
Volume 3, No. 6, June 2012

Journal of Global Research in Computer Science

RESEARCH PAPER

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 38

ADAPTIVE JOIN OPERATORS FOR RESULT RATE MAXIMIZATION

Ms. Pallavi D.Umap
*1

, Prof.Dr.G.R.Bamnote
2

*1Information Technology, Prof .Ram Meghe Institute of Technology & Research, Badnera(Amravati),Maharashtra, India.

p.p.takalkhede@gmail.com1
2Computer Sci & Engg, Prof .Ram Meghe Institute of Technology & Research, Badnera(Amravati),Maharashtra, India.

grbamnote@rediffmail.com2

Abstract: - This work is focused on how join operator works in a single, homogeneous and heterogeneous environment. Adaptive join

algorithms have recently attracted a lot of attention in emerging applications where data is provided by autonomous data sources through
heterogeneous network environments. In traditional join techniques, they can start producing join results as soon as the firs t input tuples are
available, thus improving pipelining by smoothing join result production and by masking source or network delays. In this work, Evaluation of
the performance and comparison of Multiway join (MJoin), Double Index Nested Loop Reactive Join (DINER), and Multiple Index Nested
Loop Reactive Join (MINER). DINER combines two key elements: an intuitive flushing policy that aims to increase the productivity of in-
memory tuples in producing results, and a novel re-entrant join technique that allows the algorithm to rapidly switch between processing in-
memory and disk-resident tuples, thus better exploiting temporary delays when new data is not available. MINER outperforms in comparison

with the previous join algorithms in producing result tuples at a significantly higher rate, while making better use of the available memory.

Keywords: - Query processing, Streams, Joins

INTRODUCTION

In Real systems, it is difficult to maintain all the data is

stored in one large table. To do so would require

maintaining several duplicate copies of the same values and

could threaten the integrity of the data .Instead, IT

department everywhere almost always divide their data

among several different tables. Because of this, a method is

needed to simultaneously access two or more tables by using

join operation. Join is a means for combining fields from

two tables by using values common to each. Join operation

is considered as one of the fundamental operations of

relational databases and it is also difficult operation to
efficiently implement. Joins are one of the basic

constructions of SQL and databases such as, they combine

records from two or more database tables into one row

source, one set of rows with the same columns and these

columns can originate from either of the joined tables as

well as be formed using an expressions and built-in or user-

defined functions.

Joins are used for joining records or fields from two or more

tables in a database by using a value common to both the

tables and the result set can be stored or saved in a table [1].

There are four types of joins and they are specified by ANSI

(American National Standard Institute) and they are INNER,

OUTER, LEFT, and RIGHT. Inner join are further classified

into equi join, natural join and cross join. Outer join are

further classified as left outer join, right outer join and full

outer join. Two tables are used as an example of joins; they

are Dept ID column of the Emp table and Dept table.
Emp Table Dept Table

LastName DeptId Dept Id DeptName

Aa 11 11 Sales

Bb 13 13 Engineering

Cc 13 14 Clerical

Dd 14 15 Marketing

Ee 14

Figure. 1 Example of Join

Inner join are considered as a common operation of join and

they are also a default type of join based on the predicate.

They combine the values of two tables and the results are

kept in new table. Inner join has both explicit join notation

and implicit join notation.

Outer join does not expect any matching record and they
does not require each record in two tables to be joined to

have a matching record. Outer join does not have Implicit

join notation. Explicit join notation and implicit join

notation are the ways of expressing join syntax and they are

specified by SQL explicit join notation uses the keyword

“JOIN” and “On” [1]

Select * from Emp INNER JOIN Dept On Emp.DeptID =

Dept.DeptID;

Implicit join notation list the join table and they use select
statement:-

Select * from Emp, Dept Where Emp.DeptID =

Dept.DeptID;

1. Adaptive Join: Adaptation schemes for join queries are

significantly more complicated to design and analyze

compared to those for selection ordering for several reasons.

The key performance of adaptive joins is rapid availability

of first results and a continuous rate of tuple production. It

overcomes the situation like initial delay, slow data delivery

or bursty arrival, which can affect the efficiency of join [2]

It is used for fast data delivery from one location to another

location.When first input tuple is available then starts its

joining process compared to traditional joining processes.

Motivation:

Some additional challenges in adaptive joins compared to
traditional joins [3] are: The input relations are provided by

autonomous network sources. The implication is that one

Pallavi D.Umap et al, Journal of Global Research in Computer Science, 3 (6), June 2012, 38-45

© JGRCS 2010, All Rights Reserved 39

has little or no control over the order or rate of arrival of

tuples. Data is transported through unreliable network

environment. It is often unsuitable or in-efficient because

most traditional join algorithms cannot produce results until

at least one of the relations is completely available, the

complete data might be available after a long time.

Sometimes these algorithms are unusable, if data is

completely available but they produce partial results. The

availability of partial join results is important for wide range

of applications.

Their main advantage over traditional join techniques is that,

they can start producing join results as soon as the first input

tuples are available, thus improving pipelining by smoothing

join result production and by masking source or network

delay.

Objectives:

a) Experimental study of DINER(Double Index

Nested Loop Reactive Join)

b) Calculate the performance comparison of the

DINER, MINER and MJoin.

c) Evaluate the performance of MINER (Multiple

Index Nested Loop Reactive Join)

Dissertation work:

The aim of implementing and optimizing of MINER

algorithm and comparing it with the DINER and MJoin. In

MINER, It uses homogeneous database for higher quality

join results. All the data is stored into the buffer and data is

fetched according to their index number and apply a join

query.

In DINER (Double Index Nested loop Reactive Join), it uses

heterogeneous database and it is a novel adaptive join
algorithm that supports both equality and range join

predicates.The feature of this DINER algorithm is that they

are unblocking and they deal with adaptive. They can

produce join result, if the one relation is completely arriving.

[4]

In MJoin, It uses single database for joining two or more

tables. Firstly, consider two tables for joining and this result

is stored in the third table. Then, this third table is join with

the another table i.e. fourth table.

LITERATURE REVIEW

Existing Join Techniques:

The main three categories of join algorithms are

a) Nested-loop join algorithm

b) Sort-merge join algorithm

c) Hash-based join algorithm

Nested-Loop Join Algorithm [1]:- Nested-loop join is

considered as a one of the simplest algorithm of join where,

for each record of the first table the entire records of the

second table has to be scanned. This process is repeated for
each and every record of the first table that is for all the first

table records. The loop is of two levels and they are outer

loop and the inner loop. First table loop is called as outer

loop and the second table loop are called as inner loop. As

this, Nested loop join algorithm has a repeated input/output

scans of one of the table. They are considered as inefficient.

Let the two tables be A and B, then the algorithm of Nested-

loop algorithm are as for each record of table A

Read record from table A

 For each record of table B

 Read record from table B

 Compare the join attributes

 If matched

 Then

 Store the records

Example: - Consider schema of two tables “Customers”

and “Sales”
Create Table Customers (Cust_Id int, Cust_Name varchar

(10))

Insert Customers values (1,‟John‟)

Insert Customers values (2,‟Henry‟)

Insert Customers values (3,‟Tom‟)

Another table is „Sales‟,

Create Table Sales (Cust_Id int, Item varchar (10))

Insert Sales values (2,‟Camera‟)

Insert Sales values (3,‟Computer‟)

Insert Sales values (3,‟Monitor‟)

Insert Sales values (4,‟Printer‟)
Query is written as:-

Select * from Sales S inner join Customers C on S.Cust_Id

= C.Cust_Id

In above example, the outer table is “Customers” while the

inner table is “Sales”. Thus, it begins by scanning the

“Customers” table. It takes one customer at a time and, for

each customer, it scans the “Sales” table. Since, there

are 3customers; it executes the scan of the “Sales”

table 3 times. Each scan of the “Sales” table returns 4

rows. It compares each “Sales” to the current “Customers”
and Evaluate whether the two rows have the same

Cust_Id.Return these rows of Cust_Id. It has 3 customers

and 4 sales. So, it performs this comparison a total of 3*4

or 12 times. Only 3of these comparison results in a

matching.

Sort-Merge Join Algorithm [1]:-Sort merge algorithm are

considered as an efficient join algorithm when compared to

Nested loop join algorithm. Sort merge join algorithms have

two operations and they are sorting and merging. In sorting

operation, the two tables to be joined are sorted in ascending

order. In merging operation, the two sorted tables are
merged. Sort records of table a based on the join attribute

Sort records of table B based on the join attribute.

Let i = 1 and j =1

Repeat

 Read record A (i)

 Read record B (j)

If join attribute A (i) < join attribute B (j) Then

 i++

Else

 If join attribute A (i) > join attribute B (j) Then

 j++
 Else

Put records A (i) and B (j) into the Query.

Pallavi D.Umap et al, Journal of Global Research in Computer Science, 3 (6), June 2012, 38-45

© JGRCS 2010, All Rights Reserved 40

 [3] [5] [4] [9] [2]

 [3] [5] [4] [9] [2]

 [3] [5] [4] [9] [2]

 [9] [2]

Figure 2. Example of SMJ.

Hash Based join algorithm [1]: - In hash based join

algorithm, hashing and probing are the two processes. A

hash table is created by hashing all records of the first table

using a particular hash function. Records from the second

table are also hashed with the same hash function and

probed. If any match is found, the two records are

concatenated and placed in the query result. A decision must
be made about which table is to be hashed and which table

is to be probed. Since a hash table has to be created, it would

be better to choose the smaller table for hashing and the

larger table for probing. The hash join algorithm is given as

Let H be a hash function

 For each record in table B

 Read a record from table B

 Hash the record based on join attribute value

 using hash function H into hash table

 For each record in table A

 Read a record from table A

 Hash the record based on join attribute value
 using H

 Probe into the hash table

 If an index entry is found then

 Compare each record on this index entry

 With the record of table S

 If matched then

 Put the pair into query.

Example:-

Consider schema of two tables Emp_Master and Emp_Info

Create Table Emp_Master (Id int, Name varchar (10),

Designation varchar (10), Dept varchar (10))

Insert Emp_Master values (1,‟John‟,‟Lecturer‟,‟Mech‟)

Insert Emp_Master values (2,‟Jack‟,‟Professor‟,‟Extc‟)

Insert Emp_Master values (3,‟Jill‟,‟AP‟,‟Comp‟)

Create Table Emp_Info (Id int, Dt_of_Joining Date Time)

Insert Emp_Info values (2, 13/10/04)

Insert Emp_Info values (1, 12/11/05)
Insert Emp_Info values (2, 13/10/04)

Insert Emp_Info values (3, 10/09/05)

Insert Emp_Info values (1, 12/11/05)

Insert Emp_Info values (2, 13/10/04)

Insert Emp_Info values (2, 13/10/04)

Query is written as:-Select Id int, Name varchar (10),

Designation varchar (10), Dept varchar (10) From

Emp_Master inner join Emp_Info on Emp_Master. Id =

Emp_Info. Id Order by Emp_Info. Dt_of_Joining desc.

Existing work on adaptive join algorithms can be classified

in two groups:-hash based join and sort based [3] join.

Examples of hash based algorithms are XJoin, Hash Merge

join, Progressive Merge join.

Double Pipelined Hash Join (DPHJ) [5]:- The double

Pipelined Hash Join (DPHJ) is another extension of the

symmetric hash join algorithm [7]. DPHJ has two stages.

The first stage is similar to the in-memory join in the

symmetric hash join and XJoin[5]. In the second stage, pairs

that are not joined together in the first phase are marked and

are joined in disk. DPHJ [6] is suitable for moderate size

data, but does not scale well for large data sizes.

XJoin [8]:- It is a non-blocking join operator, which has a

small memory footprint, allowing many such operators to be

active in parallel. XJoin is optimized to produce initial

results quickly and can hide intermittent delays in data
arrival by reactively scheduling background processing. It

show that XJoin is an effective solution for providing fast

query responses to user even in the presence of slow and

bursty remote sources.

MJoin [9]: - The basic idea of the MJoin algorithm is

simple: generalize the symmetric binary hash join and the

XJoin algorithms to work for more than two inputs. Our

primary goal is to maximize the output rate during the

memory-to-memory phase of the MJoin. In MJoin, the disk

to-memory phase is intended to allow the system to generate
outputs while its inputs are blocked, while the disk to-disk

phase is intended to generate any final answers after the

inputs have terminated. Interestingly, for the MJoin, how we

handle memory overflow determines the output rate of the

memory-to-memory phase.

Progressive Merge Join [10]: - PMJ is the adaptive non-

blocking version of the sort merge join algorithm. It splits

the memory into two partitions. As tuples arrive, they are

inserted in their memory partition. When the memory gets

full, the partitions are sorted on the join attribute and are
joined using any memory join algorithm. Thus, output tuples

are obtained each time the memory gets exhausted. Next, the

partition pair (i.e., the bucket pairs that were simultaneously

flushed each time the memory was full) is copied on disk.

After the data from both sources completely arrives, the

merging phase begins. The algorithm defines a parameter F,

the maximal fan-in, which represents the maximum number

of disk partitions that can be merged in a single “turn”. F/2

groups of sorted partition pairs are merged in the same

fashion as in sort merge. In order to avoid duplicates in the

merging phase, a tuple joins with the matching tuples of the

opposite relation only if they belong to a different partitition
pair.

Hash Merge Join [11]: - HMJ is a hybrid query processing

algorithm combining ideas from XJoin and Progressive

Merge Join. HMJ is a new non-blocking join algorithm that

deals with data items from remote sources via unpredictable,

slow, or bursty network traffic. The HMJ algorithm is

designed with two goals in mind: (1) Minimize the time to

produce the first few results, and (2) Produce join results

even if the two sources of the join operator occasionally get

blocked. The HMJ algorithm has two phases: The hashing
phase and the merging phase. The hashing phase employs an

in-memory hash-based join algorithm that produces join

results as quickly as data arrives. The merging phase is

responsible for producing join results if the two sources are

blocked.

Pallavi D.Umap et al, Journal of Global Research in Computer Science, 3 (6), June 2012, 38-45

© JGRCS 2010, All Rights Reserved 41

Rate based Progressive Join [12]: - RPJ is the most recent

and advanced adaptive join algorithm. It is the first

algorithm that tries to understand and exploit the connection

between the memory content and the algorithm output rate.

During the online phase it performs as HMJ. When memory

is full, it tries to estimate which tuples have the smallest

chance to participate in joins.

In this work, we used RPJ (Rate-based Progressive Join),

which continuously adapts its execution according to the

data properties (e.g., their distribution, arrival pattern, etc.).
RPJ utilizes a novel flushing algorithm which is op-timal

among all possible alternatives (based on the same statistics

about data distributions, arrival patterns, etc.), and

significantly enhances the efficiency of the memory-

memory stage. Furthermore, RPJ maximizes the output rate

by invoking the memory-disk and disk-disk in a strategic

order, i.e. the next stage selected for execution is the one

expected to produce the highest output rate.

 New join Technique:

DINER: - In this work, First algorithm is Double Index

Nested-Loop Reactive join (DINER), an adaptive two-way

join algorithm. DINER [4] combines two key elements: an

intuitive flushing policy that aims to increase the

productivity of in-memory tuples in producing results, and a

novel reentrant join technique that allows the algorithm to

rapidly switch between processing in-memory and disk-

resident tuples, thus, better exploiting temporary delays
when new data are not available. .

Consider two finite relations RA and RB, which may be

stored at potentially different sites and are used to our local

system. Incoming tuples from both relations share the

available memory. A separate index on the join attribute is

maintained for the memory resident part of each input

relation .A separate index is maintained for the memory

resident part of each input relation. When incoming tuples

arrive, compute the memory occupied by the buffer and in-

memory tuples being processed by the algorithm. Each
relation is associated with a disk partition, which stores the

tuples from the relation which do not fit in the memory and

have been flushed to disk. Every pair of tuples between the

two relations will be joined exactly once and produced

result. Each tuple is residing in main memory has a join bit,

which is actually part of the index. This is initially set to 0.

Whenever an in-memory tuple produce a join result, its join

bit set to1. [2]

MINER: - Multiple Index Nested Loop Reactive join

(MINER) is used for optimization of data in homogeneous

environment .our experiments using two tables demonstrate
that MINER [1] outperforms previous adaptive join

algorithms in producing result tuples at a significantly

higher rate, while making better use of the available

memory. Our experiments also show that in the presence of

multiple inputs, MINER manages to produce a high

percentage of early results. . Consider two finite relations. It

maintains for each joined relation a separate index on each

join attribute. When a new tuple arrives, it is stored and

indexed in the memory space of its relation, based on the

relations join attribute. This new tuple that need to be joined

with all the matching in-memory tuples belonging to all

other relations participating in the joins. The flushing policy

is applied, when memory gets full.

