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ABSTRACT: Designing control systems for complete plants is the ultimate goal of a control designer. The problem is 
quite large and complex. It involves a large number of theoretical and practical considerations such as quality of controlled 
response; stability; the safety of the operating plant; the reliability of the control system; the range of control and ease of 
startup, shutdown, or changeover; the ease of operation; and the cost of the control system. The difficulties are aggravated 
by the fact that most of the industrial and chemical processes are largely nonlinear, imprecisely known, multivariable 
systems with many interactions. The measurements and manipulations are limited to a relatively small number of variables, 
while the control objectives may not be clearly stated or even known at the beginning of the control system design. Thus, 
the  presence of process input-output time delay of different magnitude in multi-input-multi-output systems have drawn 
attention to research as the processes are difficult to control. Increase in complexity and interactions between inputs and 
outputs yield degraded process behavior.  
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I.OBJECTIVE 
In recent years all the methodologies adapted to solve for the parameters of individual controllers in which the loop 
interactions are taken into account have not guaranteed a solution. In addition, the extension for higher dimensional systems 
seems difficult because of the complicated and non-linear computation. It has been found that the independent design of 
decentralized controllers based on model based method is simple and effective only for low dimensional processes. For 
high dimensional processes this design has to be more conservative due to the inevitable modeling errors encountered in 
formulation.  
To overcome all these drawbacks and to include interactions in the control design, a novel method based on the equivalent 
transfer function method (ETF) is proposed. By considering four combination modes of gain and phase changes for a 
particular loop when all other loops are closed, this equivalent transfer function can effectively approximate the dynamic 
interactions among loops. Consequently, the design of decentralized controller for MIMO processes can be converted to the 
design of single loop controllers. The method is simple, straightforward, easy to understand and implement. Several 
multivariable industrial processes with different interaction characteristics are employed to demonstrate the effectiveness 
and simplicity of the design method compared to the existing methods. 
 
 CONTROLLER DESIGN METHODOLOGIES: 
There are three major controller designs that are available. They are mainly  

a) Centralized controller 
b) Decentralized controller and 
c) Decoupler 

Of all the three configurations discussed above, the centralized controller is not used very widely because of the complexity 
and time constraints in computation. In addition to it the design is less transparent and can be damaging the entire plant 
during failures, thus not being highly reliable. The figure below shows the block diagram of a decentralized controller and 
with its representation. 
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Figure 1: Centralized Control 

 
The decoupler though profitable and realistic is also very complex and degrades the load rejection. It has to be applied 
carefully and is often recommended only for the servo operations. The Figure 2 shows the block diagram for the decoupler. 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Decoupling Controller Design 
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The Decentralized controllers are widely used because of their simplicity in hardware, design and tuning simplicity, 
flexibility in operation and maintenance. 
The block diagram of the decentralized controller is shown in figure 3. The decentralized controller is represented as 
 
 
 
  
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Decentralized controller design 
 
 
 
 
All the three controller configurations are being shown for a 2x2 system with interactions. The decentralized controllers 
consist of multi loop SISO controllers with one control variable paired with one manipulated variable. The major idea in 
this design approach is that the SISO controllers should be tuned simultaneously with the interactions in the process taken 
into account. 
 

II. PROCEDURE FOR DECENTRALISED CONTROLLER DESIGN 
Most industrial control systems use the multi loop SISO diagonal control structure. 
It is the most simple and understandable structure. Operators and plant engineers can use it and modify it when necessary. It 
does not require an expert in applied mathematics to design and maintain it. In addition, the performance of these diagonal 
controller structures is usually quite adequate for process control applications. In fact, there has been little quantitative 
unbiased data showing that the performances of the more sophisticated controller structures are really any better! The slight 
improvement is seldom worth the price of the additional complexity and engineering cost of implementation and 
maintenance. 
A number of critical questions must be answered in developing a control system for a plant. What should be controlled? 
What should be manipulated? How should the controlled and manipulated variables be paired in a multivariable plant? How 
do we tune the controllers? The procedure discussed in this chapter provides a practical approach to answering these 
questions. It was developed to provide a workable, stable, simple SISO system with only a modest amount of engineering 
effort. The resulting diagonal controller can then serve as a realistic benchmark, against which the more complex 
multivariable controller structures can be compared. The limitations of the procedure should be pointed out. It does not 
apply to open loop-unstable systems. It also does not work well when the time constants of the transfer functions are quite 
different, i.e., some parts much faster than others. 
The fast and slow sections should be designed separately in such a case. The procedure has been tested primarily on 
realistic distillation column models. 
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This choice was deliberate because most industrial processes have similar gain, dead time, and lag transfer functions. 
Undoubtedly, some pathological transfer functions can be found that the procedure cannot handle. But we are interested in 
a practical engineering tool, not elegant, rigorous, all-inclusive mathematical theorems.  
 
The steps in the procedure are summarized below. Each step is discussed in more detail in later sections of this chapter. 
1. Select controlled variables. Use primarily engineering judgment based on process understanding. 

1. 2. Select manipulated variables. Find the set of manipulated variables that gives the largest minimum singular 
value of the steady-state gain matrix. 

3. Eliminate unworkable variable pairings. The pairing can be done with RGA ERGA or using NI indices. 
4. Find the best pairing from the remaining sets. 
a. Tune all combinations using a efficient tuning methodology. 
b. Select the pairing that gives the lowest-magnitude closed loop regulator transfer function. 
 
 

III.EFFECTIVE TRANSFER FUNCTION 
 
 

 COMPUTATION OF ETF 
Consider an open loop stable multivariable system within inputs and n outputs as shown in Fig. 1, where  ݎ , ݅ =1, 2, . . . ,n, 
are the reference inputs;  ݑ , ݅ = 1,2,. . . ,n, are the manipulated variables;  ݕ , ݅ = 1,2,. . . ,n, are the system. Outputs, G(s) 
and  ܩ(ݏ) are process transfer function matrix 
And decentralized controller matrix with compatible dimensions, expressed by 
 

 
 

Figure 4:  Closed-loop multivariable control system. 
 

(ݏ)ܩ = ൦

݃ଵଵ(ݏ) ݃ଵଶ(ݏ) … ݃ଵ(ݏ)
݃ଶଵ(ݏ) … … ݃ଶ(ݏ)

… ⋯ … …
݃ଵ(ݏ) ݃ଶ(ݏ) … ݃(ݏ)

൪ 

 
And 

 

(ݏ)ܩ = ൦

݃ଵ(ݏ) 0 … 0
0 ݃ଶ(ݏ) … 0
… ⋯ … …
0 0 … ݃(ݏ)

൪ 

 
respectively. 
 
Let                          ݃(݆߱) = ݇݃ (݆߱), 
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Where ݇  and ݃ (݆߱),are steady state gain and normalized transfer function of ݃(݆߱),i.e., ݃ (0) = 1 , respectively. The 
interaction among individual loop is described by ERGA, the main result of ERGA is summarized as follows. 
Define ݁ of a particular transfer function as 

 ݁ = ݇ න ห݃ (݆߱)ห  ݀߱,
ఠ,ೕ


 

where ߱,for i,j = 1,2,. . . ,n are the critical frequency of the transfer function ݃(݆߱) and |∎|is the absolute value of ∎. In 
order to calculate ݁ , the critical frequency can be defined in two ways: 
 
߱,  = ߱,, where ߱,for i,j = 1,2,. . . ,n is the bandwidth of the transfer function ݃ (݆߱) and determined by the 
frequency where the magnitude plot of frequency response reduced to 0.707 time, i.e., 
ห݃(݆߱,)ห = 0.707ห݃(0)ห. 
 
߱,  = ߱௨,, where ߱௨,for i,j = 1,2,. . . ,n is the ultimate of the transfer function ݃ (݆߱) and determined by the frequency 
where the phase plot of frequency response across -ߨ, i.e., 
(݆߱௨,)൧݃ൣ݃ݎܽ =  .ߨ−
 
For transfer function matrices with some elements without phase crossover frequencies, such as first order or second order 
without time delay, it is necessary to use corresponding bandwidths as critical frequencies to calculate ݁ .However, it is 
worth to point out that the phase crossover frequency information, i.e., ultimate frequency (߱௨,) is recommended if 
applicable for calculation of ݁, since it is closely linked to system dynamic performance and control system design. 
Without loss of generality, we will use ߱௨,  as the bases for the following development. 
 
