
 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

An ISO 3297: 2007 Certified Organization Vol. 3, Special Issue 3, April 2014

International Conference on Signal Processing, Embedded System and Communication
Technologies and their applications for Sustainable and Renewable Energy (ICSECSRE ’14)

Organized by

Department of ECE, Aarupadai Veedu Institute of Technology, Vinayaka Missions University,

Paiyanoor-603 104, Tamil Nadu, India

Copyright to IJAREEIE www.ijareeie.com 313

FPGA Implementation of Cellular Automata
Based Stream Cipher: YUGAM-128

K. J. Jegadish Kumar1,S.Sudharsan2, V.Karthick3

1Assistant Professor, SSN College of Engineering, Chennai, India
2,3PG Scholar, Dept. of ECE, SSN College of Engineering, Chennai, India

Abstract — Ubiquitous computing is fetching a
significant part in everyone's life. Few such examples are
the mobile communication, personal computation and
portable hand held devices. The growth in ultra-low
power technology enabled the new development of small
autonomous mobile devices. For the wireless
communication systems with these portable mobile
devices, security is a critical factor due to their impact on
privacy.. Traditional cryptographic algorithms are much
complex and power consuming thereby unfit for this
resource constrained applications. In this paper, a novel
stream cipher called YUGAM-128 is designed using one
dimensional cellular automata (CA) rule 30 and linear
feedback shift register (LFSR). The prime aspect of the
stream cipher is to generate random 128 bit keystream.
The proposed stream cipher is implemented and
synthesized in Spartan-3 FPGA device using Xilinx
13.2.

Keywords – Cellular Automata; Random number
generator; LFSR; Stream Cipher

I. INTRODUCTION
PSEUDORANDOM number generation by cellular

automata (CA) has been an active field of research in the
last decade [1], One of the underlying motivations
stemming from the advantage offered by the CAs when
considered from VLSI viewpoint: CAs are simple,
regular, locally interconnected, and modular. These
characteristic make them easy easier to implement in
hardware than other models, thus making CAs as an
attractive choice for on board applications. CA has been
traditionally been used to implement RNGs in
cryptographic devices [2] and in Built In Self-Test
(BIST) circuits [3]. Random number generators play an
import rule in several computational fields such as
stochastic optimization methods. With the advent of
massively parallel scientific computation, the parallel
generation of pseudorandom numbers has become
essential. With the advent massively parallel scientific

computation, parallel generation of pseudorandom
number has become essential.

The above domains depend critically on the quality
of the random numbers as measured by appropriate
statistical tests. Moreover, when very long sequences of
random numbers are needed, computational efficiency is
often of prime import, i.e., The sequence must be
produced as rapidly as possible. CAs provide a good
solution to this problem, able to produce rapid high-
quality Random-number streams.

One-dimensional CA random number generators
have been extensively studied in the past [1], [3], [4],
[5]. These studies have shown convincingly the
suitability of CA-generated pseudorandom numbers and
their superiority with respect to other widely used
methods, such as linear feedback shift registers (LFSRs),
especially in the case of delay type faults which require
pairs of patterns in a specified order [6]. In these works,
CA RNGs were essentially handcrafted by studying the
structure of the bit patterns generated over time, with
theoretical results serving as a baseline offering
guidance.

The mass use of hand-held devices/PDA has
popularized the use of stream ciphers. Stream ciphers are
much less power consuming, requires small space for
their operations and are faster in operation than other
cryptographic algorithms. Generally, in stream ciphers a
secret key and a public IV are input. Key stream bits are
generated by the cipher per cycle of operation. The
plain-text is XORed on the encryption side with the
generated key stream to produce the cipher-text.
Decryption is carried out by simply XORing the cipher-
text with the key stream.

II. CELLULAR AUTOMATA THEORY
A cellular automaton (CA) is dynamical systems in

which space and time are discrete. A cellular automaton
consists of an array of cells, each of which can be in one
of a finite number of possible states, updated

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

An ISO 3297: 2007 Certified Organization Vol. 3, Special Issue 3, April 2014

International Conference on Signal Processing, Embedded System and Communication
Technologies and their applications for Sustainable and Renewable Energy (ICSECSRE ’14)

Organized by

Department of ECE, Aarupadai Veedu Institute of Technology, Vinayaka Missions University,

