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ABSTRACT 

 

Glioblastoma Multiforme (GBM) is an aggressive and metastatic brain tumor 

with a low success rate in treatment, particularly in immune checkpoint-active 

tumors, resulting in less than three percent of patients surviving beyond five 

years. Targeted treatments specifically designed for GBM are urgently needed. 

Our studies have examined the effects of Chemovar Specific Cannabis 

Extractions (CSCEs), which are cannabis extracts obtained using polar solvents 

and analysed using Liquid column Chromatography combined with Mass 

Spectrometry (LC/MS). However, the complex nature of cannabis compounds 

has hindered the personalization of standard cannabis medicines for GBM due 

to the unknown synergistic effects of multiple compounds. To address this 

challenge, our study focuses on exposing U570 cells (a type of brain tumor cell) 

to chemovar fractions extracted using polar (upper layer) and nonpolar (lower 

layer) solvents. This approach enables the isolation of a broader spectrum of 

constituents present in the cannabis extract. By utilizing LC/MS in conjunction 

with Nuclear Magnetic Resonance (NMR), we have identified and quantified 11 

cannabinoid compounds present in the polar CSCE that individually exhibit 

significant efficacy in inducing cell death in GBM tumor cells. Conversely, the 

polar fraction in our experiment did not demonstrate efficacy against U570 

cells. The ability to quantify individual compounds within a cannabis extract that 

selectively induce cell death in brain tumors holds promise for guiding future 

research and facilitating the development of a standardized CSCE for GBM 

therapy. 
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INTRODUCTION 

Gliomas, a type of brain tumor, pose a significant challenge in the field of oncology. Among them, glioblastoma 

(GBM) stands out as an especially aggressive and lethal form, classified as a Stage IV glioma according to the World 

Health Organization (WHO) [1,2]. Recent advancements in understanding the molecular aspects of Central Nervous 

System (CNS) tumors have led to the incorporation of molecular parameters in their classification, with substantial 

revisions made by the WHO in 2021 [1,2]. The Cancer Stem Cell (CSC) theory is gaining momentum in the scientific 

community, proposing that glioblastomas originate from glial cells undergoing abnormal differentiation, leading to 

the formation of cancer stem cells. These CSCs are believed to drive tumor initiation and progression [3,4]. However, 

unraveling the precise origins of individual GBM tumors remains an ongoing research endeavour, underscoring the 

need for further investigation. 

In the clinical setting, standardized treatments have shown promising results in improving survival rates for GBM 

patients. The current standard of care involves surgical resection, radiation therapy, and chemotherapy, particularly 

using daily temozolomide (TMZ) [5,6]. This combined approach has demonstrated median survival rates of up to 20 

months. However, treatment effectiveness greatly depends on the genetic makeup of each tumor, as specific 

mutations can confer resistance to therapy. Notably, the absence of O6-Methylguanine-DNA Methyltransferase 

(MGMT) promoter methylation is a critical determinant of TMZ efficacy, with GBM lacking this methylation showing 

resistance to the drug [7-9]. Considering these challenges, novel therapeutic strategies are being explored, and 

cannabis metabolites have emerged as a promising avenue. These metabolites have demonstrated the ability to 

target several druggable mechanisms observed in genotype specific GBM. Despite these promising findings, 

additional research is still needed to establish a replicable and effective therapeutic approach utilizing cannabis 

metabolites [10].  

Cannabis sativa L. encompasses a unique system of non-polar metabolites [11,12]. CBGA serves as a precursor for 

naturally occurring phytocannabinoids with a five-carbon chain, and its two primary metabolites are 

Tetrahydrocannabinolic Acid (THCA) and Cannabidiolic Acid (CBDA) [13]. Non-polar constituents of cannabis include 

180 known phytocannabinoids, 111 terpenes comprising either ten or fifteen carbons, and 121 terpenoids [14-16]. 