For the frequency response of ݃(݆߱) as shown in Fig. 5, ݁is the area covered by  ݃(݆߱) up to ߱௨,.  Sinceห݃ (݆߱)ห 
represents the magnitude of the transfer function at various frequencies, ݁is considered to be the energy transmission ratio 
from the manipulated variable ݑto the controlled variable  ݕ. 
Express the energy transmission ratio array as 
 

ܧ = ൦

݁ଵଵ ݁ଵଶ … ݁ଵ
݁ଶଵ … … ݁ଶ
… ⋯ … …
݁ଵ ݁ଶ … ݁

൪ 

 
To simplify the calculations, we approximate the integration of ݁ by a rectangle area, i.e., 

݁ ≈ ݇߱௨,    i,j = 1,2,.....,n. 
 
Then, the effective energy transmission ratio array is given as: 

 
ܧ = G(0)⊗Ω, 

 
Where the operator ⊗ is the Hadamard product, and 

(0)ܩ = ൦

݇ଵଵ ݇ଵଶ … ݇ଵ
݇ଶଵ … … ݇ଶ
… ⋯ … …
݇ଵ ݇ଶ … ݇

൪ 

 
And 
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ષ = ൦

߱௨ ,ଵଵ ߱௨ ,ଵଶ … ߱௨ ,ଵ
߱௨ ,ଶଵ … … ߱௨ ,ଶ

… ⋯ … …
߱௨ ,ଵ ߱௨ ,ଶ … ߱௨,

൪ 

 
Are the steady state gain and the critical frequency array, respectively. Since ݁ is an indication of energy transmission 
ratio for loop ݕ −  ., the bigger the ݁ value is, the more dominant of the loop will beݑ
 
 

 
Figure 5: Frequency response and effective energy of   ݃(݆߱) 

Similar to the definition of relative gain , the effective relative gain,߶ between output variable ݕ and input variable ݑ,is 
define as the ratio of two effective energy transmission ratio: 

߶ =
݁
݁పఫෞ

 

 
where  ݁పఫෞ  is the effective energy transmission ratio between output variable ݕ  and input variable ݑ, when all other loops 
are closed. When the effective relative gains are calculated for all the input/output combinations of a multivariable process, 
it results in an array, ERGA, which can be 
Calculated by 

߶ = ܧ ⊗ ்ିܧ = ൦

߶ଵଵ ߶ଵଶ … ߶ଵ
߶ଶଵ … … ߶ଶ
… ⋯ … …
߶ଵ ߶ଶ … ߶

൪ 

 
The introduction of energy transmission ratio is to mathematically represent the effectiveness of a control loop which is 
affected by two key factors, i.e., the steady state gain of the transfer function reflecting the effect of the manipulated 
variable ݑ,  to the controlled variable ݕ and the response speed reflecting the sensitivity of the controlled variable ݕ to the 
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manipulated variable ݑ,and, consequently, the ability to reject the interactions from other loops. Since ERGA is a relative 
measure, using the multiplication of the two parameters to approximate the energy transmission ratio in ߶can simplify the 
calculation while captures the key elements in a multivariable control system. 

The introduction of energy transmission ratio is to mathematically represent the effectiveness of a control loop which is 
affected by two key factors, i.e., the steady state gain of the transfer function reflecting the effect of the manipulated 
variable ݑ,to the controlled variable ݕ and the response speed reflecting the sensitivity of the controlled variable ݕ  to the 
manipulated variable ݑ, and, consequently, the ability to reject the interactions from other loops. Since ERGA is a relative 
measure, using the multiplication of the two parameters to approximate the energy transmission ratio in ߶can simplify the 
calculation while captures the key elements in a multivariable control system.                                               
The ERGA is used to determine the best variable paring. In the following sections, we will employ this interaction measure 
to develop effective transfer functions (ETFs) under decentralized control structure 
 