Difference between DINER and Existing algorithm:

a. DINER supports equi-joins and range queries.PMJ

also supports range queries but it has some
limitation due to its poor blocking behavior.

b. DINER will introduces flushing policy, is used to

create and maintained three overlapping value

regions.

c. DINER will introduces a more responsive phase

that allows the algorithm to quickly move into

processing tuples when both data sources block.

d. In Leaner Algorithm, DINER improves its relative

performance compared to the existing algorithm.[1]

SYSTEM ANALYSIS AND DESIGN

Analysis:

Execution of Join Statements:-

To choose an execution plan for a join statement, the

optimizer must make these interrelated decisions:

a. Access Paths: - As for simple statements, the optimizer

must choose an access path to retrieve data from each

table in the join statement.

b. Join Method: - To join each pair of row sources, any

database must perform a join operation. Join methods

include nested loop, sort merge and hash joins.

c. Join Order: - To execute a statement that joins more
than two tables, SQL joins two of the tables and then

joins the resulting row source to the next table. This

process is continued until all tables are joined into the

result.

Chooses Execution Plans for Joins:-

The query optimizer considers the following when choosing

an execution plan:

a. The optimizer first determines whether joining two or

more tables definitely results in a row source

containing at most one row. The optimizer recognizes

such situations based on Unique and Primary Key

constraints on the tables. If such a situation exists, then

the optimizer places these tables first in the join order.

The optimizer then optimizes the join of the remaining

set of tables.

b. For join statements with outer join conditions, the table

with the outer join operator must come after the other
table in the condition in the join order. The optimizer

does not consider join orders that violate this rule.

With the help of query optimizer, the optimizer

generates a set of execution plans, according to

possible join orders, join methods and available access

paths. The optimizer then estimates the cost of each

plan and chooses the one with the lowest cost.

Algorithm Overview:-

In this work, DINER algorithm is used for computing the

join results of two finite relations, which is stored at

different sites and are streamed to our local system and it is

highly adaptive algorithm to the value distribution of the

relations and potential network delays and In MINER

algorithm is used for computing join results in homogeneous

network environment.

Pallavi D.Umap et al, Journal of Global Research in Computer Science, 3 (6), June 2012, 38-45

© JGRCS 2010, All Rights Reserved 42

Algorithm Internals:-

a. Incoming tuples from both relations share the available

memory.

b. 2. A separate index on the join attribute is maintained

for the memory resident part of the each input
relation.

c. We used memory data structures such as, arrays, hash

tables in this algorithm.

d. Compute the memory occupied by the input buffer

where the incoming tuples are stored.

Problem Definition: - Given two relations streamed by

remote sources and under limited memory constraints, the

goal is to produce the resultant join at higher rate.

Requirements Analysis:

Software Requirements:

Operating System: Windows XP

Language : C#.Net

Databases : SQL Server 2005,

 MS-Access

Hardware requirements:

System : Pentium IV 2.4 GHz

Hard Disk : 40GB

Ram : 1 GB

Floppy Drive : 1.44 MB

Design:

Proposed Design:-

In this work, we have considered two adaptive join

algorithms, first is DINER which uses heterogeneous

databases and another is the MINER which uses

homogeneous databases. Important feature of the DINER

and MINER is first adaptive, completely unblocking join

techniques that supports range join conditions. Range join
queries are a very common class of joins in a variety of

applications, traditional business data processing to financial

analysis applications and spatial data processing.

