MAPREDUCE
	Using the Map Reduce Plug in For Eclipse:

	Partitioning Data:

