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Abstract: Complexity of embedded system design is increasing day by day. An embedded system is a combination of hardware and software. 

Embedded systems are broadly defined as systems designed for a particular application while meeting strict design constraint. In addition, 

market competition and the increasing demand for electronic equipment are pushing designers to shorten the design cycles of new products. 

There is a well known tradeoff between retargetability and code quality in terms of performance and code size when compared to the hand 

optimized code. This is because when the design space is large, all possible target specific optimizations cannot be performed in that case. In this 

paper we have demonstrated the importance of retargetable compiler. 

The major contribution of this paper lies in design and development of retargetable compiler for MIPS, especially implementing functions. 
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INTRODUCTION  

High-tech systems ranging from smart phones to printers, 

from cars to radar systems, and from satellites to medical 

imaging equipment contain an embedded electronic core 

that typically integrates a heterogeneous mix of hardware 

and software components. The resulting platform is often 

distributed, and it typically needs to support a mix of data-

intensive computational tasks with event processing control 

components. These embedded components more and more 

often have to operate in a dynamic and interactive 

environment. Moreover, not only functional correctness is 

important, but also quantitative properties related to 

timeliness, quality-of-service, resource usage, and energy 

consumption. The complexity of today's embedded systems 

and their development trajectories is thus increasing rapidly. 

At the same time, development trajectories are expected to 

produce high-quality and cost-effective products. 

 

A common challenge in development trajectories is the need 

to explore extremely large design spaces, involving multiple 

metrics of interest (timing, resource usage, energy usage, 

and cost). The number of design parameters (number and 

type of processing cores, sizes and organization of 

memories, interconnect, scheduling and arbitration policies) 

is typically very large and the relation between parameter 

settings and design choices on the one hand and metrics of 

interest on the other hand is often difficult to determine. 

Given these observations, embedded-system design 

trajectories require a systematic approach that is automated 

as far as possible. 

DESIGN SPACE EXPLORATION 

Embedded systems facilitate easy re-design of processor-

memory based systems. The designer can incorporate 

modifications in the behavior and operation aspect of the 

architecture late in the design stage. ASIP are a compromise 

between the non-programmable ASICs and general purpose 

processors (GPP). 

 

 

ASIP design [1] [2] [3] [4] allow a wide range of memory 

organizations and hierarchies to be explored and customized 

for the specific embedded application. The ASIP designer is 

faced with the task of rapidly exploring and evaluating 

different architectural and memory configurations. 

Furthermore, shrinking time-to-market has created an urgent 

need to automatically generate compiler/simulator tool-kit.  

The ASIP design has the following steps: 

Application Analysis:  

The application written in HLL is analyzed to find out 

parameters like data types used, execution count of operators and 

functions, life time of variables etc. 

Architecture Design space exploration:  

The performance of various architectures is estimated and a 

suitable architecture satisfying the design constraints is selected. 

There are two approaches for performance estimation: 

a) Scheduler Based Approach: In scheduler based approach as 

shown in Figure 3, the problem is formulated as a resource 

constrained scheduling problem. The application is 

scheduled to generate an estimate of the cycle count. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Scheduler based Approach 

b) Simulator Based Approach: A retargetable compiler is 

constructed for every architecture to be evaluated. This 

compiler is used to generate code. As shown in figure 

4, this generated code is given as input to a retargetable 

simulator which is also designed for the same 
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architecture under evaluation. This simulator generates 

the performance estimates and other statistics. 

 

 

 

 

 

 

 

 

Figure 2: Simulator based approach 

Instruction Set Generation:  

The instruction set is generated for the selected target 

architecture. 

Code Synthesis:  

Code synthesis is done using a retargetable code Generator 

which will take application, the architecture template and 

instruction set as inputs and generate code for the target 

processor. 

Hardware Synthesis:  

The hardware is synthesized using the ASIP architectural 

template and instruction set architecture. 

 

Scheduler based approach for design space exploration is a 

relatively new field, we shall be considering simulator based 

approach for design space exploration. Retargetable 

compilers are a promising approach for automatic compiler 

generation. A compiler is said to be ‗retargetable‘ if it can 

be used to generate code for different processor 

architectures by reusing significant compiler source code. 

This has resulted in a paradigm shift towards a language-

based design methodology using Architecture Description 

Language (ADL) for embedded System-on-Chip (SOC) 

optimization, exploration of architecture /compiler co-

designs and automatic compiler/simulator generation. 

FUNCTION IMPLEMENTATION IN MIPS 

Functions are perhaps the most fundamental unit of 

programming, used in all of programming languages. It 

gives us the simplest form of program abstraction. It 

provides an interface (i.e., the prototype) and allows us to 

use the function without knowing how it is implemented. 

