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Abstract:- There  is  a  growing  demand  for  application-specific  embedded  processors  in  system-on-a-chip designs.   Current  tools  and  

design  methodologies  often  require  designers  to  manually  specialize  the processor  based  on  an application. An application-specific 
instruction-set processor (ASIP) is a component used in system-on-a-chip design. The instruction set of an ASIP is tailored to benefit a specific 
application. This specialization of the core provides a trade-off between the flexibility of a general purpose CPU and the performance of an 
ASIC. The major contribution of this paper lies in verifying or substantiating SIM-A with VLIW based tool - Vex. Simulator SIM-A measures 
cycle count for application executed on processor. This paper discusses working with vex and its configuration required to execute the 
benchmark application on Vex. 
 

Keywords: ASIP, Application Specific Instruction Processors, Retargetable Simulator, Embedded Systems, Processors, ASIP Simulators, Design 
Space Exploration, Vex Simulator, SIM-A 

INTRODUCTION 

In Consumer electronics and telecommunications, high 

product volumes are increasingly going along with short 

lifetimes. Driven by the advances in semiconductor 

technology combined with the need for new applications 

like digital television and wireless broadband 

communications, the amount of system functionality 

realized on a single chip is growing enormously.  Higher 

integration and, thus, increasing miniaturization have led to 

a shift from using distributed hardware components toward 
heterogeneous system-on-chip (SOC) designs. Due to the 

complexity introduced by such SOC designs and time-to-

market constraints, the designer’s productivity has be- come 

the vital factor for successful products. For this reason a 

growing amount of system functions and signal processing 

algorithms is implemented in software rather than in 

hardware by employing embedded processor cores. 

 

In the current technical environment, embedded processors 

and  the  necessary  development  tools  are  designed  

manually, with  very  little  automation.  This  is  because  

the  design  and implementation  of  an  embedded  
processor,  such  as  a  digital-signal-processor  (DSP)  

device  embedded  in  a  cellular phone, is a highly complex 

process. Any embedded system may compose of the 

following phases: 

a. Architecture exploration; 

b. Architecture implementation; 

c. Application software design; 

d. System integration and verification. 

 

During  the  architecture  exploration  phase,  software  

development  tools  [i.e.,  high-level  language  (HLL)  
compiler, assembler,  linker,  and  cycle-accurate  simulator]  

are  required to  profile  and  benchmark  the  target  

application  on  different architectural  alternatives.  This  

process  is  usually  an  iterative one  that  is  repeated  until  

a  best  fit  between  selected  architecture  and  target  

application  is  obtained.  Every change to the architecture   

 

specification requires  a  complete  new  set  of software 

development tools. As these changes on the tools are carried  

out  mainly  manually,  this  results  in  a  long,  tedious, and  

extremely  error-prone  process.  Furthermore, the lack of 

automation makes it very difficult to match the profiling 

tools to an abstract specification of the target architecture. In 
the architecture implementation phase, the specified 

processor has to be converted into a synthesizable hardware 

description language (HDL) model.  With  this  additional  

manual  transformation,  it is quite obvious that considerable 

consistency problems arise between  the  architecture  

specification,  the  software  development  tools,  and  the  

hardware  implementation.   

 

During the software application design phase, software 

designers need a set of production-quality software 

development tools. Since the demands of the software 
application designer and the hardware processor  designer  

place  different  requirements  on  software development  

tools,  new  tools  are  required.  For  example,  the 

processor designer needs a cycle/phase-accurate simulator 

for hardware–software  partitioning  and  profiling,  which  

is  very accurate, but inevitably slow, whereas the 

application designer demands more simulation speed than 

accuracy. At this point, the complete software development 

tool suite is usually reimplemented by hand—consistency 

problems are self-evident. In  the  system  integration  and  

verification  phase, co simulation  interfaces  must  be  
developed  to  integrate  the  software simulator for the 

chosen architecture into a system simulation environment.  

These interfaces vary with the architecture that is currently 

under test. Again, manual modification of the interfaces is 

required with each change of the architecture. 

 

An ASIP is a processor that is designed to efficiently 

execute the software for a specific application. Regardless of 

whether a newly designed ASIP or a pre-existing processor 

core is used, the selected processor should be well suited for 

the given application. Although incorporating a complete 

system on a single IC may improve performance, cost, and 
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power consumption requirements, such a high level of 

integration constraints the size of the system components.  

Steps in ASIP Synthesis: 

Various methodologies have been reported to meet these 

requirements. All these have been studied and five steps are 
suggested for synthesis of ASIPs [1] 

Application Analysis: Application is normally written in 

High level language. Proper analysis of this application 

under consideration is done and the output of the 

information is stored in some suitable intermediate format.  

Architectural Design Space Exploration: Output of the 

Application analysis step along with the range of 

architecture for Design Space Exploration is used to select a 

suitable architecture. 

Instruction Set Generation: Based on this input instruction 

sets are generated in terms of required micro operation. This 
instruction set is used during the further steps for code 

synthesis and hardware synthesis. 

Code Synthesis: Till this step, architecture template, 

instruction set, and application are identified. This step 

generates the code. Generated code can be retargetable code 

generator or compiler generator. 

Hardware Synthesis: In this step the hardware is generated 

using the ASIP architectural template and instruction set 

architecture using standard tools 

Architecture Design Space Exploration: 

System on Chip designs has various goals and objectives. 

Design space consists of a set of parameters. The main focus 

of designers lies on minimal cost and maximal performance, 

low power, high reliability etc. Architecture under 

consideration requires a range of good parameter to explore. 

These parameters may take up the different values. 

Existing Retargetable Simulators Approaches: 

Retargetable functional simulator (Fsimg) [2] focus on tools 

that deal with the machine language of processors, like 

assemblers, disassembler, instruction set simulator 

etc.Retargetable Function Simulator (Fsimg) was designed 

using Sim-nML language which is primarily an extension of 

the nML [3] language for processor modeling. Fsimg takes 
the specification of the processor in the intermediate 

representation [4] and an executable for the processor in 

ELF [5] format and generates a functional simulator (Fsim) 

which in turn gives the functional behaviour of the processor 

model for the given program. 

RELATED WORK 

Over the past several decades a considerable amount of 

research has been performed in the area of computer 

architecture simulation. These simulators can be broadly 

divided into several categories: full-system simulators, 

Instruction Set Architecture (ISA), and retargetable 

Simulators. Each category serves an entirely different 

purpose, but all have been used for the advancement of 

computer architecture research. 

 
The purpose of full-system simulators is to model an entire 

computer system including the processor, memory system 

and any I/O. These simulators are capable of running real 

software completely unmodified just like a virtual machine. 

There are many simulation suites that take this approach, 

including PTLSim [6], M5 [7], Bochs [8], ASIM [9], 

GxEmul [10] and Simics [11]. Simics has several extensions 

that constitute their own full-system simulators such as 

VASA [12] and GEMS [13].ISA simulators are less 

descriptive than full system simulators. Their objective is to 

model processor alone.ISA simulators performs the various 

functionalities. 

 

It simulate and debug machine instructions of a processor 

type that differs from the simulation host, it also emphasis 

on investigating how the various instructions (or a series of 
instruction) affect the simulated processor. Hence modeling 

of the full computer system is unnecessary and would 

impose additional delay and complexity. Example of this 

type of simulator includes SimpleScalar [14], WWT-II [15], 

and RSIM [16]. Over the past decade, a few interesting 

ADLs have been introduced together with their supporting 

software tools. These ADL include MIMOLA, UDL/I, nML, 

ISDL, CSDL, Maril, HMDES, TDL, LISA, RADL, 

EXPRESSION and PRMDL.  

EXISTING RETARGETABLE SIMULATORS 

Anahita Processor Description Language (APDL), APDL 

[17] is one of the most recent contributions in the area of 

retargetable simulator. The language was introduced in 2007 

by N. Honarmand et al. from the Shahid Beheshti University, 

IRAN. The Primary difference between APDL and other 
ADLs is the addition of Timed Register Transfer Level (T-

RTL), which enables the simulation designer to define the 

latencies and hardware requirement of the processor 

operations. This separation of configuration data enables 

APDL to better integrate with external software for analysis 

as the T-RTL data is organized separately from the 

remainder of the processor description. Moreover, APDL 

can describe both instruction and structure descriptions of a 

target processor. 

 

The Pascal-like syntax of APDL is clearly more intuitive 
than many other ADLs such as LISA and EXPRESSION. 

While the language is easier to read and understand, the 

researchers have not yet implemented a compiler to produce 

simulations. Furthermore, despite APDL's relative ease, 

users are still faced with the task of learning the details of 

the syntax. 

 

ISDL [18] was introduced in 1997 by G.Hadjiyiannis, 

S.Hanono, and S. Devadas from Massachusetts Institute of 

Technology. The purpose of ISDL was to provide a 

language for describing instruction sets along with a limited 

amount of details of a processor structure for the automatic 
construction of compilers, assembler, and simulators. ISDL 

enables users to define their target processors in several 

ways. First, users can define operations, their format, and 

the associated assembly language instruction. Second users 

can define the storage resources available to the processor, 

including the register file and memory. Third users can 

define constraints in the processor such as instructions 

requesting the same data path, or restrictions regarding 

assembly syntax. 

 

ReXSim [19] was introduced in 2003 by a computer 
architecture research team at Irvine. ReXSim is an extension 

of EXPRESSION language which sought to improve 
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simulation speed by integrating a novel method of decoding 

instructions of the simulated program before execution of 

the simulation. As a result, the instruction decoding process 

was removed from the execution loop of the simulator, and 

thus improved the simulation speed significantly. Using this 

method, the team was able to produce retargetable 

simulations that showed performance in excess of major 

simulators like SimpleScalar, which is widely considered to 

be a simulation performance benchmark. 

 

Reduced Colored Petri Net (RCPN) [20] was introduced in 
2005 by M.Reshadi and N. Dutta from University of 

California, Irvine. RCPN takes a vastly different approach to 

retargetable simulation, in which pipelines are modeled 

using a simplified version of Colored Petri Nets (CPN). 

Petri Nets are graph based mathematical method of 

describing a process. The nodes of the graph represent 

particular discrete events, states, or functions, and the graph 

edges represent the transitions of data between nodes. The 

transitions can be enabled or disabled based on conditions 

specified at the nodes. 

 
The purpose of RCPN is to provide retargetable simulations 

for modeling of pipelined processors. RCPN reduces the 

functionality of a regular CPN by limiting the capabilities of 

the nodes in the graph for the purpose of increasing 

simulation speed and usability. Additionally, RCPN takes 

the advantage of some of the natural properties of CPNs to 

prevent structural and control hazards. 

 

Retargetable functional simulator (Fsimg) [21] focus on 

tools that deal with the machine language of processors, like 

assemblers, disassembler, instruction set simulator etc. The 
objective was to have a single processor model for all the 

tools. Hence Retargetable Function Simulator (Fsimg) was 

designed using Sim-nML language which is primarily an 

extension of the nML language for processor modeling. 

Fsimg takes the specification of the processor in the 

intermediate representation and an executable for the 

processor in ELF. 

 

Format and generates a functional simulator (Fsim) which in 

turn gives the functional behaviour of the processor model 

for the given program. Around 237 instructions have been 

specified with the resource usage model and pipeline. Macro 
Preprocessor (nMP) for processing Sim-nML macros is 

implemented. 

 

It has some limitation. Fsimg is imposing a strong restriction 

on specification writing. Current bit-operator library 

supports only integer data types. The trace produced by 

Fsim is not compressed. It makes it difficult to handle and 

process trace files. It is very slow. 

 

The LISATek [22] processor design flow is based on LISA 

2.0 processor models. Given a LISA model, the LISATek 
tool is able to generate instruction-set simulators for the 

processor under design. Typically, the debugger in form of a 

dynamic library directly uses the generated simulator. 

However, a compiled static simulator library is also 

generated, and specifications exist to integrate it into the 

system environment. The system environment would be the 

MPARM. All the core models generated by the LISATek 

suite, regardless of the nature of the ASIP at hand, have the 

same interface.The implementation of these function calls 

depends completely on the communication method used in 

the system. The implemented API will translate the requests 

into SystemC signals which can be understood by the 

MPARM [23] platform. The Assessment of the performance 

of alternative hardware communication is not addressed.  

