
Volume 2, No. 9, September 2011

Journal of Global Research in Computer Science

RESEARCH PAPER

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 4

VLIW BASED VEX TOOL AND VALIDATION OF SIM-A WITH VEX

Dr. Manoj Kumar Jain
1
and Gajendra Kumar Ranka*

2

*Research Scholar, Associate Professor

Department of Computer Science MLSU University, Udaipur
manoj@cse.iitd.ernet.in1

*rankagajendra@rediffmail.com2

Abstract:- There is a growing demand for application-specific embedded processors in system-on-a-chip designs. Current tools and

design methodologies often require designers to manually specialize the processor based on an application. An application-specific
instruction-set processor (ASIP) is a component used in system-on-a-chip design. The instruction set of an ASIP is tailored to benefit a specific
application. This specialization of the core provides a trade-off between the flexibility of a general purpose CPU and the performance of an
ASIC. The major contribution of this paper lies in verifying or substantiating SIM-A with VLIW based tool - Vex. Simulator SIM-A measures
cycle count for application executed on processor. This paper discusses working with vex and its configuration required to execute the
benchmark application on Vex.

Keywords: ASIP, Application Specific Instruction Processors, Retargetable Simulator, Embedded Systems, Processors, ASIP Simulators, Design
Space Exploration, Vex Simulator, SIM-A

INTRODUCTION

In Consumer electronics and telecommunications, high

product volumes are increasingly going along with short

lifetimes. Driven by the advances in semiconductor

technology combined with the need for new applications

like digital television and wireless broadband

communications, the amount of system functionality

realized on a single chip is growing enormously. Higher

integration and, thus, increasing miniaturization have led to

a shift from using distributed hardware components toward
heterogeneous system-on-chip (SOC) designs. Due to the

complexity introduced by such SOC designs and time-to-

market constraints, the designer’s productivity has be- come

the vital factor for successful products. For this reason a

growing amount of system functions and signal processing

algorithms is implemented in software rather than in

hardware by employing embedded processor cores.

In the current technical environment, embedded processors

and the necessary development tools are designed

manually, with very little automation. This is because

the design and implementation of an embedded
processor, such as a digital-signal-processor (DSP)

device embedded in a cellular phone, is a highly complex

process. Any embedded system may compose of the

following phases:

a. Architecture exploration;

b. Architecture implementation;

c. Application software design;

d. System integration and verification.

During the architecture exploration phase, software

development tools [i.e., high-level language (HLL)
compiler, assembler, linker, and cycle-accurate simulator]

are required to profile and benchmark the target

application on different architectural alternatives. This

process is usually an iterative one that is repeated until

a best fit between selected architecture and target

application is obtained. Every change to the architecture

specification requires a complete new set of software

development tools. As these changes on the tools are carried

out mainly manually, this results in a long, tedious, and

extremely error-prone process. Furthermore, the lack of

automation makes it very difficult to match the profiling

tools to an abstract specification of the target architecture. In
the architecture implementation phase, the specified

processor has to be converted into a synthesizable hardware

description language (HDL) model. With this additional

manual transformation, it is quite obvious that considerable

consistency problems arise between the architecture

specification, the software development tools, and the

hardware implementation.

During the software application design phase, software

designers need a set of production-quality software

development tools. Since the demands of the software
application designer and the hardware processor designer

place different requirements on software development

tools, new tools are required. For example, the

processor designer needs a cycle/phase-accurate simulator

for hardware–software partitioning and profiling, which

is very accurate, but inevitably slow, whereas the

application designer demands more simulation speed than

accuracy. At this point, the complete software development

tool suite is usually reimplemented by hand—consistency

problems are self-evident. In the system integration and

verification phase, co simulation interfaces must be
developed to integrate the software simulator for the

chosen architecture into a system simulation environment.

These interfaces vary with the architecture that is currently

under test. Again, manual modification of the interfaces is

required with each change of the architecture.

An ASIP is a processor that is designed to efficiently

execute the software for a specific application. Regardless of

whether a newly designed ASIP or a pre-existing processor

core is used, the selected processor should be well suited for

the given application. Although incorporating a complete

system on a single IC may improve performance, cost, and

mailto:manoj@cse.iitd.ernet.in
mailto:rankagajendra@rediffmail.com

Dr. Manoj Kumar Jain et al, Journal of Global Research in Computer Science, 2 (9), September 2011, 4-9

© JGRCS 2010, All Rights Reserved 5

power consumption requirements, such a high level of

integration constraints the size of the system components.