Fractions containing Δ-9-THCA, CBG, and CBC derived from a crude CSCE produced with polar solvents have 

induced ~ 90% cell death in the A172 GBM cell line after 48 hours of exposure [10]. Compliant extraction techniques 

and LC/MS quantification can standardize personalized CSCEs [10,16,17] and target specific GBM-related 

mechanisms, such as promoting 2-AG, ERK via CBrs, or PPARs [18-20], regulating AKT and cAMP through allosteric 
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modulation [21-23], desensitizing Transient Receptor Potential channels (TRPs) [24], inhibiting GPR55 [25,26], or 

reducing Prostaglandin E2 (PGE2) via COX-2 [27-29].  

Δ-9-tetrahydrocannabinol, a decarboxylated cannabinoid, activates the G protein-coupled receptors CB1r and CB2r 

[30,31]. It causes significant intoxication but also promotes angiogenesis and maintains ceramide homeostasis [32] 

and partially inhibits autotoxin [33]. In contrast, Cannabidiol (CBD) reduces calcium current by antagonizing GPR55 

and negatively binds to the allosteric pocket in CB1r and CB2r with low efficacy [34,35]. Notably, when co-

administered with an equal ratio of THC, CBD did not affect the ERK or P13K pathways in the ventral hippocampi, in 

contrast to each cannabinoid alone [22]. CBD has been shown to induce autophagy in a neuroblastoma cell line 

dependent on ERK1/2 and PI3K/AKT activation [36]. Therefore, the development of drug treatments must consider 

the biased conformational changes downstream of CB1r during the treatment of GBM with CSCEs [10,18,22]. 

CBG weakly binds to CB2r, while Cannabichromene (CBC) and Beta-Caryophyllene (BCP) act as selective CB2r 

agonists [37,38]. Glial cells in the cerebellum express CB2r following oxidative stress [39-42]. Cannabinoids 

downregulate calcium and sodium currents via TRP desensitization or inactivation, and CBD induces cell death in 

glioblastoma by dephosphorylating TRPV1 and inhibiting GPR55 [26]. TPRV1 strongly interacts with PGE2 [43], which 

is metabolized by COX-2. CBDA, THCA, and CBG inhibit COX-2 with significant efficacy, potentially mediating GBM 

proliferation by targeting arachidonic acid metabolism to PGE2 [27,29]. Clinical COX-2 inhibitors previously failed due 

to widespread adverse reactions. 

Cannabinoid formulations also impact enzymes responsible for endocannabinoid metabolism and catabolism. CBD 

inhibits FAAH, which metabolizes N-arachidonoylethanolamine (AEA/anandamide) in the post-synaptic cleft of CB1r 

[24,44]. However, glioblastoma does not migrate away from the brain, where 2-AG levels are approximately 170-fold 

higher than anandamide [45]. Whole-plant extracts containing THCA, CBGA, and CBG, but not cannabinoid isolates, 

inhibit the serine hydrolase known as MAGl, which metabolizes 2-AG in the pre-synaptic cleft [24]. THC purified from 

cannabis extracts did not enhance the cytotoxicity of CBG against glioblastoma, whereas CBG induces cell death in 

cancer stem cells, targeting treatment-resistant tumors [26,46].  

An earlier clinical trial using cannabis containing THC, with TMZ as a control, exhibited cytotoxic effects [47]. To 

investigate the toxicity effect of bioactive constituents in a whole-plant extract and identified them with polar 

extraction and quantified with LC/MS coupled with NMR could replicate positive results against GBM. 

MATERIALS AND METHODS 

Chemicals and reagents 

Mass spectrometry-grade formic acid, methanol, hexane, and acetonitrile (methyl cyanide) were purchased from 

fisher scientific (Waltham, MA). Optima-grade water was used for LC-MS analysis. The acquity Ultra-high-

Performance Liquid Chromatography (UPLC) BEH C18 analytical column and vanguard pre-column for 

chromatography were obtained from waters Corp., Waltham, MA. Cannabis dry flower samples were obtained from 

local hemp stores in Wingate, North Carolina, USA. These products were stored at -20ºC until further analysis. 