Retargetability is poor. 

 

All of these simulators use techniques to speed up the 

execution of application programs. This is achieved by 
minimizing the amount of details about the processor, 

needed for program execution on the simulator. Even though 

some of these previous approaches target ADL-based 

automatic toolkit generation and DSE, not much work has 

been done in bringing together these elements in an early 

DSE environment. Furthermore, previous approaches are 

restricted to certain classes of processor families and assume 

a fixed memory/cache organization. For a wide variety of 

such processor and memory IP library, the designer needs to 

be able to specify and analyze the interaction between the 

processor instruction set and architecture, and the 
application and explore the different points in design space. 

 

This problem is addressed in SIMPRESS simulators. The 

EXPRESSION ADL captures both the instruction set and 

architecture information for a design draw from an IP library. 

The library contains a variety of parameterizable processor 

cores and customizable memory / cache organizations. 

Simpress produces a structural simulator capable of 

providing detailed structural feedback in terms of utilization, 

bottle-necks in the processor architecture.Though 

SIMPRESS Simulators addresses many issues, it has certain 
limitation. The application having function calls are not 

supported. Compilation steps exist in three passes: 

PcProGUI, Expression console, acesMIPS console. 

Basically it is very complex to understand the process of 

compilation and simulator. The Application needs .proc 

and .def file. The .c program generates these files.  There is 

no clear cut method as how .c is converted to .proc and .def, 

especially in case of windows environment. This is strong 

limitation as we can not simulate our own program written 

in .c. this has to be first converting to .procs and .defs and 

for that we need to depend on their servers to provide for the 

same, which is not functional right now. 
 

In order to overcome all these complexities, we suggest a 

simple and elegant solution. Just there is a need to provide 

the standard application program in the form of scheduled 

and optimized code along with the processor description to 

our Simulator and you will get the cycle count as an output 

of the simulation. 

WHAT IS VEX 

VEX ("VLIW Example") is a compilation-simulation 

system that targets a wide class of VLIW processor 

architectures, and enables compiling, simulating, analysing 

and evaluating C programs for them VEX includes three 

basic components: 

 

 

A. The VEX Instruction Set Architecture:  
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VEX defines a 32-bit clustered VLIW ISA that is scalable 

and customizable. Scalability includes the ability to change 

the number of clusters, execution units, registers and 

latencies; customizability enables users to define special-

purpose instructions in a structured way.  

B. The VEX C Compiler: 

The VEX C compiler is a derivation of the Lx/ST200 C 

compiler, itself a descendant of the Multiflow C compiler. It 

exposes some of the parameters to allow architecture 

exploration by changing the number of clusters, execution 

units, issue width and operation latencies, without having to 

recompile the compiler. 

C. The VEX Simulation System: 

The VEX simulator is an architecture-level (functional) 

simulator that uses compiled simulator technology. 

The VEX simulator used a so-called compiled simulation 

technique. The compiled simulator (CS) translates the VEX 

binary to the binary of the host computer, by first converting 

VEX to C, and then invoking the host C compiler to produce 

a host executable. 

 

In addition to the standard semantics of the instructions, CS 
also emits instrumentation code to count cycles (and other 

interesting statistics), as well as code to dump the results to 

a log file at the end of the simulation. Timing 

instrumentation is turned on with the "-mas_t" flag passed to 

the compiler driver (or "-mas_ti" and "-mas_td" for 

finer grain control - see the section on compiler flags).  

 

CS operates on each of the individual VEX assembler (.s) 

files corresponding to the compilation units of a program 

and translates them back to C by implementing the VEX 

operation semantics, the calling convention (ABI), and 
introducing the appropriate instrumentation code. The CS-

generated C files are then compiled with the host platform C 

compiler (e.g., gcc for Linux) and linked with the support 

libraries that deal with the instrumentation. During linking, 

the CS ld wrapper ensures that the right libraries are linked 

in the right order, and performs the necessary "magic" (such 

as wrapping system functions so that they don't cause 

problems) for the binary to execute correctly.By default, 

VEX links in a simple cache simulation library, which 

models an L1 instruction and data cache. The cache sim-

ulator is really a trace simulator, which is embedded in the 

same binary for performance reasons, but only 
communicates with the VEX execution engines through 

simple events that identify memory locations, access types 

and simulation time. 