Steps in ASIP Synthesis:

Various methodologies have been reported to meet these

requirements. All these have been studied and five steps are
suggested for synthesis of ASIPs [1]

Application Analysis: Application is normally written in

High level language. Proper analysis of this application

under consideration is done and the output of the

information is stored in some suitable intermediate format.

Architectural Design Space Exploration: Output of the

Application analysis step along with the range of

architecture for Design Space Exploration is used to select a

suitable architecture.

Instruction Set Generation: Based on this input instruction

sets are generated in terms of required micro operation. This
instruction set is used during the further steps for code

synthesis and hardware synthesis.

Code Synthesis: Till this step, architecture template,

instruction set, and application are identified. This step

generates the code. Generated code can be retargetable code

generator or compiler generator.

Hardware Synthesis: In this step the hardware is generated

using the ASIP architectural template and instruction set

architecture using standard tools

Architecture Design Space Exploration:

System on Chip designs has various goals and objectives.

Design space consists of a set of parameters. The main focus

of designers lies on minimal cost and maximal performance,

low power, high reliability etc. Architecture under

consideration requires a range of good parameter to explore.

These parameters may take up the different values.

Existing Retargetable Simulators Approaches:

Retargetable functional simulator (Fsimg) [2] focus on tools

that deal with the machine language of processors, like

assemblers, disassembler, instruction set simulator

etc.Retargetable Function Simulator (Fsimg) was designed

using Sim-nML language which is primarily an extension of

the nML [3] language for processor modeling. Fsimg takes
the specification of the processor in the intermediate

representation [4] and an executable for the processor in

ELF [5] format and generates a functional simulator (Fsim)

which in turn gives the functional behaviour of the processor

model for the given program.

RELATED WORK

Over the past several decades a considerable amount of

research has been performed in the area of computer

architecture simulation. These simulators can be broadly

divided into several categories: full-system simulators,

Instruction Set Architecture (ISA), and retargetable

Simulators. Each category serves an entirely different

purpose, but all have been used for the advancement of

computer architecture research.

The purpose of full-system simulators is to model an entire

computer system including the processor, memory system

and any I/O. These simulators are capable of running real

software completely unmodified just like a virtual machine.

There are many simulation suites that take this approach,

including PTLSim [6], M5 [7], Bochs [8], ASIM [9],

GxEmul [10] and Simics [11]. Simics has several extensions

that constitute their own full-system simulators such as

VASA [12] and GEMS [13].ISA simulators are less

descriptive than full system simulators. Their objective is to

model processor alone.ISA simulators performs the various

functionalities.

It simulate and debug machine instructions of a processor

type that differs from the simulation host, it also emphasis

on investigating how the various instructions (or a series of
instruction) affect the simulated processor. Hence modeling

of the full computer system is unnecessary and would

impose additional delay and complexity. Example of this

type of simulator includes SimpleScalar [14], WWT-II [15],

and RSIM [16]. Over the past decade, a few interesting

ADLs have been introduced together with their supporting

software tools. These ADL include MIMOLA, UDL/I, nML,

ISDL, CSDL, Maril, HMDES, TDL, LISA, RADL,

EXPRESSION and PRMDL.

EXISTING RETARGETABLE SIMULATORS

Anahita Processor Description Language (APDL), APDL

[17] is one of the most recent contributions in the area of

retargetable simulator. The language was introduced in 2007

by N. Honarmand et al. from the Shahid Beheshti University,

IRAN. The Primary difference between APDL and other
ADLs is the addition of Timed Register Transfer Level (T-

RTL), which enables the simulation designer to define the

latencies and hardware requirement of the processor

operations. This separation of configuration data enables

APDL to better integrate with external software for analysis

as the T-RTL data is organized separately from the

remainder of the processor description. Moreover, APDL

can describe both instruction and structure descriptions of a

target processor.

The Pascal-like syntax of APDL is clearly more intuitive
than many other ADLs such as LISA and EXPRESSION.

