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Abstract: The recent drift towards balancing generation and consumption, along with increasing demands of high power quality 

and reliability, require the deployment of energy storage and application of demand response in the smart grid. The potential for 

using energy storage and demand response promise to have a major impact on schemes for voltage control in a smart grid. This 

paper presents a comprehensive optimisation architecture that do not only take into consideration the coordination of VAr control 

devices, but also manages storage facilities and demand response in an hourly operation fashion. An integrated framework on 

hybrid Particle Swarm Optimisation/Gravitational Search Algorithm (PSOGSA) is used for VAr control devices, energy storage 

and demand response optimisation scheduling. The effectiveness of the proposed method is validated through a quasi-time 

sequence analysis over a 24-hourly simulation period. Test results show that the smart coordinated operation among the control 

devices causes reduction in system losses and enhances system capability to maintain voltages within the prescribed bounds.  

 
Keywords: Demand response, Elastic load, Energy loss, Energy storage, Load tap changer, PSOGSA, Renewable generation, Real-time 

pricing, Smart grid, Voltage deviation.  

I.  INTRODUCTION 

 

The problem of global warming and exhaustion of fossil fuel have fostered the increased usage of less environmental-polluting 

distributed generation (DG) sources closer to load demands in the distribution system (DS). Renewable generations (RGs) 

integrated in a smart grid (SG) system have undeniably brought forward some positive impacts as far as sustainable energy 

development is concerned as it retains serious drawbacks [1-3]. In particular, the inability of RG to guarantee continuous energy 

supply, due to their intermittent and fluctuating nature, is the most imminent one. Non-dispatchable RGs, such as solar and wind 

energies may not always be available when and where needed [4].  

 

Smart grid concerns the modernization and automation of the power delivery system that seamlessly integrate RGs into the DS 

with high proportions; no matter where they are sited. However, this may cause grid voltage rise due to the significant amount of 

active power injection from the RGs and the uncoordinated operation of voltage regulating devices [5]. Therefore, voltage 

regulation is essential in the DS, if a suitable voltage level at the customer’s point of common coupling (PCC) is to be maintained 

within boundaries. Load tap changers (LTCs) are used for voltage regulation in convectional DS and capacitors which are used 

as reactive power support to minimize feeder voltage drop [6]. However, LTCs are mechanical devices with delay time between 

30 and 60 seconds, therefore, cannot solve the fast intermittent voltage problem caused by RG [7]. Deployment of energy storage 

(ES) throughout the grid from generation to end-user present an opportunity to transcend the power balance paradigm by storing 

energy during off-peak, with less line losses, and redispatching this energy when needed [8]. Demand response (DR) is one of 

smart grid tools that empowers customers and provides them with opportunity to interact with utilities. 

 

Various approaches have been developed in literature to solve the problem of voltage deviation in SG. In [9], dynamic 
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programing to dispatch on-load tap changer (OLTC) and capacitors based on forecasted hourly loads in a DS is proposed. The 

optimisation problem of the OLTC and capacitors dispatch was formulated mathematically. Constraints considered are maximum 

permissible number of switching operations and statutory voltage limits on the DS. Its dynamic programing has relatively small 

searching space which made the computation burden acceptable. However, large search space is required for optimisation of 

more VAr control devices, this may be computationally time consuming.  

 

To reduce the computational burden, Jeong [10] proposed dynamic programing, voltage sensitivity and branch-and-bound 

methods for optimisation of OLTC, SCs and AVR of DGs. The optimisation problem of the OLTC and capacitors dispatch was 

formulated mathematically as well. The possible steps were limited to 24 stages by employing a flexible search space at each 

step so as to avoid computational burden. Liu et al. [11] reduced the computational burden on optimal scheduling of VAr control 

devices by decomposing the whole control through the coordination of dynamic programing method for the substation and fuzzy 

logic control method for the feeder level. Although the studies in [9,10] have obtained quite promising results on VAr control 

problem. However, the studies are limited to only OLTC and capacitors without considering SVRs along the feeder lines. Alam 

[12], proposed distributed energy storage (DES) to mitigate voltage rise problem caused by solar PV in a DS. The method 

employed enable DES to absorb excess energy at noon day to mitigate the reverse power flow as a result of high PV output. The 

stored energy is then discharged to support the voltage in the evening peak period. The method considered an over-simplified 

charge/discharge ES cycle with the assumption of no voltage problem except noon day and evening peak period. However, a 

preventive control frame work is required to continuously monitor current and voltage at the PCC to establish a real-time 

equivalent circuit of the DS. This will guide against any changes in load pattern, most especially during holidays, or else 

application of such model might be detrimental for the DS.  