Figure 3. The General Flow Diagram of Proposed System

Detailed Design:-

Figure 4. The General Flow Diagram of MJoin

a. Get the three tables from single database

b. Apply join query on A and B

c. If (A join with B)

d. Then (result is stored in the First_ join table)

e. This First_Join table is stored in the database

f. After that this First_Join table join with the third

table

g. The result will be display

Figure 5. The General Flow Diagram of DINER

a. Get the two tables from two different databases say,

A and B

b. If one relation is completely available in the buffer.
c. Then (A join with B)

d. Else

e. Wait for full relation

f. if (memory-resident tuples exist)

g. tries to join according to their matching

h. Comparing between two tables.

i. if not (flush to disk when memory becomes

overflow)

Pallavi D.Umap et al, Journal of Global Research in Computer Science, 3 (6), June 2012, 38-45

© JGRCS 2010, All Rights Reserved 43

Figure 6. The General flow Diagram of MINER

a. Consider two tables A and B

b. Table A has two columns and table B has two columns

c. Table A and B contains two rows each.

d. If (query is available in buffer)

a. Then

e. Fetch index no. of that query which is already exist in

the buffer

f. Display the result

a. Else
g. Go to Main menu

h. Put the (data/query) into Buffer

i. Display the Result and

j. Show the Resultant Time

SYSTEM IMPLEMENTATION

 Implementation:-

Implementation is the stage of the project when the

theoretical design is turned out into a working system. Thus,

it can be considered to be the most critical stage in achieving
a successful new system and in giving the user, confidence

that the new system will work and be effective.

The implementation stage involves careful planning,

investigation of the existing system and it‟s constraints on

implementation, designing of methods to achieve

changeover and evaluation of changeover methods.

MJoin Description:-

a. Consider two (tables) relations, A (first table) and B

(second table), C (first _join), D (third table).

b. Join A with B according to their matching in both the

tables and Display the result.

c. This result is stored in C table.

d. After that, C (first_join) table is joins with D (Third

table)

e. Display the result.

DINER Description:-

a. Consider two (tables) finite relations, which may be

stored at potentially different sites and are used to our

local system. (using two different databases)

b. It uses SQL database for one table and MS-Access

database for another table.

c. Incoming tuples from both relations share the available

memory.

d. Select columns from one table and it is matching with

the another table. Create and select join condition

according to their matchings.

e. Query is created and displayed on the screen.
f. According to column selection, Displayed one table

and then another table and displayed join between two

tables by using inner join.

g. Resultant time will be displayed.

MINER Description:-

a. Consider two finite relations.

b. It maintains for each joined relation a separate index

on each join attribute

c. When a new tuple arrives, it is stored and indexed in

the memory space of its relation, based on the relations

join attribute.

d. This new tuple that need to be joined with all the

matching in-memory tuples belonging to all other

relations participating in the joins.

e. The flushing policy is applied, when memory gets full.

f. The optimization of MINER algorithm is achieved,

when data is fetch from the buffer and shows its
resultant time

g. Otherwise, go to the main menu and put the query.

h. Display the result.

Figure. 7: Graphical Representation of MJoin, DINER and MINER

System Execution Detailed:-

a. MJoin: -

Step 1. When click on button “Open Database Connection”

Step 2. Join between two tables Loan and Loan Master
which is stored in the database.

Step 3. Result of Loan and Loan Master is stored in the table

“First_join”.

Step 4. When click on button “second join”. It shows joining

between three tables.

Pallavi D.Umap et al, Journal of Global Research in Computer Science, 3 (6), June 2012, 38-45

© JGRCS 2010, All Rights Reserved 44

Screenshot No. 1: Three table join using MJoin

b. DINER:-

Screenshot No 2: Query is created

Step 1. Query is created by using selecting the columns of

two tables i.e select the multiple columns from two tables

where join condition.

Step 2.The query is “Select LoanMaster.accno,

EMP.EMPNO FROM LoanMaster,EMP WHERE

LoanMaster:loandsn:accno = EMP:cmpdsn:EMPNO”.

c. DINER:-

Screenshot No.3: Two tables joined by using inner join

Step 1. It shows the joining between two tables‟ i.e

LoanMaster and EMP table by using inner join

d. MINER:-

Step 1. Write the query in SQL Statement.

Step 2. Click the Button and query is executed

Screenshot No. 4: Joining according to their index

e. Result:-

Screenshot No. 5: Output

CONCLUSION

In this work, we have successfully implemented three
algorithms. The three algorithms are MJoin, DINER and

MINER.

In MJoin, uses single database. During first phase of MJoin,

Each new tuple is coming from one location then calculate

its start time and when tuple is stored in buffer, calculate its

End time and calculated difference (start time- end times)

for MJoin is 3.174 ms.