While the language is easier to read and understand, the

researchers have not yet implemented a compiler to produce

simulations. Furthermore, despite APDL's relative ease,

users are still faced with the task of learning the details of

the syntax.

ISDL [18] was introduced in 1997 by G.Hadjiyiannis,

S.Hanono, and S. Devadas from Massachusetts Institute of

Technology. The purpose of ISDL was to provide a

language for describing instruction sets along with a limited

amount of details of a processor structure for the automatic
construction of compilers, assembler, and simulators. ISDL

enables users to define their target processors in several

ways. First, users can define operations, their format, and

the associated assembly language instruction. Second users

can define the storage resources available to the processor,

including the register file and memory. Third users can

define constraints in the processor such as instructions

requesting the same data path, or restrictions regarding

assembly syntax.

ReXSim [19] was introduced in 2003 by a computer
architecture research team at Irvine. ReXSim is an extension

of EXPRESSION language which sought to improve

Dr. Manoj Kumar Jain et al, Journal of Global Research in Computer Science, 2 (9), September 2011, 4-9

© JGRCS 2010, All Rights Reserved 6

simulation speed by integrating a novel method of decoding

instructions of the simulated program before execution of

the simulation. As a result, the instruction decoding process

was removed from the execution loop of the simulator, and

thus improved the simulation speed significantly. Using this

method, the team was able to produce retargetable

simulations that showed performance in excess of major

simulators like SimpleScalar, which is widely considered to

be a simulation performance benchmark.

Reduced Colored Petri Net (RCPN) [20] was introduced in
2005 by M.Reshadi and N. Dutta from University of

California, Irvine. RCPN takes a vastly different approach to

retargetable simulation, in which pipelines are modeled

using a simplified version of Colored Petri Nets (CPN).

Petri Nets are graph based mathematical method of

describing a process. The nodes of the graph represent

particular discrete events, states, or functions, and the graph

edges represent the transitions of data between nodes. The

transitions can be enabled or disabled based on conditions

specified at the nodes.

The purpose of RCPN is to provide retargetable simulations

for modeling of pipelined processors. RCPN reduces the

functionality of a regular CPN by limiting the capabilities of

the nodes in the graph for the purpose of increasing

simulation speed and usability. Additionally, RCPN takes

the advantage of some of the natural properties of CPNs to

prevent structural and control hazards.

Retargetable functional simulator (Fsimg) [21] focus on

tools that deal with the machine language of processors, like

assemblers, disassembler, instruction set simulator etc. The
objective was to have a single processor model for all the

tools. Hence Retargetable Function Simulator (Fsimg) was

designed using Sim-nML language which is primarily an

extension of the nML language for processor modeling.

Fsimg takes the specification of the processor in the

intermediate representation and an executable for the

processor in ELF.

Format and generates a functional simulator (Fsim) which in

turn gives the functional behaviour of the processor model

for the given program. Around 237 instructions have been

specified with the resource usage model and pipeline. Macro
Preprocessor (nMP) for processing Sim-nML macros is

implemented.

It has some limitation. Fsimg is imposing a strong restriction

on specification writing. Current bit-operator library

supports only integer data types. The trace produced by

Fsim is not compressed. It makes it difficult to handle and

process trace files. It is very slow.

The LISATek [22] processor design flow is based on LISA

2.0 processor models. Given a LISA model, the LISATek
tool is able to generate instruction-set simulators for the

processor under design. Typically, the debugger in form of a

dynamic library directly uses the generated simulator.

However, a compiled static simulator library is also

generated, and specifications exist to integrate it into the

system environment. The system environment would be the

MPARM. All the core models generated by the LISATek

suite, regardless of the nature of the ASIP at hand, have the

same interface.The implementation of these function calls

depends completely on the communication method used in

the system. The implemented API will translate the requests

into SystemC signals which can be understood by the

MPARM [23] platform. The Assessment of the performance

of alternative hardware communication is not addressed.

Retargetability is poor.

All of these simulators use techniques to speed up the

execution of application programs. This is achieved by
minimizing the amount of details about the processor,

needed for program execution on the simulator. Even though

some of these previous approaches target ADL-based

automatic toolkit generation and DSE, not much work has

been done in bringing together these elements in an early

DSE environment. Furthermore, previous approaches are

restricted to certain classes of processor families and assume

a fixed memory/cache organization. For a wide variety of

such processor and memory IP library, the designer needs to

be able to specify and analyze the interaction between the

processor instruction set and architecture, and the
application and explore the different points in design space.