 

In [13], a coordinated control of LTC and ES for voltage rise mitigation under high PV penetration is presented. The objective of 

the coordination control is to reduce the LTC operation stress, minimize energy loss and improve voltage profile. However, the 

VAr control devices does not include capacitor banks and DR is not considered in the study as well as optimisation of the LTCs. 

Schroede et al. [14] described ES and DR as essential tools in operation of DS and that ES and DR are of good benefit to the 

system operation by preventing capacity shortage. The authors presented that ES can prevent grid reinforcement at some voltage 

level without affecting the system security while the DR is even stronger in the presence of flexible demand such as electric 

vehicles. However, both ES and DR are not optimized and coordinated with VAr control devices. Optimal sizing and siting of 

the ES is necessary to improve the voltage profile in the DS and reduce losses. Different methods have been employed in the 

literature for optimal sizing and siting of ES/DG to mitigate the problems associated with uncertainties of RG. Gravitational 

search algorithm (GSA) and particles warm optimisation-gravitational search algorithm (PSOGSA) are used to determine 

multiple DG capacity and location in DS in [15] and [16] respectively. An OPF-based algorithm for siting the aggregated 

capacity of ES was developed to decrease the wind energy curtailment and cost of energy supply in [17]. However, none of the 

reviewers above employed the hybrid PSOGSA for their search technique on energy storage. 

 

In [18], a novel voltage sensitivity matrix based on voltage sensitivity analysis is proposed. The voltage sensitivity is due to 

customers' load participation in DR program. The result shows that load curtailment reduces voltage drop across the DS and 

improve voltage profile. However, the cost of incentives to participating customers are not considered.  

 

The effect of incentive-based DR on distribution system voltage profile was carried out in [19]. A demand-price elasticity matrix 

was modelled for participating customers. However, the model lacks the control option to carry out the incentive -based DR 

program. In [20], a power network where customers manage their electricity usage by playing games among one another in 

response to utility 24-hour electricity price scheduling is proposed. Due to customers’ participation in dynamic pricing, there is 

improvement in voltage profile and the cost of energy is reduced while keeping customers’ satisfaction at a high level. However, 

the proposed algorithm required customers to update their energy usage scheduling asynchronously with the assumption that 
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each customer has full information of generation cost function. This proposal is hard to realize in practice. Zhao [21] set up a 

general architecture of energy management system (EMS) in a home area network. With the application of the EMS in the home, 

the authors then presented a GA in scheduling the electricity consumption in the home so as to minimize energy cost and peak-

average-ratio. Consumers energy cost is reduced by changing elastic loads in response to utility declared price and the system 

voltage profile is improved.  

 

The author in [22] had proposed a voltage control scheme that coordinates the VVAr control devices along with energy storage 

to mitigate integration issues associated with wind generation. The proposed voltage control scheme is formulated in this paper 

as a nonlinear programming problem to minimize voltage deviations and power losses. A hybrid Particle Swarm Optimization-

Gravitational Search Algorithm (PSOGSA) is used to solve the resulting optimization problem. The PSOGSA combined the 

social thinking ability in particle swarm optimization (PSO) with the gravitational search algorithm (GSA) local search skill. 

They are robust, able to perform multi-directional search and determine near global optimization solutions. Test results confirm 

the effectiveness the energy storage together with the coordination of the VVAr devices to maintain the system voltage within the 

prescribed limits. Howerver, DR is not considered. This paper presents a comprehensive optimisation architecture that do not 

only take into consideration the coordination of VAr control devices, but also manages ES facilities and DR in an hourly 

operation fashion. This gives the utility company options in selecting appropriate and effective voltage control measures. The 

developed framework is amenable to incorporate additional market instruments or SG tools that can enhance integrity of the 

system operation. The paper also developed an extensive multiperiod modeling approach using quasi-time sequence analysis, 

based on Open distributed system simulator (OpenDSS) with Matlab interface, for the voltage control problem in distribution 

networks (DNs) with high penetration levels of wind energy.  