Deuterated chloroform (CDCl3) with 1% TSP (trimethylsilyl propionic acid-d4) as an internal reference was obtained 

from Acros Organics, New Jersey, USA. 
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Sample preparation 

Extraction: Dried cannabis flowers were ground into a powder using a high-speed multifunction grinder (HC-1500Y). 

A mixture of 0.33 ml methanol and 0.17 ml water was combined with 0.5 ml of chloroform and added to 4 mg to 6 

mg of the ground cannabis. The mixture was vortexed for five minutes and then centrifuged in a micro 2 Litres 

centrifuge at 14.8 × 103 rpm for 10 minutes at ambient temperature. The resulting solution was separated into 

three layers: The top (polar) layer containing the methanol/water solvent, the bottom (non-polar) layer containing 

the chloroform solvent, and the middle (solid) layer that dissolves exclusively in DMSO. The organic phase was 

transferred to a separate eppendorf tube and concentrated using a savant speedvac SPD1030 integrated vacuum 

concentrator at ambient temperature and a pressure of 6 torr for 4 hours-6 hours. 

UPLC-MS/MS: The resulting extract was vortexed for 1 minute and filtered through a 0.22 µm filter unit. The solute 

was diluted to a ratio of 1:100, and 100 µl of the sample was transferred to LCMS vials and centrifuged for 5 

minutes. The UPLC was performed using an aquity U-PLC BEH C18 analytical column with a linear gradient elution 

system consisting of eluant (I) at 50% and eluant (II) at 50% for 1 minute, II at 100% for 8 minutes, II at 50% for 3 

minutes, and equilibrated for 2 minutes. The UPLC program ran for 13 minutes at a flow rate of 5 ml/min, and 0.5 

µL of the sample was injected. The UPLC was quantified using an acquity-target lynx. 

NMR: The non-polar phase was dissolved in deuterated chloroform (CDCl3) with 1% TSP as an internal reference at 

0 ppm. The NMR spectra were recorded using a bruker ascend 400 MHz spectrometer at 25ºC. Various mixing 

times (0.03 seconds, 0.08 seconds, and 0.12 seconds) and 256 scans were used for the analysis. The NMR 

signals from protons in the sample were obtained using a standard non-phase-sensitive sequence (1D) and homo-

nuclear shift correlation generated two-dimensional NMR experiments with 2k × 256 data points matrix. 

Instrumental 

Liquid Chromatographic (LC) conditions: Analytes were separated on an aquity U-PLC BEH C18 analytical column 

preceded by an acquity U-PLC BEH C18 vanGuard pre-column. The flow rate was 0.5 ml/min, and the autosampler 

and analytical column temperatures were maintained at 10ºC and 45ºC, respectively. The mobile phases consisted 

of 0.1% formic acid in water (I) and 0.1% formic acid in acetonitrile (II). 

Mass spectrometry conditions: The quadrupole time-of-flight tandem mass spectrometer system (waters SYNAPT 

G2-Si Q-ToF) was used with Electrospray Ionization (ESI) in positive and negative modes. The mass spectrometry 

parameters included capillary voltage of 1.50 kV, collision gas flow of 0.15 ml/min, extractor voltage of 3 V, 

desolation temperature of 500ºC, source temperature of 150ºC, and desolation gas flow of 1000 l/h. The mass 

scan ranged from 50 m/z to 1200 m/z. 

Biological activity of cannabis extracts on glioblastoma cell line culture 

Each compound was dissolved in DMSO and tested on cells. The supernatant sample was obtained by spinning the 

compound with DMSO and the pellet at 3000 RPM for 5 minutes. The leftover DMSO was evaporated from the 

open microfuge tubes containing the pellets on a 37ºC heat block. The mass of compounds 1 and 2 was obtained 

using the maximum tolerable amount of DMSO (1%) and further diluted at a 1:10 ratio. Compound #2 or the non-

polar layer was further tested with a 1:2 serial dilution of DMSO concentration starting at 1% DMSO. 