Paiyanoor-603 104, Tamil Nadu, India

Copyright to IJAREEIE www.ijareeie.com 314

synchronously in discrete time steps, according to a
local, identical interaction rule. Here, we will only
consider Boolean automata in which the cellular state, s,
2 f0; 1g. The state of a cell at the next time step is
determined by the current states of a surrounding
neighbourhood of cells. The cellular array (grid) is d-
dimensional, where d. 1; 2; 3 is used in practice; in this
paper, we shall concentrate on d. 2, i.e., On two-
dimensional grids. The identical rule contained in each
cell is essentially a finite state machine, usually specified
in the form of a rule table (also known as the transition
function), with an entry for every possible
neighbourhood configuration of states. The cellular
neighbourhood of a cell consists of itself and of the
surrounding (adjacent) cells. For one-dimensional CAs,
a cell is connected to r local neighbours (cells) on either
side, where r is referred to as the radius (thus, each cell
has 2r. 1 neighbours). For two-dimensional CAs, two
types of cellular neighbourhoods are usually considered:
five cells, consisting of the cell along with its four
immediate non diagonal neighbours (also known as the
von Neumann neighbourhood) and nine cells, consisting
of the cell along with its eight surrounding neighbours
(also known as the Moore neighbourhood). In this work,
we only consider 5-neighbor grids, thus limiting the
already large search-space size; moreover, results exist
only for this neighbourhood type, which is also more
amenable to hardware implementation.

When considering a finite-size grid, cyclic boundary
conditions are frequently applied, resulting in a circular
grid for the one-dimensional case and in a toroidal one
for the two-dimensional case. Fixed, or null, boundary
conditions can also be used, in which the grid is
surrounded by an outer layer of cells in a fixed state of
zero. This case of configuration is usually easier to
implement in hardware.

Fig. 1 1D Cellular Automata

III. STREAM CIPHER
A stream cipher has a variable message input length,

and it can be viewed as a small but changing secret
substitution table that transforms plaintext bits at
different positions with different substitution tables (the
XOR operation between plaintext and key stream can be
viewed as one-bit substitution determined by a key
stream bit). A stream cipher consists of a state update
function and an output function. The state of a stream
cipher is updated continuously during encryption so that
bits at different positions in a message are encrypted
with different states. The output function generates key
stream bits from the state and performs encryption or
decryption. If the initial state of a stream cipher is not
the same as the key, key setup is required to generate the
initial state from the key. A key is used with different
initialization vectors (IVs) is to generate key streams.
The key/IV setup (resynchronization) is required to
generate the initial state from the key and IV.

The criteria for good stream cipher are, long period
with no repetitions statistically random, Large linear
complexity (based on the size of equivalent LFSR),
Correlation immunity (have the tradeoff with linear
complexity), Confusion (output bits depend on all key
bits) Diffusion and Use of highly non-linear Boolean
functions.

Fig. 2 Block diagram of stream cipher

IV. DESIGN APPROACH

A. CA Rule Based Function

Rule 30 is a one-dimensional binary cellular
automaton rule introduced by Stephen Wolfram in 1983.
Wolfram describes it as being his "all-time favourite
rule" and details it in his book, A New Kind of Science.
Using Wolfram's classification scheme, Rule 30 is a
Class III rule, displaying a periodic, chaotic behaviour.

This rule is of particular interest because it produces
complex, seemingly random patterns from simple, well-
defined rules and offers reversible property. Because of
this, Wolfram believes that Rule 30, and cellular
automata in general, are the key to understanding how
simple rules produce complex structures and behaviour
in nature. Rule 30 has also been used as a random

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

An ISO 3297: 2007 Certified Organization Vol. 3, Special Issue 3, April 2014

International Conference on Signal Processing, Embedded System and Communication
Technologies and their applications for Sustainable and Renewable Energy (ICSECSRE ’14)

Organized by

Department of ECE, Aarupadai Veedu Institute of Technology, Vinayaka Missions University,

Paiyanoor-603 104, Tamil Nadu, India

Copyright to IJAREEIE www.ijareeie.com 315

number generator in Wolfram's program mathematical
and has also been proposed as a possible stream cipher
for use in cryptography.

In all of Wolfram's elementary cellular automata, an
infinite one-dimensional array of cellular automaton
cells with only two states is considered, with each cell in
some initial state. At discrete time intervals, every cell
spontaneously changes state based on its current state
and the state of its two neighbors. For Rule 30, the rule
set which governs the next state of the automaton is
given in table I (6)

TABLE I. Rule 30 Neighborhood State

The following pattern emerges from an initial state in
a single cell with state 1 (shown as black) is surrounded
by cells with state 0 (white). Time increases down the
vertical axis.