II.  OPTIMISATION OF VAR CONTROL DEVICES, ENERGY STORAGE AND DEMAND RESPONSE 

The main function of coordinating VAr control devices, such as LTC transformers and switched capacitors; ES and DR in 

modern smart DNs is to offset the impact of intermittency introduced by connecting variable RG to the system at the PCC. More 

blatantly, it is required to employ the VAr devices along with ES and DR to minimize the overall losses and support the system 

voltage profile. Therefore, the problem of optimising VAr control devices, ES and DR can be cast a multiperiod optimisation 

problem, where the objective is to minimize hourly energy losses and voltage deviations across various network nodes. This can 

be expressed mathematically as [23]: 
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Where, wv and wl are the weighted-coefficients of voltage minimization and loss minimization respectively. Vi,t and Vref are the 

voltage of bus i at time t and magnitude of voltage reference respectively, obtained from the distribution power flow. PL,t is the 

network loss at time t. T is the number of time in hour, Δt is 1 hour time interval and N is the number of buses. 

The sum of the total power losses including the energy storage is contemplated as [24]: 
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 ijijij xrZ  is the ijth element of [Zbus] matrix 

 Pi,t = PGi,t  PDi,t ± PESi,t , Qi,t = QGi,t QDi,t ± QESi,t. 
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Pi,t and Qi,t are the net active and reactive power injection at bus i at time t, PGi,t and QGi,t are the active and reactive powers 

generated from the variable renewable generation at time t. PESi,t and QESi,t are the active and reactive power produced/absorbed 

by the energy storage at bus i at time t, while PDi,t and QDi,t are the load active and reactive powers at bus i at time t respectively. 

The constraints include the power balance equality constraints which can be represented as: 

    
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Where, Vi,t is the voltage at bus i at time t, Gi,j and Bi,j are the conductance and susceptance of the line between buses i and j 

respectively, whereas δi,t is the voltage angle at bus i at time t. 

Voltage constraints: 

NiVVV tit  max,min,   (5) 

Other constraints to be considered for optimal scheduling of LTC transformers and switched capacitors for the objective function 

are: 
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Where Vmin and Vmax are minimum and maximum voltage limits at bus i respectively, kT and Tt are the allowed maximum LTC 

switching and LTC tap position at time t respectively. kC and Ccct are the allowed maximum capacitor switching and status of 

capacitor at time t respectively. VS and VR are the regulator input and output voltage respectively, ∆Vt (0.00625) is tap change 

step and nR is the effective turn’s ratio of the regulator. The number of installed capacitor is nc.   is logic operator XOR 

(exclusive OR) that returns “1” if Ccct is not equal to Cnt-1 and returns “0” if Ccct is equal to Cnt-1. Ccct and Cnt-1 are the states of 

capacitor c at hour t and t-1 respectively. 

 

Other constraints to be considered for optimal siting and sizing of energy storage for the objective function are: 

 

Storage Physical and Operating Limits 

NMMmPPPP
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Where  is the energy storage charge-discharge cycle efficiency, EES is the energy stored in the energy storage, and 
0

,tiESE initial 

energy stored at bus i and time t. Emax and Emin is the maximum and minimum capacity of the energy storage respectively. Cmax is 

the power capability limit of the energy storage and M is the number of storage elements.  

Power loss constraint: 
ESwithout

tiL

ESwith

tiL PP
,,

              (19) 

where 
ESwith

tiLP
,

 and 
ESwithout

tiLP
,

 are the power loss with and without energy storage. 

Equations (14) and (15) respectively denote the maximum and minimum amount of the energy stored or discharged from the 

energy storage. Similarly, (16) and (17) are the maximum and minimum energy storage capacity respectively with the relevant 

active power rating. Based on the assumption that the energy storage is interfaced with the distribution network through efficient 

power electronic converters, Eq. (18) models the capability curve of the energy storage.  

 

The formulation from (13) to (19) gives a complete mathematical programing description for the modelling of energy storage 

necessary to counterbalance the impact of the variable renewable energy on system losses and voltage profile.  

 

Demand Response Operating Limits 
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Where 
tiDP

,
 is total power usage, tUP and tEP are the inelastic and elastic load at time t respectively. 