Thus, it makes sense that assembly languages must provide 

the mechanism to implement functions.  There are two ideas 

behind a function 

a. You should be able to call the function from anywhere.  

b. Once the function is complete, it should return back to 

the place that called the function.  

 

Function calls are relatively simple in a high-level language, 

but actually involve multiple steps and instructions at the 

assembly level. 

a. The program‘s flow of control must be changed. 

b. Arguments and returning values are 

passed back and forth. 

c. Local variables can be allocated and destroyed. 

Invoking a function changes the flow of program 

twice:  

a) Calling the function: Every time a function is 

called, the CPU has to remember an appropriate 

return address. 

b) Returning from a function: When the function 

execution is complete, the CPU has to restore the 

return address in the Program Counter. 

 

MIPS [5] [6] [7] uses the jump-and-link instruction jal to 

call functions. 

a) The jal saves the return address (the address of the next 

instruction) in the dedicated register $ra, before jumping 

to the function. 

b) Jal is the only MIPS instruction that can access the value 

of the program counter, so it can store the return address 

PC+4 in $ra. 

E.g. jal Fact 

 

To transfer control back to the caller, the function just 

has to jump to the address that was stored in $ra. 

jr $ra 

 

Functions accept arguments and produce return values.MIPS 

uses the following conventions for function arguments and 

results. 

—Up to four function arguments can be ―passed‖ by placing 

them in registers $a0-$a3 before calling the function 

with jal. 

—A function can ―return‖ up to two values by placing them 

in registers $v0-$v1, before returning via jr. 

FUNCTION IMPLEMENTATION IN OUR 

COMPILER 

Our compiler is capable of generating MIPS code for simple 

programs [8] and now its functionality is being extended to 

implement functions. The register conventions of MIPS 

have been retained in our compiler as well. Registers $a0-

$a3 are used for passing arguments to the functions, $v0-

$v1 are used by the functions to return values from the 

functions.Regsiters  $s0-$s7 are used within the functions 

for local variables. 

 

When we program in C or C++ or Java, we are used to 

calling functions with local variables. Each time we call a 

function, a new set of local variables is created. This is why 

recursive function calls work. Each recursive call has its 

own copy of local variables and parameters (unless the 

parameters are passed by reference). This makes it easier to 

write functions in procedural languages. 

 

When we program in assembly language, there is only one 

set of registers used in the program. In effect, these registers 

act like global variables. It's very easy to make a function 

call, and think that after the function call is done, the 

registers have remained unchanged.  When we make a 

function call, we have to assume that, unless convention 

dictates otherwise, the function will clobber all the registers 

we are using (except the stack pointer). Thus, if we call a 

function, any values we have stored in a register could be 

overwritten. After all, the function being called needs to use 

registers too and there's only one set to work with.  

 

We can keep these registers from being overwritten by a 

function call, by saving them before the function executes, 
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and restoring them after the function completes. We have 

used the convention that at the time of function call, the 

compiler first checks which register have values which will 

be required subsequently in the following blocks and then 

saves them on the stack. These values are restored after the 

control returns from the function. This is especially 

important for nested functions. 

 

The algorithm for implementing functions in our compiler is 

as follows: 

a. Check the function registers  $s0-$s7 and free the 

ones whose contents are dead or not live. If the 

contents are live i.e. have ―next use‖ in the 

upcoming block, save the contents on the stack. 

b. Initialize function registers $s0-$s7 to empty 

c. Place the arguments in the registers $a0-$a3 

d. Branch to the assembly code of the function. 

e. Execute the code 

f. At the end place the return values in the registers 

$v0-$v1 

g. Branch to the return address stored in the register 

$ra 

h. Restore the contents of function registers $s0-$s7 

from the stack 

 

Each function, as it is running, will have a part of the stack 

for its own use. This is called the stack frame. By 

convention, the functions just use its part of the stack. The 

exception is when the called needs to access arguments 

passed by the caller. The arguments are considered part of 

the caller's stack.  

 

It may be possible for a function code to have more than one 

stack frame. For example, recursive functions will have a 

stack frame for each recursive call that's made. Functions do 

not need to be recursive for there to be two or more stack 

frames associated with the function. 

VERIFYING AND SUBSTANTIATING THE 

COMPILER 

The assembly code generated for functions was functionally 

verified with the help of MARS (MIPS Assembler and 

Runtime Simulator). MARS [9] is an Education- Oriented 

MIPS Assembly Language Simulator, developed by 

University of Missouri state. MARS is an Integrated 

Development Environment (IDE) controlled by a modern 

GUI whose features include: 

a. control of execution speed, including single step at 

variable speed (slider bar controls the number of 

instructions per second) 

b. thirty-two registers visible at the same time, selectable 

via tabbed interfaces, 

c. ―spreadsheet‖ (WYSIWYG) modification of values in 

registers and memory, 

d. selection of data value display in decimal or 

hexadecimal, 

e. ―surfing‖ through memory using buttons to change 

display to next/previous, stack location, global 

partition, and the start of the memory segment,  

f. an integrated editor and assembler as part of its IDE. 