RESULTS AND DISCUSSION 

The scientific paper presents a comprehensive investigation into the analysis of cannabis extracts and their impact 

on glioblastoma cell lines. The study utilized three instrumental techniques, namely Liquid Chromatography-Mass 

Spectrometry (LC-MS) and Nuclear Magnetic Resonance (NMR). 
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Liquid Chromatography-Mass Spectrometry (LC-MS) is a vital tool in modern analytical chemistry for identifying 

chemical compositions. It combines the separation capability of liquid chromatography with the sensitive and 

selective detection power of mass spectrometry. By analysing parent ions, daughter fragmentations, and retention 

times of compounds, LC-MS enables the confident identification of each compound. Parent ions provide 

information about intact molecular species, while daughter fragmentations offer insights into structural 

characteristics. The retention times aid in distinguishing similar compounds with distinct mass spectra, facilitating 

compound characterization. 

In the LC analysis, an aquity U-PLC BEH C18 analytical column, preceded by an acquity U-PLC BEH C18 vanguard 

pre-column, was employed. The mobile phases consisted of 0.1% formic acid in water and 0.1% formic acid in 

acetonitrile. LC was coupled with a waters SYNAPT G2-Si Q-ToF tandem mass spectrometer system for mass 

spectrometry. The LC-MS conditions were optimized using tandem MS/MS ions for each standard solution of 

cannabis metabolites. Figure 1 displays the LC-MS chromatogram representing the methanol extract, while Table 1 

summarizes the chromatogram LC-MS results, including retention time and m/z values for parent and daughter 

fragmentations. Additionally, UPLC-MS/MS analysis using methanol/water extraction yielded a chromatogram 

(Figure 2) identifying various compounds present in the extract, such as Cannabigerol (CBG), Cannabichromene 

(CBC), Cannabidiol (CBD), Delta-9-Tetrahydrocannabinolic acid ( Δ-9-THCA), CBGA (Cannabigerolic Acid), CBG 

(Cannabigerol), CBD (Cannabidiol), THCV (Tetrahydrocannabivarin), CBN (Cannabinol), Δ-8-THC (Delta-8-

Tetrahydrocannabinol), Δ-9-THC (Delta-9-Tetrahydrocannabinol), CBC (Cannabichromene), CBDV (Cannabidivarin). 

The polar solvent system extract and ion masses confirmed the presence of these cannabinoids in the extract 

through high-resolution mass spectrum and retention times, respectively. The UPLC-MS/MS results align with the 

findings from NMR analyses, providing further verification of the identified compounds in the cannabis extract. 

The quantification of individual cannabinoids in gram quantities of dried cannabis flower yielded impressive results. 

Regarding the calculation of the concentrations, it is important to clarify that the concentrations were determined 

using the calibration curves generated in the previous method assay. The calibration curves were created based on 

the best-fit linear regression method. 

Figure 1. The chromatogram of the compounds in the organic extract of cannabis flowers in UPLC-MS/MS using 

chloroform/methanol/water extraction, and the chromatogram represented LCMS of chloroform extract. 
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Each calibration curve was prepared using six concentrations of each cannabinoid, with each concentration 

repeated five times. These calibration curves were then saved and utilized for the quantification process. To 

calculate the cannabinoid concentrations in the samples, the software (Target Lynx) integrated within mass lynx 

was employed. The software utilizes the calibration curves to determine the concentration of cannabinoids in the 

samples based on their respective peak areas. This method allows for accurate quantification of cannabinoids by 

incorporating the calibration curves developed using the UPLC-MS/MS method.  

Among the cannabinoids analyzed, Cannabichromene (CBC) emerged as the most prominent component, 

constituting an impressive 38% of the total. Notably, cannabigerolic acid. 

Table 1. Summarizes the LC-MS, GCMS, and NMR results for the identified compounds in the non-polar extract of 

Cannabis sativa. 