The elastic loads are divided into controllable and shifted loads. Controllable loads are thermostatically controlled loads such as 

heating and ventilating loads, whereas shifted loads are load that can be shifted to another time such as electric vehicle, washing 

machines etc. Inelastic loads are loads that can neither be shifted nor controlled such as lighting loads. 

ttt SCE PPP                   (23) 

Each customer operates a set of Ab appliances. For each appliance
bAa , the power drawn at time Tt  is denoted as taP , 

and by aP the vector  TtP ta ,  representing the total power for the day. 
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Where tCP  and tSP  are the controllable load at time t and load shifted to time t respectively. taP  is power of appliances a at 

time t, 
a

ttSP '
 is power of appliance a that is shifted from time t to time t’ and B is number of DR participating customers. 

 

The optimal solution of customers using real-time pricing (RTP) depends on the declared retailer price ),(: Tttt    so as to 

encourage customers to participate in RTP schedule. The product of price ( t ) and the real-time power usage )(
iDP  is the 

payment or total price  )(ti  paid by customer to the retailer. 
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Where, )(ti , 
^

t and t are the total price, real-time price and flat rate price at time t respectively.  

 

Power Loss Constraint for DR 
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tiL
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Where, 
DRwith

tiLP
,

 and 
DRwithout

tiLP
,

 are the power loss with and without demand response. 

Equation (21) denotes new hourly load profile as a result of elastic load and (24) described total available controllable load. 

The net load shifted to hour t is expressed in (25), (26) caps the total shifted elastic load at the respective time and (27) insure 

that the operation time of elastic loads is not displaced to an earlier time. The formulation from (20) to (31) gives a complete 

description for the modelling of demand response necessary to counterbalance the impact of the variable renewable generation 

on system losses and voltage profile. 

 

Weighting Factor  

 

To avoid multiobjective programming and generate an equivalent single-objective optimisation problem, a non-inferior-solution 

method is developed to assign weights to the various objective functions [25]. Each objective function is multiplied by scalar 

coefficients called weighting factors. The weighting factors are usually normalized as: 
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Therefore, wv + wl = 1. 
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The convergence criterion of the maximum number of generation is checked after the fitness of each individual in a population is 

evaluated by the following fitness function. 
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III.  HYBRID PARTICLE SWARM OPTIMISATION - GRAVITATIONAL SEARCH ALGORITHM (PSOGSA)  

 

This paper employed hybrid PSOGSA, a combination of particle swarm optimisation (PSO) and GSA low-level co-evolutionary 

heterogeneous hybrid. The combination of the functionality of both PSO and GSA makes it to be low-level and it is co-

evolutionary because both PSO and GSA algorithms are use one after another. PSOGSA is heterogeneous because the two 

algorithm are combine together to produce final result [26]. The hybrid PSOGSA combined the social thinking ability in PSO 

with the GSA local search skill. The equation for the combined algorithm is as in [26]:  
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Where veli is velocity on agent i,   is weighting function, ai(t) acceleration on agent i at time t. C1 and C2 are constants, si and sj 

are position of agent i and agent j respectively and Gbest is global best solution. 

 

The particle position is updated in each iteration as: 

     tstvelts iii  11           (35) 

Fitness value is evaluated to determine the quality of solution for procedure updating. Other agents which are exploring the 

search space are attracted by agents which are closer to the good solution. All the agents move very slowly when they are closer 

to a good solution. At this point, Gbest assists the agents to exploit the global best. Then, the best solution found so far is saved 

in the memory (Gbest) by PSOGSA for each agent’s accessibility at any time as they tend toward it. The capability of local and 

global search can be balanced by adjusting C1 and C2.  

 

The optimisation procedure using POSGA is as follows: 

 

Agent’s Initialization 

 

Initialize the positions of the N number of agents randomly as: 

  Niforssss n
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Where 
d

is is the positions of the i
th

 agent in the d
th

 dimension and n is the space dimension. 

 

Fitness Evaluation 

 

Fitness function is the driving force in POSGA which is used to evaluate each particle for quality of solution in the initial 

population. Any violation of constraints attracts a penalty of 1.0.  

 

Parameters Computation 

 

Gravitational forces and resultant force among agents are computed using (37) to (38). 