The evaluated function for CA rule 30 is

1ii1ii1i1i1i xxxxxxx)x(f  

For Rule 45, the rule set which governs the next state
of the automaton is evaluated as the function,

i1i1ii1i1i1i xxxxxxx)x(f  

For Rule 57, the rule set which governs the next state
of the automaton is evaluated as the function,

1ii1ii1i1ii xxxxxxx)x(f  

An LFSR consists of clocked storage elements (flip-
flops) and a feedback path. The number of storage
elements gives us the said to be of degree m. The
feedback network computes the input for the last flip-
flop as XOR-sum of certain flip-flops in the shift register
Simple LFSR We consider an LFSR of degree m = 3
with flip-flops FF2, FF1, FF0, and a feedback path as
shown in Fig. 3. The internal state bits are denoted by si
and are shifted by one to the right with each clock tick.
The rightmost state bit is also the current output bit. The
leftmost state bit is computed in the feedback path,
which is the XOR sum of some of the flip-flop values in
the previous clock period. Since the XOR is a linear
operation, such circuits are called linear feedback shift

registers. If we assume an initial state of (s2= 1, s1= 0,
s0= 0), Table 2.2 gives the complete sequence of states
of the LFSR. Note that the rightmost column is the
output of the LFSR. One can see from this example that
the LFSR There is a simple formula which determines
the functioning of this LFSR. Let’s look at how the
output bits si are computed, assuming the initial state bits
s0, s1, s2:

s3≡s1+s0 mod 2

s4≡s2+s1 mod 2

s5≡s3+s2 mod 2

In general, the output bit is computed as
si+3≡si+1+simod2 Where i= 0,1,2, . . .

B. Mathematical Description of LFSRs
The general form of an LFSR of degree m is shown

in Fig. 2.4. It shows m flip-flops and m possible
feedback locations, all combined by the XOR operation.
Whether a feedback path is active or not, is defined by
the feedback coefficient p0, p1, . . . , pm−1:

 If pi = 1 (closed switch), the feedback is active.

 If pi = 0 (open switch), the corresponding flip-
flop output is not used for the feedback.

With this notation, we obtain an elegant
mathematical description for the feedback path.

If we multiply the output of flip-flop I by its
coefficient pi, the result is either the output value if pi= 1,
which corresponds to a closed switch, or the value zero
if pi=0, which corresponds to an open switch. The values
of the feedback coefficients are crucial for the output
sequence produced by the LFSR.

Fig.3 Block diagram of LFSR with tapping

The maximum sequence length generated
by an LFSR of degree m is 2m−1.

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

An ISO 3297: 2007 Certified Organization Vol. 3, Special Issue 3, April 2014

International Conference on Signal Processing, Embedded System and Communication
Technologies and their applications for Sustainable and Renewable Energy (ICSECSRE ’14)

Organized by

Department of ECE, Aarupadai Veedu Institute of Technology, Vinayaka Missions University,

Paiyanoor-603 104, Tamil Nadu, India

Copyright to IJAREEIE www.ijareeie.com 316

Let’s assume the LFSR is initially loaded with the
values s0, . . . , sm−1. The next output bit of the LFSR sm,
which is also the input to the leftmost flip-flop, can be
computed by the XOR-sum of the products of flip-flop
outputs and corresponding feedback coefficient:

sm≡ sm−1pm−1+· · ·+s1p1+s0p0 mod 2

The next LFSR output can be computed as:

sm+1 ≡ smpm−1+· · ·+s2p1+s1p0 mod 2

In general, the output sequence can be described as

si+m≡




1

0

m

j
p j .sj-1 mod2

Clearly, the output values are given through a
combination of some previous output values. LFSRs are
sometimes referred to as umber of recurring states, the
output sequence of an LFSR repeats periodically.
Moreover, an LFSR can produce output sequences of
different lengths, depending on the feedback
coefficients. The following theorem gives us the
maximum length of an LFSR as a function of its degree.