This problem is addressed in SIMPRESS simulators. The

EXPRESSION ADL captures both the instruction set and

architecture information for a design draw from an IP library.

The library contains a variety of parameterizable processor

cores and customizable memory / cache organizations.

Simpress produces a structural simulator capable of

providing detailed structural feedback in terms of utilization,

bottle-necks in the processor architecture.Though

SIMPRESS Simulators addresses many issues, it has certain
limitation. The application having function calls are not

supported. Compilation steps exist in three passes:

PcProGUI, Expression console, acesMIPS console.

Basically it is very complex to understand the process of

compilation and simulator. The Application needs .proc

and .def file. The .c program generates these files. There is

no clear cut method as how .c is converted to .proc and .def,

especially in case of windows environment. This is strong

limitation as we can not simulate our own program written

in .c. this has to be first converting to .procs and .defs and

for that we need to depend on their servers to provide for the

same, which is not functional right now.

In order to overcome all these complexities, we suggest a

simple and elegant solution. Just there is a need to provide

the standard application program in the form of scheduled

and optimized code along with the processor description to

our Simulator and you will get the cycle count as an output

of the simulation.

WHAT IS VEX

VEX ("VLIW Example") is a compilation-simulation

system that targets a wide class of VLIW processor

architectures, and enables compiling, simulating, analysing

and evaluating C programs for them VEX includes three

basic components:

A. The VEX Instruction Set Architecture:

Dr. Manoj Kumar Jain et al, Journal of Global Research in Computer Science, 2 (9), September 2011, 4-9

© JGRCS 2010, All Rights Reserved 7

VEX defines a 32-bit clustered VLIW ISA that is scalable

and customizable. Scalability includes the ability to change

the number of clusters, execution units, registers and

latencies; customizability enables users to define special-

purpose instructions in a structured way.

B. The VEX C Compiler:

The VEX C compiler is a derivation of the Lx/ST200 C

compiler, itself a descendant of the Multiflow C compiler. It

exposes some of the parameters to allow architecture

exploration by changing the number of clusters, execution

units, issue width and operation latencies, without having to

recompile the compiler.

C. The VEX Simulation System:

The VEX simulator is an architecture-level (functional)

simulator that uses compiled simulator technology.

The VEX simulator used a so-called compiled simulation

technique. The compiled simulator (CS) translates the VEX

binary to the binary of the host computer, by first converting

VEX to C, and then invoking the host C compiler to produce

a host executable.

In addition to the standard semantics of the instructions, CS
also emits instrumentation code to count cycles (and other

interesting statistics), as well as code to dump the results to

a log file at the end of the simulation. Timing

instrumentation is turned on with the "-mas_t" flag passed to

the compiler driver (or "-mas_ti" and "-mas_td" for

finer grain control - see the section on compiler flags).

CS operates on each of the individual VEX assembler (.s)

files corresponding to the compilation units of a program

and translates them back to C by implementing the VEX

operation semantics, the calling convention (ABI), and
introducing the appropriate instrumentation code. The CS-

generated C files are then compiled with the host platform C

compiler (e.g., gcc for Linux) and linked with the support

libraries that deal with the instrumentation. During linking,

the CS ld wrapper ensures that the right libraries are linked

in the right order, and performs the necessary "magic" (such

as wrapping system functions so that they don't cause

problems) for the binary to execute correctly.By default,

VEX links in a simple cache simulation library, which

models an L1 instruction and data cache. The cache sim-

ulator is really a trace simulator, which is embedded in the

same binary for performance reasons, but only
communicates with the VEX execution engines through

simple events that identify memory locations, access types

and simulation time.

INSTALLATION AND CUSTOMISATION FOR VEX

A sample compilation and Simulation steps can be listed as

follows

A. Compile the VEX with the _asm() calls:

a. <vex>/bin/cc c average.