 

Name 

 

Retention 

time (min) 

 

MSMS transitions 

 

Chemical structure 

 

Quantification 

of limit (LOQ) 

 

LCMS 

 

NMR 

Δ9 THCA 6.4 357.2101  313.2145 

 

 

25 

 

Yes 

 

Yes 

CBDA 4.3 357.2066  245.1538 

 

 

10 

 

Yes 

 

Yes 

CBGA 4.5 359.2192  341.2126 

 

 

10 

 

Yes 

 

Yes 

CBG 4.5 317.2470  193.1223 

 

 

 

50 

 

 

Yes 

 

 

Yes 

CBD 4.6 315.2336  259.1668 

 

 

 

25 

 

 

Yes 

 

 

Yes 

THCV 4.5 287.2031  165.0929 

 

 

25 

 

Yes 

 

Yes 

CBN 5.3 311.2011  223.1130 

 

 

10 

 

Yes 

 

Yes 

Δ8 THC 5.91 315.2336  193.1242 

 

 

10 

 

Yes 

 

Yes 

Δ9 THC 5.8 315.2324  259.1705 

 

 

25 

 

Yes 

 

Yes 

CBC 6.4 315.2336  193.1242 

 

 

50 

 

Yes 

 

Yes 

CBDV 3.4 287.19771  65.0892 

 

 

10 

 

Yes 

 

Yes 
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Figure 2. The composition of the compounds in the polar extract of cannabis flowers and quantified using UPLC-

MS/MS using methanol/water extraction, and the percentage represented amount of each cannabinoid in crude 

dry of cannabis. Note:  CBC;  CBG;  CBDV;  CBN;  THCV;  CBD;  CBDA;  CBGA;  D9THCA;  

D8THC;  D9THC;  Total THC;  Total CBD. 

 

Cannabigerolic acid (CBGA), Cannabigerol (CBG), and Cannabidiol (CBD) were also present in substantial amounts, 

comprising 14%, 8%, and 6%, respectively (Figure 2). To gain deeper insights into the complex organic extracts 

chemical composition and structural elucidation, we employed proton nuclear magnetic resonance spectroscopy 

(1H-NMR). This powerful technique allowed us to identify and quantify various organic compounds based on their 

unique proton chemical shifts, shedding light on the extracts functional groups. Additionally, the selective TOCSY 

experiment enabled the determination of proton connectivity, facilitating the assignment of intricate proton spin 

systems and enhancing molecular structure elucidation (data not shown). Together, these cutting-edge methods 

provide a robust toolset for characterizing and comprehending the intricate mixture of organic compounds within 

the extract, opening new avenues for natural product discovery and environmental analysis.  

In our 1H-NMR spectrum, acquired using a standard pulse sequence, we further performed 2D experiments, such 

as TOCSY, to gather additional spectral information. The NMR analysis yielded valuable structural insights and 

confirmed the identification of the compounds listed in Table 1. For instance, delta-9-tetrahydrocannabinolic acid (Δ 

9THCA) exhibited chemical shifts at 6.2 ppm for aromatic protons and 4.5 ppm for aliphatic protons, while the ion 

mass parent and daughters were verified through high-resolution mass spectrometry (HRMS-LCMS) as 357.2101 

and 313.2145, respectively. Similarly, CBGA, CBG, CBD, THCV, CBN, Delta-8-Tetrahydrocannabinol (Δ-8-THC), Delta-

9-Tetrahydrocannabinol (Δ-9-THC), CBC, and Cannabidivarin (CBDV) were all successfully identified and confirmed 

through this comprehensive NMR analysis (Figure 3). 

Figure 3. 1H-NMR of organic extract spectrum. Selective NMR of the compounds (1-11) showing specific protons 

and chemical shifts. 
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This extensive characterization of cannabinoid compounds lays a solid foundation for further studies and 

applications in the realm of chemistry and beyond. 

In this chemistry journal, we conducted an evaluation of the biological activity of cannabis extracts on glioblastoma 

cell lines. To assess their impact, the extracts were dissolved in Dimethyl Sulfoxide (DMSO) and subjected to cell 

testing. Remarkably, the non-polar extract demonstrated a potent cytotoxic effect on the U250 glioblastoma cell 

line, showcasing its potential as a promising therapeutic agent (data not available). However, the results took an 

intriguing turn when the polar, nonpolar, and middle layers of the cannabis extract were tested on the U570 

glioblastoma cell line (Figure 4). Surprisingly, none of these extract layers exhibited any toxic effects on the U570 

cell line. This finding raised questions about the potential mechanisms at play, prompting us to delve further into 

the analytical chemistry analysis. 