INSTALLATION AND CUSTOMISATION FOR VEX 

A sample compilation and Simulation steps can be listed as 

follows 

A. Compile the VEX with the _asm() calls: 

a. <vex>/bin/cc c average. 

B. Compile (natively) the asm library: 

b. gcc c asmlib.c 

 

 

C. Link (with the VEX compiler) the 2 parts together: 

c. <vex>/bin/cc o average average.o asmlib.o 

D. Run the average binary: 

 

The first example is a simple "compile-and-run" sequence of 

a program composed of two compilation units  file1.o and 
file2.o 
 

 

Figure 1: Command to compile and generate .s file 

Figure 1 shows a command regarding compilation of the 

program. 

## Compile individual modules 

 /home/vex/bin/cc -ms -O4 c file1.c 

 /home/vex/bin/cc -ms -O4 c file2.c 

## Link (with math library) 
 /home/bin/cc o test file1.o file2.o -lm 

## Run the program 
 ./test 
 

 

Figure 2: Command to analyze the file 

The assembler files are useful to check the static behavior of 

the compiler, and can be analyzed with the pcntl utility 

which collects static compile information from a VEX 

assembler file.  

This is shown in Figure 2. 

For example, if we invoke 

## Analyze file1.s 

 /home/vex/bin/pcntl file1.s 
 

 
Figure 3: Output of Sample Programs 

The sample output is shown in Figure 3. 
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PERFORMANCE ESTIMATES AND VALIDATION 

OF SIMULATOR 

The Framework is based on VLIW based processor 

architecture. A VEX architecture issues multiple operations 

in an instruction in a single cycle, and these operations are 

executed as a single atomic action (this is sometimes called 

VLIW mode). Instructions are executed strictly in program 
order, but within an instruction, all operands are read before 

any results are written. For example, it is possible to swap 

the value of a pair of registers in a single instruction. 

Instructions cannot contain sequential constraints among 

their operations. An exception caused by an instruction may 

not affect the execution of any instruction that was issued 

earlier and must prevent the instruction generating the 

exception from modifying the programmer visible state.  

Table 1: Benchmark Programs along with Description 

No Name Description 

1 SIM-A-BENCH#1(SIM1) 

Excerpt from a 

 hydrodynamic code 

2 SIM-A-BENCH#2(SIM2) 

Standard Inner product 

function 

 of Linear Algebra 

3 SIM-A-BENCH#3(SIM3) 

Excerpt from a Tridiagonal 

Elimination routine 

4 SIM-A-BENCH#4(SIM4) First Sum 

5 SIM-A-BENCH#5(SIM5) First Difference 

 

The execution behavior is that of an in-order machine: each 

instruction executes to completion before the start of the 

next one. In other words, all syllables of an instruction start 

together and commit their results together. Committing 

results includes modifying register state, updating memory, 

and generating exceptions. Table 1 lists all the benchmarks 

programs that have been used to validate the simulators.  

 

After running this benchmark program on the SIM-A as well 
as VLIW based Vex Simulator, following results were 

obtained. 
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Figure 4: Comparative analysis of SIM-A and Vex Simulator of Cycle 

Count 

Figure 4 show the graphical analysis of the SIM-A and 

SimpleScalar Simulator. 

CONCLUSION AND FUTURE DIRECTION 

In this paper we have verified SIM-A Simulator with VLIW 

based Vex Simulator. This paper discuss the working and 

configurationally issues involve in Vex Simulator. The 

different customization needed to run the application 

program has been discussed in detail. 

 

SIM-A Simulator developed at our MLSU embedded Lab 

generates the performance estimates for the application 

under consideration. Processor description is captured in the 

form of GUI, which allows the user to specify the 

architecture in visual form. The cycle accurate, structural 

simulator generated using SIM-A allows the user to collect 

statistics called cycle count. It definitely helps the designer 

to analyze the design and modify the critical portions.  
 

The SIM-A environment has been designed to allow 

modeling of diverse range of processors. This has been 

demonstrated to an extent through the modeling of VLIW 

processor. 
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