B. Compile (natively) the asm library:

b. gcc c asmlib.c

C. Link (with the VEX compiler) the 2 parts together:

c. <vex>/bin/cc o average average.o asmlib.o

D. Run the average binary:

The first example is a simple "compile-and-run" sequence of

a program composed of two compilation units file1.o and
file2.o

Figure 1: Command to compile and generate .s file

Figure 1 shows a command regarding compilation of the

program.

Compile individual modules

 /home/vex/bin/cc -ms -O4 c file1.c

 /home/vex/bin/cc -ms -O4 c file2.c

Link (with math library)
 /home/bin/cc o test file1.o file2.o -lm

Run the program
 ./test

Figure 2: Command to analyze the file

The assembler files are useful to check the static behavior of

the compiler, and can be analyzed with the pcntl utility

which collects static compile information from a VEX

assembler file.

This is shown in Figure 2.

For example, if we invoke

Analyze file1.s

 /home/vex/bin/pcntl file1.s

Figure 3: Output of Sample Programs

The sample output is shown in Figure 3.

Dr. Manoj Kumar Jain et al, Journal of Global Research in Computer Science, 2 (9), September 2011, 4-9

© JGRCS 2010, All Rights Reserved 8

PERFORMANCE ESTIMATES AND VALIDATION

OF SIMULATOR

The Framework is based on VLIW based processor

architecture. A VEX architecture issues multiple operations

in an instruction in a single cycle, and these operations are

executed as a single atomic action (this is sometimes called

VLIW mode). Instructions are executed strictly in program
order, but within an instruction, all operands are read before

any results are written. For example, it is possible to swap

the value of a pair of registers in a single instruction.

Instructions cannot contain sequential constraints among

their operations. An exception caused by an instruction may

not affect the execution of any instruction that was issued

earlier and must prevent the instruction generating the

exception from modifying the programmer visible state.

Table 1: Benchmark Programs along with Description

No Name Description

1 SIM-A-BENCH#1(SIM1)

Excerpt from a

 hydrodynamic code

2 SIM-A-BENCH#2(SIM2)

Standard Inner product

function

 of Linear Algebra

3 SIM-A-BENCH#3(SIM3)

Excerpt from a Tridiagonal

Elimination routine

4 SIM-A-BENCH#4(SIM4) First Sum

5 SIM-A-BENCH#5(SIM5) First Difference

The execution behavior is that of an in-order machine: each

instruction executes to completion before the start of the

next one. In other words, all syllables of an instruction start

together and commit their results together. Committing

results includes modifying register state, updating memory,

and generating exceptions. Table 1 lists all the benchmarks

programs that have been used to validate the simulators.

After running this benchmark program on the SIM-A as well
as VLIW based Vex Simulator, following results were

obtained.

0

5

10

15

20

25

30

35

40

1 2 3 4 5

Validation with Vex

VEX

SIM-A

Figure 4: Comparative analysis of SIM-A and Vex Simulator of Cycle

Count

Figure 4 show the graphical analysis of the SIM-A and

SimpleScalar Simulator.

CONCLUSION AND FUTURE DIRECTION

In this paper we have verified SIM-A Simulator with VLIW

based Vex Simulator. This paper discuss the working and

configurationally issues involve in Vex Simulator. The

different customization needed to run the application

program has been discussed in detail.

SIM-A Simulator developed at our MLSU embedded Lab

generates the performance estimates for the application

under consideration. Processor description is captured in the

form of GUI, which allows the user to specify the

architecture in visual form. The cycle accurate, structural

simulator generated using SIM-A allows the user to collect

statistics called cycle count. It definitely helps the designer

to analyze the design and modify the critical portions.

The SIM-A environment has been designed to allow

modeling of diverse range of processors. This has been

demonstrated to an extent through the modeling of VLIW

processor.

REFERENCES

[1] Manoj Kumar Jain, M. Balakrishnan, Anshul Kumar. ―ASIP

Design Methodologies: Survey and Issues ―In proceedings of

the IEEE/ACM International Conference on VLSI Design.

(VLSI 2001)‖, pages 76-81, January 2001.

[2] Y Subhash Chandra. Retargetable functional simulator –

M.Tech Thesis, Department of Computer Science, IIT Kanpur,

June 1999.

[3] FREERICK, M. The nML Machine Description Formalism,

July 1993.

[4] JAIN, N.C. Disassemble using High level Processor Models.

