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Abstract: For the past decade, many image segmentation techniques have been proposed. These segmentation techniques can be categorized into 

three classes, (1) characteristic feature thresholding or clustering, (2) edge detection, and (3) region extraction. This survey summarizes some of 

these techniques. In the area of biomedical image segmentation, most proposed techniques fall into the categories of characteristic feature 

thresholding or clustering and edge detection. We present current segmentation approaches are reviewed with an emphasis placed on revealing the 

advantages and disadvantages of these methods for medical imaging applications. 
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INTRODUCTION 

Diagnostic imaging is an invaluable tool in medicine today. 

Magnetic resonance imaging (MRI), computed tomography 

(CT), digital mammography, and other imaging modalities 

provide an effective means for noninvasively mapping the 

anatomy of a subject. These technologies have greatly 

increased knowledge of normal and diseased anatomy for 

medical research and are a critical component in diagnosis 

and treatment planning. With the increasing size and number 

of medical images, the use of computers in facilitating their 

processing and analysis has become necessary. In particular, 

computer algorithms for the delineation of anatomical 

structures and other regions of interest are a key component 

in assisting and automating specific radiological tasks. 

These algorithms, called image segmentation algorithms, 

play a vital role in numerous biomedical imaging 

applications such as the quantification of tissue volumes [1-

5], diagnosis [6], localization of pathology [8], study of 

anatomical structure [8], treatment planning [9], partial 

volume correction of functional imaging data [7], and 

computer integrated surgery [10]. 

 

 Automatic segmentation of brain magnetic resonance (MR) 

images to the three main tissue types: white matter (WM), 

gray matter (GM), and cerebro-spinal fluid (CSF) is a topic 

of great importance and much research. It is known that 

volumetric analysis of different parts of the brain is useful in 

assessing the progress or remission of various diseases, such 

as Alzheimer’s disease, epilepsy, sclerosis, and 

schizophrenia [11]. 

 

Computational applications are gaining significant 

importance in the day-to-day life. Specifically, the usage of 

the computer aided systems for computational biomedical 

applications has been explored to a higher extent. Medical 

image analysis is an important biomedical application which 

is highly computational in nature and requires the aid of the 

automated systems. These image analysis techniques are 

often used to detect the abnormalities in the human bodies 

through scan images. Automated brain disorder diagnosis 

with MR images is one of the specific medical image 

analysis methodologies. 

 

Brain tumor pathologies are the most common fatality in the 

current scenario of health care society. Hence, accurate 

detection of the type of the brain abnormality is highly 

essential for treatment planning which can minimize the 

fatal results. Accurate results can be obtained only through 

computer aided automated systems.  

 

Magnetic Resonance Imaging (MRI) is the state-of the-art 

medical imaging technology which allows cross sectional 

view of the body with unprecedented tissue contrast. MRI 

plays an important role in assessing pathological conditions 

of the ankle, foot and brain. It has rapidly evolved into an 

accepted modality for medical imaging of disease processes 

in the musculoskeletal system, especially the foot and brain 

due to the use of non-ionizing radiation. MRI provides a 

digital representation of tissue characteristic that can be 

obtained in any tissue plane. The images produced by an 

MRI scanner are best described as slices through the brain. 

MRI has the added advantage of being able to produce 

images which slice through the brain in both horizontal and 

vertical planes. 

  

Segmentation is an important process to extract information 

from complex medical images. Segmentation has wide 

application in medical field [3-4]. The main objective of the 

image segmentation is to partition an image into mutually 

exclusive and exhausted regions such that each region of 

interest is spatially contiguous and the pixels within the 

region are homogeneous with respect to a predefined 

criterion.  

 

Widely used homogeneity criteria include values of 

intensity, texture, colour, range, surface normal and surface 

curvatures. During the past many researchers in the field of 



Samir K Bandyopadhyay, Journal of Global Research in Computer Science 2 (2), February 2011, 04-07 

© JGRCS 2010, All Rights Reserved   5 

medical imaging and soft computing have made significant 

survey in the field of image segmentation [5-8].  

 

Image segmentation techniques can be classified as based on 

edge detection, region or surface growing, threshold level, 

classifier such as Hierarchical Self Organizing Map 

(HSOM), and feature vector clustering or vector 

quantization. Vector quantization has proved to be a very 

effective model for image segmentation process [9]. Vector 

quantization is a process of portioning an n-dimensional 

vector space into M regions so as to optimize a criterion 

function when all the points in each region are approximated 

by the representation vector Xi associated with that region.  