IV.EFFECTIVE TRANSFER FUNCTION 
Suppose that the best loop configuration has been determined and the best pair is diagonally placed in the transfer 

function matrix as shown in Fig. 7. Similar to the open loop gain, we let the effective energy transmission ratio, ݁̂ when all 
other loops are closed be݁̂ = ො݃(0) ෝ߱௨,  i,j= 1; 2; . . . ; n, where ො݃(0) and ෝ߱௨,are the steady state gain and ultimate 
frequency between output variable ݕ 
and input variable ݑ, when all other loops are closed, respectively. Then, from Eq.(1) 

 ෝ݃ (0) ෝ߱௨, =
ೕ()ఠೠ,ೕ,

థೕ
                            (2) 

By the definition of RGA, we have 
 ෝ݃ (0) =

ೕ()

ఒೕ
,                                         (3) 

 
 
Substitute Eq.(3) into (2) and rearrange to result  

థೕ
ఒೕ

=
ఠೠ,ೕ,

ఠෝೠ,ೕ
≡                                         (4)ߛ

 
where ߛ  represents the critical frequency change of loop ݅ − ݆ when other loops are closed, defined as relative critical 
frequency. When the relative frequencies are calculated for all the input/output combinations of a multivariable process, it 
results in an array, i.e., relative frequency array (RFA). 
Since control loop transfer functions when other loops closed will have similar frequency properties with when other loops 
open if it is well paired , we can let the ETFs have the same structures as the corresponding open loop transfer functions but 
with different parameters. 
 

 ෝ݃ (ݏ) =  ෝ݃ (0) ݃
(ݏ)݁ିௗ௦                          (5) 

 
Where ݃  ,is defined by (ݏ)

݃ (ݏ) = ݃(ݏ) ݁ିௗ௦ 
And መ݀  is the time delay of the ETF. 

As the change in ultimate frequency of a control loop is generally affected by changes in both time constant and time 
delay when other loops are closed, and they are exchangeable by linear approximation, it is reasonable to change only time 
delay to reflect the phase changes. 
 
In Eq. (5), ݃(0)  can be determined by using Eq. (3), while by the   definition of the ultimate frequency, 
 

−d  ෝ߱௨, + ∠݃ ൫݆ ෝ߱௨,൯ = −݀ ,߱௨, , + ∠݃ (߱௨,,) =  .ߨ−
 
݀ , can be easily determined by 
 

݀ , = గା∠
ೝ൫ఠෝೠ,൯
ఠෝೠ,ೕ

= ߛ × గା∠
ೝ൫ఠෝೠ,൯
ఠೠ,ೕ,

                               (6) 
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Notice that ݃  is usually low order transfer functions, their contribution to the phase change at low frequency range are (ݏ)
small and can be equivalently represented by the additional time delay term. 
In many decentralized control system designs, such as gain and phase margin method, an individual loop is tuned around 
the critical frequency region of each control loop. Accurate estimation of overall variation is required around the critical 
frequency, not who contribute to the change. 
 
By letting ݃ ൫݆ ෝ߱௨,൯  ≈ ݃ ൫݆ ෝ߱௨,൯, we can make further simplification to            Eq. (6) as 

−݀  ෝ߱௨, ≈ −݀,߱௨,, 
 
which results by considering Eq. (4) 
 

መ݀ ≈
ఠೠ,ೕ,

ఠෝೠ,ೕ
݀ , =  ݀,                               (7)ߛ

 
This is the practical formula which will be used to derive the ETFs. Even though Eq. (7) is less accurate than Eq. (6), 

several simulation results have showed that the control system performances are comparable by the two approximations, 
but Eq. (7) is much more straightforward ,easier explainable and understandable than Eq. (6). Since it is necessary that the 
controlled system possesses integrity property; that is, the overall control system remained to be stable regardless put in 
and/or taken out of other control loops,  ෝ݃ (0) and መ݀  in ETF must take different values for different combination of ߣand 
ߛ . For the four different combinations of ߣ andߛ ,  ෝ݃ (ݏ)  may take different modes shown in Figs. 6-9, and are 
discussed below: 
 
Case 1: ߣ ≤ 1, ߛ ≤ 1 
In this case, ቀ ଵ

ఒ
− 1ቁ ≥ 0 and(ߛ − 1) ≤ 0. According to Eqs. (3) and (7), we have  ෝ݃ (0) ≥ ݃(0)  and መ݀ ≤ ݀ ,. 