It is easy to show that this theorem holds. The state
of an LFSR is uniquely determined by the minterm
register bits. Given a certain state, the LFSR
deterministically assumes its next state. Because of this,
as soon as an LFSR assumes a previous state, it starts to
repeat. Since an m-bit state vector can only assume 2m−1
nonzero states, the maximum sequence length before
repetition is 2m −1. Note that all zero state must be
excluded. If an LFSR assumes this state, it will get
“stuck” in it, i.e., It will never be able to leave it again.
Note that only certain configurations (p0,. . . , pm−1) yield
maximum length LFSRs. We give a small example for
this below.

V. PROPOSED STREAM CIPHER
ARCHITECTURE

The figure represents the simple the simplest
architecture of the proposed steam cipher using cellular
automata. In this architecture, the initial key 128 bit is
transformed into unidentifiable form by the cellular
automata (CA) rule. The 128 bit in initialization is
applied to the linear feedback shift register (LFSR) and
then its output is xored with CA rule based update key to
generate a key stream per clock cycle.

Fig. 4 Architecture of proposed stream cipher

VI. HARDWARE IMPLEMENTATION AND
SYNTHESIS RESULTS

The proposed stream cipher is implemented in
SPARTAN-3 xc3vs50-5 pq208 device using Xilinx 13.2.
The hardware implementation of the algorithm is very
simple as the operator used in the design of stream
cipher is flip-flops based hardware circuits. The
nonlinearity of the algorithm is decided by the rule 30
CA based pseudo random number generator. The results
of the Xilinx Spartan 3 FPGA implementations are
shown in Table II.

TABLE II. RESULTS OF THE XILINX SPARTAN 3 FPGA
IMPLEMENTATION

Stream Cipher

Maximum
Clock

Frequency
(MHz)

Maximum
Throughput

(Mbps)

Area
(Slic
es)

Throughput/
Area

(Mbps/Slice)

YUGAM-128 343 6255 320 19.55
DECIM v2 185 46.25 80 0.58

DECIM 128 174 43.5 89 0.49
Edon 80 130 130 1284 0.10

F-FCSR-H v2 138 1104 342 3.23
F-FCSR-16 134 2144 473 4.53

Grain v1 196 196 44 4.45
Grain v1(X16) 130 2080 348 5.98
Grain128(X32) 133 4256 534 7.97
Mickey 128 2.0 223 223 176 1.27

Moustique 225 225 278 0.81
Pomaranch 49 49 648 0.08

The Xilinx static timing analysis tool is used to
determine the maximum clock frequency. Brief
overviews of each cipher implementation are given in
the following. The ECIM ciphers produced low area
implementations due to the simple LFSR structure;
however, the through-put was low due to the decimation
factor of four. Edon80 was the largest design of the
implemented ciphers. The F-FCSR family of ciphers
were fairly large (342 slices and 473 slices) compared to
the smallest ciphers, but due to the high data radix (8
bits/cycle and 16 bits/cycle), the throughput and

 ISSN (Print) : 2320 – 3765
 ISSN (Online): 2278 – 8875

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

An ISO 3297: 2007 Certified Organization Vol. 3, Special Issue 3, April 2014

International Conference on Signal Processing, Embedded System and Communication
Technologies and their applications for Sustainable and Renewable Energy (ICSECSRE ’14)

Organized by

Department of ECE, Aarupadai Veedu Institute of Technology, Vinayaka Missions University,

Paiyanoor-603 104, Tamil Nadu, India

Copyright to IJAREEIE www.ijareeie.com 317

through-put/area was relatively high. Grain ranks top in
terms of small area and good throughput/area ratio[19].
It was the smallest cipher and the parallelized versions of
Grain produced higher throughput/area ratios. Mickey
had a medium size area but a good throughput/area ratio;
the main disadvantage Mickey had in Xilinx FPGAs
were that the S and R registers could not be inferred into
Xilinx primitive shift register blocks; thus Mickey in an
ASIC implementation may yield better results when
compared to the other small ciphers. The same could be
said with the F-FCSR family of ciphers. Moustique was
of medium-to-large area with a less than one ratio of
throughput/area from our design. Moustique was the
only self-synchronizing cipher so this should be
mentioned in the comparison. Pomaranch was the
slowest design and yielded a high area. An
implementation using a lookup table of the S-Box was
faster (68 MHz) but also larger (1155 slices)[19].