 

There are two processes involved in the vector quantization: 

one is the training process which determines the set of 

codebook vector according to the probability of the input 

data, the other is the encoding process which assigns input 

vectors to the code book vectors. Vector quantization 

process has been implemented in terms of the competitive 

learning neural network (CLNN)[10]. Self-Organizing Map 

(SOM) [11] is a member of the CLNNs and this can be the 

best choice when implementing vector quantization using 

neural network [11-16]. The importance of SOM for vector 

quantization is primarily due to the similarity between the 

competitive learning process employed in the SOM and the 

vector quantization procedure.  

 

The main shortcoming of the SOM is that the number of 

neural units in the competitive layer needs to be 

approximately equal to the number of regions desired in the 

segmented image. It is not however, possible to determine a 

priori the correct number of regions M in the segmented 

image. This is the main limitation of the conventional SOM 

for image segmentation.  

 

The HSOM directly address the aforesaid shortcomings of 

the SOM. HSOM is the combination of self-organization 

and topographic mapping technique. HSOM combine the 

idea of regarding the image segmentation process as one of 

data abstraction where the segmented image is the final 

domain independent abstraction of the input image. The 

hierarchical segmentation process for a hierarchical structure 

is called abstraction tree. The abstraction tree bears some 

resemblance to the major familiar quad tree data structure 

[17] used in the several image processing and image 

analysis algorithms.  

 

Clustering is the process of grouping a data set in a way that 

the similarity between data within a cluster is maximized 

while the similarity between data of different clusters is 

maximized [18] and is used for pattern recognition in image 

processing. To recognize a given pattern in an image various 

techniques have been utilized, but in general two broad 

categories of classifications have been made: unsupervised 

techniques and supervised techniques. 

 

 In the unsupervised method, data items that are to be 

clustered are not pre-classified while in supervised 

clustering the data points are pre-classified. One of the well-

known unsupervised algorithms that can be applied to many 

applications such as image segmentation [19], fuzzy c 

means (FCM) [20] etc. FCM algorithm is one of the popular 

fuzzy clustering algorithms which are classified as 

constrained soft clustering algorithm.  

 

A soft clustering algorithm finds a soft partition of a given 

data set by which an element in the data set may partially 

belong to multiple clusters. Moreover, there is a constraint 

on the function that the membership degree of a point in all 

the clusters adds up to 1[21-22]. The researchers in this field 

have used SOM or HSOM or FCM separately as one of the 

tool for the image segmentation of MRI brain for the tumor 

analysis. Some of the papers propose a hybrid technique 

combining the advantages of HSOM and FCM and 

implemented for the MRI image segmentation process to 

detect various tissues like white matter, gray matter, cst and 

tumor. 

 

The automated diagnosis involves two major steps: (a) 

Image classification & (b) Image segmentation. Image 

classification is the technique of categorizing the abnormal 

input images into different tumor groups (brain tumors are 

of many types) based on some similarity measures. The 

accuracy of this abnormality detection technique must be 

significantly high since the treatment planning is based on 

this identification. The second step is image segmentation 

which is used to extract the abnormal tumor portion which is 

essential for volumetric analysis. This volumetric analysis 

determines the effect of the treatment on the patient which 

can be judged from the extracted size and shape of the 

abnormal portion. Many research papers with different 

approaches for image classification and segmentation are 

reported in the literature. 

 

 

REVIEW WORKS ON BRAIN IMAGE 

SEGMENTATION 

 

The primary goal of brain image segmentation is to partition 

a given brain image into non-intersecting regions 

representing true anatomical structures such as grey matter, 

white matter, etc. Over the last decade, many methods have 

been proposed to tackle this problem. A partial list includes 

edge-based methods [23], knowledge or rule-based methods 

[24], statistical model-based methods [25], neural network 

methods [27], and deformable model based methods [26]. In 

spite of this progress, automatic segmentation of brain 

structures remains a very challenging task. This paper 

presents a new hybrid method which integrates multi-scale 

analysis, image normalization and elastic template 

deformation. 

 

Methods for performing segmentations vary widely 

depending on the specific application, imaging modality, 

and other factors. For example, the segmentation of brain 

tissue has different requirements from the segmentation of 

the liver. General imaging artifacts such as noise, partial 

volume effects, and motion can also have significant 

consequences on the performance of segmentation 

algorithms.  