After which the particle’s acceleration are determined using (39). 

Gravitational force  
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Where,     max/exp ItreItreGtG o   

 

The total force acting on agent i in a problem space with dimension d is as: 
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Acceleration of all agents is given as: 
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Where  tF d

ij
 is gravitational forces from agent j on agent i at time t,  tF d

i
 is gravitational forces on agent i at time t, G(t) is 

gravitational constant at time t and Go is initial gravitational force value. Iter and Itermax are current and maximum iteration and 

  is descending coefficient to control gravitational constant decay rate. Mpi and Mai are passive and active gravitational mass 

related to agent j and agent i respectively and Mi is mass of object.  tRij  is the Euclidan distance between two agents i and j, N 

is number of solution, τ is small constant, d is dimension of problem space, and rand is random number in the interval [0, 1].  

Initial mass of the particle is updated with the following formulas: 
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Where, fit(t) is the fitness value of particles. 

 

Best (t) and worst (t) are determined as: 
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Velocity and Position Updates 

  

Determine the velocity and position of all agents at the next iteration using (37) and (38) respectively and update them with new 

calculations. 

Repetition:  

Repeat the above procedures until maximum iteration limit is reached.  

The best fitness value is computed at the final iteration while the corresponding agent position at specified dimensions is 

calculated as the global solution. A developed code using PSOGA toolbox package implemented in Matlab environment is used 

in the optimization. Fig. 1 depicts the flowchart of PSOGSA. The parameter used is illustrated in Table 1 and results are 

obtained after several simulations.  

 

Penalty function is introduced to handle constraints (particularly, inequality constraints) in the optimisation. This converts a 

constrained optimisation problem into an unconstrained one by adding 1 to the objective function based on the total number of 
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constraint violation found in the solution. 

 

Start

Generate initial 

population

Evaluate fitness function 

for each agent using (33) 

Update G and Gbest 

for the population 

Compute  accelerations 

and M forces for all agents 

using (39) and (42)

Calculate and update 

velocity and position using 

(34) and (35 )

Return best solution

Meeting end of 

criterion?
No

Yes

 
Fig. 1 PSOGSA optimization flowchart. 

 

Table 1. PSOGA parameters. 

 Pop size Iteration C1 C2 α Go ωmin ωmax 

GSA 20 100 1 1 20 100 1 1 

PSOGSA  20 100 0.5 1.5 23 1 0.4 0.9 

  

IV.  TEST RESULTS 

 

The proposed method is carried out on a modelled IEEE 123 bus feeder of an actual 115 kV/4.16 kV. The total load is modified 

to 16 MW and is distributed among commercial and residential energy consumers. 

 

The weighting factors for the total voltage deviation are chosen with a higher priority than that of power losses. This is because 

of its important effect on network operation. The weights are chosen as wv = 0.55 and wl = 0.45. 
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Table 2. Results on sizing and siting of energy storage. 

CES DES 

GSA PSOGSA GSA PSOGSA 

Bus Size(MW) Bus Size 

(MW) 

Bus Size 

(MW) 

Bus Size 

(MW) 

81 2.485 81 2.485 81 

67 

78 

90 

1.249 

0.826 

0.243 

0.217 

81 

70 

78 

43 

1.258 

0.575 

0.270 

0.385 
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Fig. 2. Comparison between PSOGSA and GA [27] on OLTC operations. 

Table 3. Optimal scheduling of OLTC, SVRs and capacitors. 

Hour OLTC SVR2 SVR3a SVR3c SVR4a SVR4b SVR4c SC1 SC2 SC3 SC4 

11 4 -2 1 -1 2 1 4 1 1 0 0 

12 4 -2 1 -1 2 1 4 1 1 1 0 

13 4 -2 1 -1 2 1 4 1 1 1 1 

14 4 -2 1 -1 2 1 4 1 1 1 1 

15 4 -2 1 -1 1 3 1 1 0 0 1 

 

Table 4. Error analysis of energy storage capacity. 