VII. CONCLUSION
Multimedia information transmission like high

quality videos and color still images requires high speed
processor for fast processing and transmission over the
communication channels. As a result, designing a high
speed processing security algorithm has become a
challenging issue for the portable computing
applications. As a challenge, the proposed YUGAM-128
stream cipher is designed in a simple manner with mere
shift registers, whose basic element is flip-flops, XOR
and CA functions. This promises efficient
implementation in reconfigurable FPGA with high
throughput owing to parallelism nature. Hence, the
algorithm suits well for the portable computing devices
that are facilitated with GHz processors.

REFERENCES
[1] P.P. Chaudhuri, D.R. Chowdhury, S. Nandi, and S.

Chattopadhyay, “Additive Cellular Automata: Theory and
Applications”, vol. 1. Los Alamitos, Calif.: IEEE CS Press, 1997.

[2] S. Nandi, B.K. Kar, and P.P. Chaudhuri, “Theory and
Application of Cellular Automata in Cryptography”, IEEE Trans.
Computers, vol. 43, pp. 1,346-1,357, 1994.

[3] Bouganim.L and Guo.Y, “Database encryption,” in Encyclopedia
of Cryptography and Security. Springer, 2010, 2nd Edition.

[4] Carlet.C, Dalai.D.K, Gupta.K.C and Maitra.S, “Algebraic
Immunity for Cryptographically Significant Boolean Functions:
Analysis and Constraction,” IEEE Trans. Inf. Theory, vol. 52, no.
7, pp. 3105-3121, 2006.

[5] Coppersnith D, Halevi S, Lutla C.S. “Cryptanalysis of stream
cipher with linear masking.” In Yung M, eds. Advances in
Cryptology-Crypto 2002. LNCS 2442, Berlin: Springer-Verlag,
2002. 515-532.

[6] Douglas A. Pucknell and Kamran Eshraghian, “Basic VLSI
design”, 3rd Edition, Prentice Hall of India, 2004. pp. 118-274.

[7] Ekdahl “On LFSR Based Stream Ciphers (Analysis and
Design),” Ph.D. Thesis, Lund Univ. (November 2003).

[8] Gammel B.M, Gottfert.R and Kniffler.O, “An NLFSR-based
stream cipher,” in ISCAS, 2006.

[9] Good.T, and Benaissa.M, “ASIC hardware performance,” New
Stream Cipher Designs: The eSTREAM Finalists, LNCS 4986,
pp. 267–293, 2008.

[10] Grocholewska-Czurylo, “ Random generation of Boolean
Function with high degree of correlation immunity,” Journal of
Telecommunication and Information Technology, pp. 14-18,
2006.

[11] Ju Young KIM and Hong Yeop SONG “A Nonlinear Boolean
Function With Good Algebraic Immunity ”IEEE Proceeding Of
IWSDA ‘07, 2007, pp. 94-98.

[12] Kitsos, Sklavos.N, Papadomanolakis.K and Koufopavlou.K,
“Hardware Implementation of Bluetooth Security”, IEEE
Pervasive Computing, vol. 2, no.1, pp. 21-29, January-March
2003.

[13] Maximov, “Some Words on Cryptanalysis of Stream Ciphers,”
Ph.D. dissertation, Lund Univ., Lund, Sweden, 2006.

[14] Menezes.A, van Oorschot.P, and S. Vanstone, "Handbook of
Applied Cryptography", CRC Press, 1996. pp. 482-504.

[15] Paris Kitsos, “OntheHardwareImplementationofthe MICKEY-
128 Stream Cipher,” eSTREAM, ECRYPTStreamCipher Project,
Report 2006/059, 2006.

[16] Rukhin, Soto, Nechvatal, Smid, Barker, Leigh, Levenson,
Vangel, Banks, Heckert, Dray, VO, “A Statistical Test Suite for
Random and Pseudorandom Number Generators for
Cryptographic Applications.” NIST Special Publication 800-22,
May 15, 2001, 1–153.

[17] Rizomiliotis.P, “On the Resistance of Boolean Functions Against
Algebraic Attacks Using Univariate Polynomial Representation,”
IEEE Trans. Inf. Theory, vol.56, no. 8, pp. 4014-4024, 2010.

[18] Rose.G.G and Hawkes.G Turing “A Fast Stream Cipher” In Fast
Software Encryption FSE 2003, pages 290-306. Springer-
Verlag, 2003.

[19] Hwang, David, Mark Chaney, Shashi Karanam, Nick Ton, and
Kris Gaj. "Comparison of FPGA-targeted hardware
implementations of eSTREAM stream cipher candidates." The
State of the Art of Stream Ciphers (2008): 151-162.