 
  ෝ݃ (0) ≥ ݃(0)  , this means that the magnitude of the frequency response when the other loops closed is not less than that 

of when the other loops open. Since the retaliatory effect from the other loops magnifies the main effect of ݑ,on ݕ, we 
need to reduce the controller gain to assure system stability. In this case, the gain is by Eq. (3)  ෝ݃ (0) = ()

ఒ
 

 
 መ݀ ≤ ݀,.this means that the time delay when the other loops closed is not bigger than that of when other loops open. The 

reduced time delay will increase the phase margin. However, by considering the control system integrity, the time delay 
needs to be kept as before, i.e., መ݀ = ݀, 
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Figure 6: Interaction mode with case 1 

 
Case 2: ߣ ≤ 1, ߛ > 1 
In this case ቀ ଵ

ఒ
− 1ቁ ≥ 0 and(��� − 1) > 0.  According to Eqs. (3) and (7), we have  ���(0) ≥ ���(0)  and ��� >

���,. 
 ���(0) ≥ ���(0), same as in Case 1, 

    ���(0) =
���(0)
���

 

 ��� > ���,., this means that the time delay when the other loops closed is bigger than that of when the other loops open. 
The enlarged time delay will reduce the phase margin. In this case, the time delay is determined by Eq. (7) 

��� = ������  
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Figure 7: Interaction mode with case 2 

 
Case 3:   ��� > 1,��� ≤ 1 
In this case, ቀ 1

���
− 1ቁ < 0 and(��� − 1) ≤ 0. According to Eqs. (3) and (7), we have  ���(0) < ���(0)  and ��� ≤

���,. 
 

  ���(0) ≥ ���(0)  this means that the magnitude of the frequency response when the other loops closed is smaller than 
that of when the other loops open. Even if the retaliatory effect from other loops acts in opposition to the main effect of 
��,on ��, we cannot enlarge the controller gain for better performance due to the system integrity consideration. Hence, 
the gain should be unchanged, i.e., 
 

    ���(0) = ���(0). 
 
 

 ��� > ���,., same as in case 1, 
��� = ���,., 
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Figure 8: Interaction mode with case 3 

 
Case 4:   ��� > 1,��� > 1 
In this case, ቀ 1

���
− 1ቁ < 0 and (��� − 1) > 0. According toEqs. (3) and (7), we have  ���(0) < ���(0)  and ��� >

���,. 
  ���(0) < ���(0)   same as in Case 3, 

 ���(0) = ���(0)  , same as in Case 2, 
 

 ��� > ���  same as in Case 2, 
��� = ������  
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Figure 9: Interaction mode with case 4 

 
A unique problem for decentralized control of MIMO processes is the zero crossing: stable or unstable zeros might be 
introduced into a particular control loop when other loops are closed. If an unstable zero is introduced, it will result phase 
shift to the left in the frequency domain. In order to guarantee the entire system stability, the controllers are normally 
conservatively designed by conventional detuning approaches. By introducing the relative critical frequency,���, to 
indicate phase changes after the other loops closed, the effects of unstable zeros can be accurately estimated in each control 
loop. Consequently, the resultant control systems will be much less conservative. 
 
Mathematically, the equivalent transfer function should incorporate the controllers of all other loops. 
To solve such a complex problem, recursive solution is required by first assigning initial controllers, then finding the 
equivalent loop transfer functions and designing controllers again. This process is continuous until a stable solution is 
obtained. To simplify the problem, both detuning and independent methods proposed so far assume that all other closed 
loops are under perfect control when designing the controller for a particular loop and consider only the gain change. In the 
proposed method, the changes are considered for both gain and frequency. Especially, Eq. (3) focuses on the gain impact 
while Eq. (7) contributes to time delay portion, i.e., frequency impact. As will be shown later, it is far more accurate than 
those existing methods 
 
3.3 DECENTRALISED CONTROL SYSTEM DESIGN 
Without loss of generality, we assume that each main loop, i.e., diagonal element in the transfer function matrix is 
represented by a second order plus dead time (SOPDT) model, which can be used to describe most of the industrial 
processes: 
 

���(�) =
�0,��

�2,���2 +�1,���+ 1
�ି���� 

 
Similarly, ETF is represented as, 
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 ���(�) =
 ���(0)