 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 


n

ix
n

x
1

1  
 

2

1

1






n

xx
n

i


 

CES 2.485 2.478 2.485 2.488 2.472 2.485 2.488 2.485 2.478 2.485 2.4829 0.0022 

DES 1.258 1.258 1.187 1.242 1.258 1.258 1.198 1.258 1.258 1.317 1.2490 0.0359 

0.575 0.575 0.567 0.567 0.580 0.575 0.587 0.575 0.575 0.580 0.5752 0.0060 

0.278 0.270 0.270 0.283 0.267 0.270 0.270 0.283 0.270 0.267 0.2720 0.0062 

0.383 0.383 0.385 0.385 0.388 0.385 0.385 0.380 0.369 0.375 0.3818 0.0057 

 

The proposed method has been implemented in MATLAB, and examined on the test system using OpenDSS Com Matlab 

interface for a multi-period of 24 hours. The optimal scheduling of LTC and capacitors including the size and location of the ES 

are determined using the proposed algorithm, described in Fig. 1, are listed in Tables 2 and 3 respectively. Only the results of 

11.00 to 15.00 hour are tabulated in Table 3 in order to reduce space. All the capacitors are not switched ON at the same hour 

except 13.00 hr and 14.00 hr as depicted in the Table 3. This is to compensate for the load demand at the peak hour of the day by 

injecting more reactive power into the feeder so as to reduce the line losses and improve the voltage profile. The positive number 
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indicates the regulator tap move up to increase the voltage whereas the negative number points out to the regulator tap move 

down to reduce the voltage to permissible limits. The proposed algorithm is compared to [27]. We disable the SVRs and 

connected 14 capacitors in the feeder as it was done by [27]. The comparative results are as shown in Fig. 2. It is observed that 

there is no significant difference in both algorithms when 14 capacitors are used but the use of SVR in this paper minimizes the 

OLTC tap operations. It also reduces the number of capacitors and its switching operations. It is clear from the tables that, the 

proposed PSOGSA-based approach is capable of determining the optimal scheduling of LTC and capacitors as well as the ES 

location at a single location or multiple locations with the same size. Error analysis of the ES capacity using PSOGSA is carried 

out for the purpose of accuracy. The result of the error analysis is shown in Table 4. Where x is the ES capacity, x is mean, σ is 

standard deviation and n is the number of observations. It is observed in Table 4 that the standard deviation is low which implies 

a better accuracy of the ES capacity. 

 

Case 1:  

 

Real-time pricing for peak load reduction in a distribution system: Electricity consumption scheduling algorithm that use 

real-time pricing in a SG environment is carried out. Flat pricing, which is commonly used, is based on long-run average cost. 

However, retailers depend on bilateral contracts, including wholesale spot market, to purchase the energy they supply to 

customers. The underlying cost structure is therefore difficult to be estimated. Hence, publicly available wholesale market data as 

shown in Fig. 3 [28], is used in this paper to estimate the system-level costs incurred by the retailer. Consumers controlled their 

elastic loads based on the electricity price released by retailer. A load limit kWP 38500   is set, so that any customer that 

exceeds the load limit will receive a penalty. That is, making excess payment for the extra load. 

 

The elastic load of respective customers is the controllable load for load reduction or shifting. The feeder consists of 20 kW 

load, 40 kW load and 75 kW load and above. It is assumed that 20 kW and below is inelastic load, loads above 20 kW to 40 kW 

are assumed to be controllable loads while any load above 40 kW is assumed to be shifted load. The loads are taken in the 

proportion of 20%, 50% and 30% for inelastic, controllable and shifted load respectively. Load reduction was applied on the 

controllable loads while the shifted load is shifted from hour t to t’, that is, from day to night. 

A 24-hour consumer’s scheduled load curve using the proposed algorithm is as shown in Fig. 4. Every customer managed their 

load not to exceed the maximum load limits. It is observed that the load profile is dramatically improved. Due to customer’s 

participation in the DR program. The result of the proposed algorithm is compared to price elasticity matrices use in [19]. Both 

results show that the load reduction/shifting due to the implementation of DR reduced the system line losses causing 

improvement in the feeder voltage profile. The load reduction and shifting to an off-peak hour effect reduction in the line loss 

causing boost in the system voltage. In fact, with DR, shifting of load to a more convenient time minimizes the possibility of 

involuntary emergency load curtailment thereby, diminishes duration of service interruptions. This shows the effectiveness of DR 

in not only improving the voltage profile during peak-load period but also during off-peak period.  
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Fig. 3. 24-hour electricity price released by retailer. 
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Fig. 4. 24-hour power usage (load) scheduled curve. 