In DINER, uses heterogeneous database. This algorithm can

efficiently handle join predicates with range conditions, a
feature unique to this technique. Each new tuple is coming

from remote location. Calculate its start time, when

execution started and this tuple is stored in memory then

calculate its end time after that we will show the calculated

Pallavi D.Umap et al, Journal of Global Research in Computer Science, 3 (6), June 2012, 38-45

© JGRCS 2010, All Rights Reserved 45

(output) i.e. difference between the start time and end time

for DINER is 5.014 ms.

In MINER, uses homogeneous databases. Each new tuple is

coming and calculated its start time and end time. Calculates

its data streaming rate is 4.375ms. But, these values for all

three algorithms may be varying from time to time.

REFERENCES

[1]. J.Jayashree and C.Ranichandra “Join Algorithm for

Efficient Query Processing For Large Datasets” Asian

Journal of Computer Science and Information Technology

2: 3 (2012) 31 –35

[2]. Mihaela A.Bornea, Vasilis Vassalos, Yannis

Kotidis, Antonios Deligiannakis: Adaptive Join Operators

for Result Rate Optimization on Streaming Inputs. IEEE

Trans. Knowl. Data Eng. 22(8): 1110-1125 (2010)

[3]. J. D. Ullman, H. Garcia-Molina, and J. Widom. Database

Systems: The Complete Book. Prentice Hall, 2001

[4]. M. A. Bornea, V. Vassalos, Y. Kotidis, and A.

Deligiannakis. DoubleIndex Nested-loop Reactive Join for

Result Rate Optimization. In ICDEConf., 2009

[5]. David Taniar, Clement H.C. Leung, Wenny Rahayu,

Sushant Goel. (2008) “High-Performance Parallel Database

Processing and Grid Databases” A John Wiley

[6]. Z. G. Ives, D. Florescu, and et al. An Adaptive Query

Execution System for Data Integration.In SIGMOD, 1999.

[7]. W. Hong and M. Stonebraker. Optimization of Parallel

Query Execution Plans in XPRS. In PDIS, 1991

[8]. T.Urhan and M.J.Franklin.Xjoin: A Relatively scheduled

pipilined join operator.IEEE Data Eng.Bull,23920,2000

[9]. S.D Viglas,J.F.Naughton and J.Burger.Maximizing the

output rate of multiway join queries over streaming

information sources.In VLDB 2003: proceeding of the 29th

international

[10]. J. Dittrich, B. Seeger, and D. Taylor. Progressive merge

join: A generic and non-blocking sort-based join algorithm.

In Proceedings of VLDB,2002.

[11]. M. F. Mokbel, M. Lu, and W. G. Aref. Hash-Merge Join: A

Non blocking Join Algorithm for Producing Fast and Early

Join Results. In ICDE Conf., 2004.nal conference on very

large databases 2003.

[12]. Y. Tao, M. L. Yiu, D. Papadias, M. Hadjieleftheriou, and

N. Mamoulis. RPJ: Producing Fast Join Results on Streams

Through Rate-based Optimization. In Proceedings of ACM

SIGMOD Conference, 2005.

[13]. http://www.microsoft.com/isapi/redir.dll?prd=ie&pver=6&

ar=msnhome

[14]. http://www.softwaretestinghelp.com/types-of-software-

testing/

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/v/Vassalos:Vasilis.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Kotidis:Yannis.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Kotidis:Yannis.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Kotidis:Yannis.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Deligiannakis:Antonios.html
http://www.informatik.uni-trier.de/~ley/db/journals/tkde/tkde22.html#BorneaVKD10
http://www.informatik.uni-trier.de/~ley/db/journals/tkde/tkde22.html#BorneaVKD10
http://www.informatik.uni-trier.de/~ley/db/journals/tkde/tkde22.html#BorneaVKD10
http://www.microsoft.com/isapi/redir.dll?prd=ie&pver=6&ar=msnhome
http://www.microsoft.com/isapi/redir.dll?prd=ie&pver=6&ar=msnhome
http://www.softwaretestinghelp.com/types-of-software-testing/
http://www.softwaretestinghelp.com/types-of-software-testing/