�2,���2 + �1,���+ 1
�ି���� 

 
The decentralized controllers can then be independently designed by single loop approaches based on the corresponding 
ETFs. Here we employ the gain and phase margins approach. This is primary because the frequency response method 
provides good performance in the face of uncertainty in both plant model and disturbances. 
The PID controller of each loop is supposed of the following standard form: 
 

��,�(�) = ��,� +
��,�

�
+ ��,�� 

 
The controller can be rewritten as 
 
 

��,�(�) =
��,� + ��,��+��,��2

�
=
��2 + ��+�

�
, 

 
 
Where A=��,�

�
 , B=��,�

�
, c=��,,�

�
     By selecting A=�2, B=�1 , C=1, the open loop transfer function becomes 

��,�(�) ���(�) = �
 ���(0)
�

�ି���� 
Denoting the gain and phase margin specifications as  ��,�and   ��,� and their crossover frequencies as and ��,�, 
respectively, we have 
 
���ൣ��,�൫���,�,൯ ���൫���,�,൯൧ = −�, 
��,�ห��,�൫���,�,൯ ���൫���,�,൯ห = 1, 

ห��,�൫���,��,��,൯ ���൫���,�,൯ห = 1, 
  ��,� = � +  ���ൣ��,�൫���,��,൯ ���൫���,��,൯൧. 
 
By substitution and simplification to above equations, we obtain 
��,�,��� = �

2
                                    ��,� = ��,�,

 ���(0)�
   , 

 ���(0)� = ��,�,                               ��,� = �
2
−��,�,���, 

 
Which results 

                         ��,� = �
2
൬1− 1

��,�
൰,        � = �

2��,���� ���(0) 
 
By this formulation, the gain and phase margins are interrelated to each other, some possible gain and phase margin 
selections are given in Table 1. 
The PID parameters are given by  
 


��,�
��,�
��,�

 = �
2��,���� ���(0)


�1,��

0
�2,��

                                           (8) 

 
Applying Eq. (8) for each case discussed in Section 3, we can easily obtain both ETFs and the PID parameters which are 
summarized in Table 2. 
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Table 1: Typical gain and phase margin values: 
 

 ��,� �/� �/� ��/� ��/� 
��,� 2 3 4 5 

 
 
 
 
Table 2: Decentralized PID controller design 

Mode  ���(�) ��,�� ��,�� ��,�� 

Case 1 ���(0)/  ���

�2,���2 +�1,���+ 1
�ି�

��1,�����
2��,�������(0)
 

����

2��,�������(0) 

 

�����2,��

2��,�������(0) 

 

Case 2 ���(0)/  ���

�2,���2 +�1,���+ 1
�ି�

��1,�����
2��,����������
 

����

2��,����������(0
 

�����2,��

2��,����������(0)
 

Case 3 ���(0)
�2,���2 +�1,���+ 1

�ି�
��1,��

2��,�������(0)
 

�
2��,�������(0) 

 

��2,��

2��,�������(0) 

 
Case 4 ���(0)

�2,���2 +�1,���+ 1
�ି�

��1,��

2��,����������
 

�
2��,����������(0
 

��2,��

2��,����������(0)
 

 
V.CONCLUSION 

Effective transfer function approach is a novel method for decentralized control system design of multivariable interactive 
processes. An extension of the effective transfer function approach by taking into consideration all the interactions was 
proposed and implemented successfully with improved responses. The simplicity and effectiveness of the method is based 
on the incorporation of the interaction frequency directly in the controller design. This approach ensures that all the 
necessary information of the gain and interaction frequency changes are provided. The decentralized controllers are 
obtained by simply using the single loop design approaches. Simulation results for the four 2x2 processes and a 3x3 process 
show that the proposed method provides a better overall performance compared to the other design approaches even after 
taking into account the interactions. The advantage of this method is more significant when applied to higher dimensional 
processes with complicated interaction modes. Since this is an extension of the ETF approach, it can also be easily 
integrated into an auto-tuning control structure. This method can also be successfully tested for the other MIMO processes. 
Also employment of BLT tuning after obtaining the effective transfer function can also be performed for better results. 
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