Case II:  

 

Effect of energy storage and demand response on system voltage: A 30% wind energy is distributed in the modified peak 

load feeder of 16 MW. The corresponding voltage profile and system real energy losses are obtained with the optimal settings of 

LTCs, shunt capacitors and ES/DR through simulation in OpenDSS Com Matlab interface. The LTCs and the capacitor banks 

are coordinated with the ES and DR for smooth operation to achieve the desired objectives of this paper. Chronological 24-

hourly simulation of the system is carried out as shown in Fig. 5. It is observed that the LTCs could not maintain the voltage 

within statutory limits. Switching ON the capacitor banks increases the voltage profile yet, still below the voltage limits in some 

hours of the day. The capacitors have great influence on the reactive power flow and line current is reduced, thereby reducing the 

line voltage drop. The more the capacitor banks are introduced, the more the losses get reduced and the more the voltage profile 

is improved. A total energy storage of 2.485 MW is distributed in the feeder at their respective optimal locations as determined 

by the PSOGSA optimisation. The ES batteries used are divided into two sections because the maximum charging and 

discharging rate is 6 hours each. The charging trigger is set at 100%. While the discharge trigger is set at 90% so that the battery 

will not completely discharge before it is re-charged. Section ‘A’ comprises only the ES on bus 81. Section ‘B’ comprises the ES 

integrated at buses 70, 78 and 43. The charging, discharging and idle hours of each section is shown in Fig. 6. The VAr control 

devices are coordinated with the ES. The dispatch operation of the ES injects more power into the feeder. 
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Fig. 5. Application of control devices at different stage. 
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Fig. 6. Energy storage dispatch curve. 
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Table 5. Voltage profile, LTCs and losses with and without ES and DR.  

 LTCs SCs ES DR 

Max Voltage (pu) 0.9772 0.9923 0.9752 0.9771 

Min Voltage (pu) 0.9323 0.9405 0.9600 0.9732 

Voltage deviation 0.0449 0.0518 0.0152 0.0039 

No. of Tap 1 5 3 3 

Tap position 16 8 to 10 1 to 3 -1 to +2 

Losses (kW) 1779.60 1309.39 1169.39 927.84 

(%) Loss Reduction  - 26.42 34.29 47.86 

 

The integration of the ES has warranted voltage profile improvement, energy loss reduction and bring the voltage within 

statutory limit. For peak-valley levelling of the feeder, the ES is disconnected and real-time pricing DR is introduced. This new 

measure is coordinated with the VAr control devices. The result is as shown solid line in Fig. 5. The results consistently indicate 

that the coordinated operation of the VAr control devices with ES and DR causes reduction in system losses and enhances 

system capability to maintain voltages within the permissible bounds. The use of ES effectively assists to harness intermittent 

renewable energy resources, reduced energy loss and improve the voltage profile. The use of DR emphasizes its role as a remedy 

to the voltage depression problem in a smart grid, when the coordination of other control devices fell short in restoring the 

voltage within its prescribed bounds. It also provides additional flexibility to the system to hedge against the fluctuations of wind 

energy. The detail of energy loss at the 11th hour of the day with corresponding percentage energy loss reduction is illustrated in 

Table 5. It is observed that as the ES and DR are introduced, the energy loss reduces and the percentage energy loss reduction 

increases. This energy loss reduction leads to voltage improvement. The distribution of ES and implementation of DR reduce 

peak load demand and adapt controllable load to fluctuating wind energy. 

 

Case III:  

 

Effect of VAR control devices, energy storage and DR on load tap changer transformer operation: The LTCs and 

capacitors are coordinated with the ES and DR so as to reduce energy loss and improve the voltage profile. The LTC ‘4b’ tap 

operation at different hour of the day is as shown in Fig. 7. The LTC tap moves once without other control devices. However, it 

moves up to the maximum position, 16 and still could not bring the voltage to the statutory limits. The tap position moves 

between 8 and 10 with 5 operations when the capacitor banks are switched ON. The integration of the ES made the tap to operate 

4 times with the tap position between 1 and 3. However, at the application of DR, the tap position moved 3 times with its 

position between -1 and 2 to keep to voltage within the permissible limits. This shows that the integration of ES or the use of DR 

reduce stress on the LTCs as compared to only VAr control devices. Although, the LTC tap moves 3 times within 24 hours with 

minimum tap position, the coordination of the VAr control devices with either ES or DR bring the voltage profile within the 

statutory limits. 
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Fig. 7. Regulator tap position at different control levels. 
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Fig. 8. Weekly power usage (load) scheduled curve. 
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Case IV:  

 

Application of DR in peak shaving/load leveling: Wind penetration on the distribution feeder for one week with the 

application of DR is investigated for peak shaving/load leveling. The feeder load remains the same at 16 MW peak load. 