Our analytical chemistry analysis revealed that the polar extract predominantly contained Cannabichromene (CBC) 

and Cannabigerolic Acid (CBGA) as major constituents, comprising 38% and 14%, respectively. To explore the 

implications of these individual components, we tested them in pure form on the cell line culture. Interestingly, 

when tested individually, CBC and CBGA showed no toxic effects on the cancer cell line. 

This observation has significant implications for our understanding of the cannabis extracts biological activity on 

glioblastoma cell lines. The lack of toxic activity in the polar extract, despite its composition of CBC and CBGA, 

suggests potential synergistic effects or interactions with other compounds within the extract. Further investigations 

into the intricate interplay of cannabis extract constituents may shed light on its therapeutic potential and guide 

future research in the quest for novel glioblastoma treatments. 

Figure 4. A) Pharmacological activity of Cannabis sativa extracts in polar and non-polar solvents and the middle-

layer extracts. Those extracted were tested and incubated with two different glioblastoma cell line cultures U570. 

We did not see any toxic effect on cancer cell line culture using polar, non-polar and middle-layer extracts. B) Shows 

that individual cannabinoid has potent cytotoxic effect on U570 cell line culture. Note:  Middle-layer extract; 

 Polar extract;  Non-polar extract;  D9-THC;  D8-THC;  THcV;  D9-THcA;  CBD;  

CBC;  CBG;  CBN;  CBDV;  CBDA;  CBGA;  Methanol alone. 
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CONCLUSION 

The presented results unravel a captivating glimpse into the chemical composition and pharmacological potential 

of cannabis extracts. By harnessing the power of advanced instrumental analysis techniques such as Nuclear 

Magnetic Resonance (NMR) and Ultra-Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS/MS), we 

embarked on a journey to identify and unravel the diverse compounds within these extracts. The combination of LC-

MS and NMR allowed us to not only identify and quantify specific compounds but also to gain deeper confirmation 

of their presence. 

The biological activity testing on glioblastoma cell lines yielded intriguing results. While the extracts did not exhibit 

potent cytotoxic effects on the U750 cell line, we uncovered the potent anticancer activity of certain cannabinoids 

such as CBD, CBDA, CBG, Δ-8-THC and Δ-9-THC. These promising findings highlight the cannabis extracts 

remarkable potential as an effective anticancer agent, offering hope in the quest for innovative treatments against 

this devastating disease. However, it is noteworthy that the polar extracts, containing relatively lower levels of these 

potent cannabinoids, did not display any toxic effects on the tested cell lines. This revelation piques our curiosity, 

prompting us to explore the intricate interplay of the cannabis extracts constituents and their synergistic effects. 

The knowledge garnered from this study significantly advances our understanding of the chemical composition and 

biological activity of cannabis extracts, especially concerning glioblastoma cell lines. This breakthrough paves the 

way for further in-depth research and investigations, unveiling the precise mechanisms of action and unlocking the 

full therapeutic potential of these extracts. The potential therapeutic and pharmacological implications of the 

identified compounds, such as CBD, CBDA, CBG, Δ-8-THC and Δ-9-THC, are truly promising. As we continue to delve 

into their multifaceted properties, we envision a future where these compounds may revolutionize medical and 

pharmaceutical contexts, ushering in ground breaking treatments for various ailments. In conclusion, the 

instrumental analysis techniques of NMR, HRMS, and UPLC-MS/MS have provided us with a comprehensive 

understanding of the chemical composition of cannabis extracts. The revelation of potent anticancer properties 

within specific cannabinoids fuels our determination to explore these extracts full potential and design novel 

therapeutic solutions to combat glioblastoma and other medical challenges. The journey has just begun, and with 

unwavering dedication, we embark on a path to harnessing the true power of cannabis extracts in the realm of 

medicine and beyond. 
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