Master’s thesis, Department of Computer Science and Engg,

IIT Kanpur, Jan 1999.

[5] UNIX System V Rel 4, Programmers Guide : ANSI C and

Programming Support Tools. PHI, New Delhi 1992.

Executable and Linkable format (ELF), Tools Interface

Standards (TIS), Portable Formats Specification, Version 1.1.

[6] M. Yourst, ―Ptlsim.‖ http://www.ptlsim.org/. Jan. 2010.

[7] ―M5.‖ http://www.m5sim.org. Jan2010.

[8] ―bochs: The open source IA-32 emulation project.‖

http://bochs.sourceforge.net/. Jan. 2010.

[9] J. Emer, P.Ahuja, and E.Borch, ―Asim: A performance model

framework‖ pp.68-76, 2002.

[10] ―Gxemul‖ http://gxemul.sourceforge.net/ Jan 2010.

[11] P.M et al. , ―Simics : A Full system simulation platform,

― Computer, Vol.35, pp. 50-58, 2002.

[12] D. Wallin, H.Zeffer, M.Karlsson, and E.Hagersten, ―Vasa: A

Simulator infrastructure with adjustable fidelity,‖ Parallel and

Distributed Computing, 2005.

[13] M.M. et al., ―Multifacets general execution-driven

multiprocessor simulator (gems) toolset,‖ SIGARCH

Computer Architecture News, pp. 92-99, 2005.

[14] ―SimpleScalar LLC.‖ http://www.simplescalar.com/, August

2010

[15] S.M. et al., ―Wisconsin wind tunnel ii: A fast and portable

parallel architecture simulator,‖ Workshop on performance

Analysis and Its Impact on Design, June 1997.

[16] V. Pai, P. Ranganathan, and S.Adve, ―Rsim : An execution-

driven simulator for ilp-based shared memory multiprocessor

Dr. Manoj Kumar Jain et al, Journal of Global Research in Computer Science, 2 (9), September 2011, 4-9

© JGRCS 2010, All Rights Reserved 9

and uniprocessors,‖ Third Workshop on Computer

Architecture Education, Feb 1997.

[17] N. Honarmand, H.Sohofi, M. Abbaspour, and Z.Navabi,

― Processor description in APDL for design space exploration

of embedded processors,‖ Proc. EWDTS, 2007.

[18] G.H. et al . ,‖ISDL : An Instruction set description language

for retargetability,‖ In proc Design Automation Conference ,

pp.299-302,,1997.

[19] Mehrdad Reshadi, Prabhat Mishra, Nikhil Bansal, Nikhil

Dutt. ‖Rexsim : A Retargetable framework for instruction-set

architecture simulation‖ CECS Technical Report #03-

05 ,Feb,2003

[20] M. Reshadi and N.Dutt, ―Generic pipedlined processor

modelling and high performance cycle-accurate simulator

generation,‖ Vol.2, pp. 786-791, 2005.

[21] Y Subhash Chandra. Retargetable functional simulator –

M.Tech Thesis June 1999.

[22] Fedrico Angiolini,;Jianjiang Ceng; Rainer Leuper ;Cesare

Ferri;Luca Benini; ―An Integrated Open Framework for

Heterogeneous MPSoc Design Space Exploration‖,page3 ,

Date06,2006 EDAA.

[23] M.Loghi; F.Angioni; D.Bertozzi; L.Benini. ―Analyzing on-

chip communication in a MPSoC environment‖ In proceeding

of the 2004, Design, Automation and test in Europe

Conference (DATE’04), IEEE, 2004.

SHORT BIODATA OF THE AUTHOR’S

Gajendra Kumar Ranka He is a research

Scholar of Department of Computer Science,
MLSU University, Udaipur Rajasthan. His

area of research is embedded system.

M.K. Jain received the M.Sc. degree from

M.L. Sukhadia University, Udaipur, India, in

1989. He received M.Tech. degree in

Computer Applications and PhD in Computer

Science & Engineering from IIT Delhi, India

in 1993 and 2004 respectively. He is

Associate Professor in Computer Science at M.L. Sukhadia
University Udaipur. His current research interests include

application specific instruction set processor design,

wireless sensor networks, semantic web and embedded

systems.