 

Furthermore, each imaging modality has its advantages and 

disadvantages. There is currently no single segmentation 

method that yields acceptable results for every medical 

image. Methods do exist that are more general and can be 
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applied to a variety of data. However, methods that are 

specialized to particular applications can often achieve 

better performance by taking into account prior knowledge. 

Selection of an appropriate approach to a segmentation 

problem can therefore be a difficult dilemma. 

 

To perform meaningful segmentation of image, regions of 

different gray levels should be merged if the regions are 

from the same object. The watershed segmentation generates 

spatially homogeneous regions which are over segmented. 

In contrast to classical area based segmentation, the 

watershed transform [28] was executed on the gradient 

image. The gradient defined the first partial derivative of an 

image and contains a measurement for the change of gray 

levels. 

 

A variety of segmentation schemes exist in the literature. As 

it is very difficult to estimate automatic or semiautomatic 

segmentation results against an in vivo brain, manual 

segmentation by experts is still considered to be the “gold 

standard” or “ground truth” for any automated algorithm. 

 

However, manual partitioning of large amounts of low-

contrast/ low-signal-to-noise ratio (SNR) brain data is 

strenuous work and is prone to large intra observer and 

observer variability. Fully automated intensity-based 

algorithms, on the other hand, exhibit high sensitivity to 

various noise artifacts, such as intra tissue noise, inter tissue 

intensity contrast reduction, partial-volume effects, and 

others [29-32].  

 

Reviews on methods for brain image segmentation (e.g., 

[31]) present the degradation in the quality of segmentation 

algorithms due to such noise, and recent publications can be 

found addressing various aspects of these concerns (e.g., 

partial-volume effect quantification [7]). Due to the artifacts 

present, classical voxel-wise intensity- based classification 

methods, such as -means modelling and mixture of 

Gaussians modeling (e.g., [11] and [25]), may give 

unrealistic results, with tissue class regions appearing 

granular, fragmented, or violating anatomical constraints. 

Incorporating spatial information via a statistical atlas 

provides a means for improving the segmentation results 

(e.g., [13] and [18], [22]). The statistical atlas provides the 

prior probability for each pixel to originate from a particular 

tissue class.  

 

Algorithms that are based on the maximum a posteriori 

(MAP) criterion utilize the atlas information in the algorithm 

iterations to augment the information in the presence of 

noisy data. Co-registration of the input image and the atlas, a 

computationally intensive procedure, is critical in this 

scenario [23]. It is important to note that the quality of the 

registration result is strongly dependent on the physiological 

variability of the subject and may converge to an erroneous 

result in the case of a diseased or severely damaged brain. 

Moreover, the registration process is applicable only to 

complete volumes. A single slice cannot be registered to the 

atlas, thus, cannot be segmented using these state-of-the-art 

algorithms.  

 

 An additional conventional method to improve 

segmentation smoothness and immunity to noise is to model 

neighbouring voxels interactions using a Markov random 

field (MRF) statistical spatial model [9], [13], [27]. 

Smoother structures are obtained in the presence of 

moderate noise as long as the MRF parameters controlling 

the strength of the spatial interactions are properly selected. 

Too high a setting can result in an excessively smooth 

segmentation and a loss of important structural details [15]. 

In addition, MRF-based algorithms are computationally 

intractable unless some approximation is used which still 

requires computationally intensive algorithms. Algorithms 

that use deformable models to incorporate tissue boundary 

information [19] imply inherent smoothness but require 

careful initialization and precisely calibrated model 

parameters in order to provide consistent results in the 

presence of a noisy environment. Several works can be 

found in the literature, such as fuzzy connectedness 

segmentation methods, that attempt to provide an alternative 

to the MRF modeling (e.g., [20] and [26]). In [26-35], as in 

many other works, there still seems to be a need for a large 

number of parameters for the task. 

  

CONCLUSION 

 

This paper provides an overview of current methods used 

for computer assisted or computer automated segmentation 

of anatomical medical images. Methods and applications 

that have appeared in the recent literature are briefly 

described. We refer only to the most commonly used 

radiological modalities for imaging anatomy: magnetic 

resonance imaging (MRI), X-ray computed tomography 

(CT), ultrasound, and X-ray projection radiography.  
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