 

The quality of code can be judged by many parameters 

memory access operations, cache hits and misses, code size, 

cycle count, execution time, etc. The performance statistics 

we have used is the code size.  

Code size: 

The code for the benchmarks was generated using the GCC 

compiler [10]. The size of the code generated by our 

compiler is much less than that generated by GCC. A 

glimpse of the code generated by the two is given in the 

table below. The code below has been generated for 

initializing the array in ―insertion sort‖. 

Table: 1  

Code by Our Compiler Code by GCC 

FL1 : 

          li $s0,0 

          li $s1,0 

L2 : 

          li $s2,10 

          bge $s1,$s2,L3 

          li $s3,4 

          mul $s4,$s1,$s3 

          add $s5,$a0,$s4 

          li $s6,0 

          sub $s7,$s6,$s1 

          addi $s4,$s7,20 

          sw $s4,($s5) 

          lw $s4,($s5) 

          add $s5,$s0,$s4 

          move $s0,$s5 

          add $s1,$s1,1 

          b L2 

L3 : 

        move $v0,$s3 

        jr $ra 

 

fillarray: 

 addiu $sp,$sp,-16 

 sw $fp,12($sp) 

 move $fp,$sp 

 sw $4,16($fp) 

 sw $0,0($fp) 

 sw $0,4($fp) 

 j $L4 

 nop 

$L5: 

 lw $2,4($fp) 

 nop 

 sll $3,$2,2 

 lw $2,16($fp) 

 nop 

 addu $4,$2,$3 

 li $3,20 

  # 0x14 

 lw $2,4($fp) 

 nop 

 subu $2,$3,$2 

 sw $2,0($4) 

 lw $2,4($fp) 

 nop 

 sll $3,$2,2 

 lw $2,16($fp) 

 nop 

 addu $2,$2,$3 

 lw $3,0($2) 

 lw $2,0($fp) 

 nop 

 addu $2,$2,$3 

 sw $2,0($fp) 

 lw $2,4($fp) 

 nop 

 addiu $2,$2,1 

 sw $2,4($fp) 

$L4: 

 lw $2,4($fp) 

 nop 

 slt $2,$2,10 

 bne $2,$0,$L5 

 nop 

 lw $2,0($fp) 

 move $sp,$fp 

 lw $fp,12($sp) 

 addiu $sp,$sp,16 

 j $31 

 nop 

 

 

It can be observed that the code generated by GCC contains 

several load/store instructions. GCC compulsorily makes 

use of frame pointer and stack pointer, a lot of programming 

effort is involved in updating these pointers and accessing 

memory through these pointers. As a result, the GCC 

generates longer assembly code as compared to that of our 

compiler. As far as the code generated by our compiler is 

concerned, we have not used the frame pointer. Also, the 

stack pointer is required only when we store values on the 

stack. Lastly, the stack is required only when there are no 
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empty registers. We have used our own register allocation 

algorithm[11], which helps us achieve fewer loads and 

stores.  

 

The comparison of code size in terms of number of lines 

generated by our compiler and GCC is given in the table 

below and also represented graphically in Figure 3. 

Table: 2 

Benchmarks Code Size (Our 

Compiler) 

Code Size (GCC 

Compiler) 

Matrix Multiplication 107 227 

Insertion sort 108 267 

Bubble Sort 99 231 

LL1 66 172 

LL5 67 161 

LL12 52 141 

 

 
 

Figure 3: Comparison of code size generated by our compiler and GCC 

compiler. 

It can be observed from the above table that the code 

generated by our compiler is much smaller as compared to 

that generated by GCC. The code size is in terms of line 

count. 

CONCLUSION 

The functionality of an embedded system is divided into 

hardware and software components. Synthesis of hardware 

components involves designing a custom circuit for the 

hardware portion of input application. Synthesis of software 

component consists of designing a processor that is suited 

for the software portion of the input application and 

generating code that implements the functionality of the 

software component on the designed processor. Short design 

cycles and increasing embedded system complexity make it 

impractical to perform manual processor architecture 

exploration and code generation.  

 

We have developed a retargetable compiler that can 

generate code for MIPS32 architecture. The compiler is 

capable of handling function calls and function return. The 

code has been functionally verified and the quality of the 

code has been checked for code size. We have shown that 

the code generated by our compiler is better than that 

generated by GCC compiler. 
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