However, a weekly power usage curve as shown in Fig. 8 is introduced. Fig. 9 illustrated each day load curve. The VAr control 

devices are coordinated with the real-time pricing DR. The result is as shown in Fig. 10. Application of DR failed to bring the 

voltage to permissible bounds on day three as a result of drop in wind generation due to low wind speed. Therefore, energy 

storage was quickly integrated to inject more power into the feeder so as not to impair customers’ welfare. The introduction of 

the energy storage brings the voltage to permissible bounds. The load output power, wind power and output power of the 

demand response is illustrated in Fig.11. 

 

Results consistently indicated that the coordinated operation of the VAr control devices with the DR also enhances system 

capability to maintain voltages within the permissible bounds with the voltage deviation between 0.9502 pu and 0.9615 pu. 

Energy storage system quickly restore the system to permissible limits when the coordination of VAr control devices with DR 

failed on the 3rd day. This case study confirm that the developed framework is not only practical and effective for 24-hour time 

series voltage control analysis but multi-period (long time) voltage control analysis which take into account a sudden drop in 

wind generation.  
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Fig. 9. Daily load curve. 
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Fig. 10. Weekly voltage profile with and without DR. 
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Fig. 11. Weekly power delivered with and without DR. 

   

V.  CONCLUSION 

High penetration of PV installations and wind farms can potentially cause voltage rise problems. This paper has presented a 

conjoint framework that incorporates VAr control devices, along with ES and DR to mitigate the voltage variations resulting 

from deep penetration levels of wind units in DNs. The problem is cast as a mixed-integer, nonlinear optimization problem to 

minimize voltage deviations and total system losses. Hybrid PSOGSA is proposed to solve the resulting problem due to its 

combinatorial nature. The potency of the proposed approach is corroborated through a chronological, multiperiod simulation for 

24 hours and is examined under various operating conditions and test scenarios. Results consistently indicate that the coordinated 

operation of the control devices causes reduction in system losses and enhances system capability to maintain voltages within the 

permissible bounds.  

 

The use of ES and DR effectively assists to harness intermittent renewable energy resources, and provide additional flexibility to 

the system to hedge against the fluctuations of variable RG output. The proposed PSOGSA based optimisation can effectively 

determine a distributed energy storage locations or centralized energy storage location in distribution feeder. The use of ES, as 

illustrated in the paper, effectively assist to harness intermittent wind energy resources, mitigate voltage rise resulting from the 

high penetration of wind energy, bring further improvement to overall voltage profile and accommodate higher penetration levels 

of wind energy resources. Electrical energy storage distributed in the grid will not only be a key enabler for a smarter distribution 

feeder with high penetration of wind energy resources but also to provide for reliable and higher quality of power supply. 

 

Aggregate DR that curtails some of the customer load could be hypothetically comparable to the provision of reserves by 

generators. It thus has the capability to defer future generation investment. DR was explored in this paper as a tool to maintain 

the voltage profile in a distribution feeder that has a deep penetration of wind energy. The problem of invoking DR options 

among shiftable and curtailable load portions was modeled as a nonlinear optimization problem. DR techniques, enabled shifting 

the demand from high electricity price peak period to lower price, off-peak periods. DR can definitely facilitate the integration of 

higher proportion of renewable generation into the smart grid and alleviate supply pressure on utility companies. Future work 

will consider the participation of variable RE sources in conventional forward markets, where participants bid to schedule energy 

transactions for day ahead and becomes binding once the market is cleared, then ES will play a more prominent role in the 

firming of RE contracts. In this case, ES could be located near wind farms or PV plant sites to taper off financial penalties 

associated with contract shortfalls.  
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