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Abstract — Ubiquitous computing is fetching a 
significant part in everyone's life. Few such examples are 
the mobile communication, personal computation and 
portable hand held devices. The growth in ultra-low 
power technology enabled the new development of small 
autonomous mobile devices. For the wireless 
communication systems with these portable mobile 
devices, security is a critical factor due to their impact on 
privacy.. Traditional cryptographic algorithms are much 
complex and power consuming thereby unfit for this 
resource constrained applications. In this paper, a novel 
stream cipher called YUGAM-128 is designed using one 
dimensional cellular automata (CA) rule 30 and linear 
feedback shift register (LFSR). The prime aspect of the 
stream cipher is to generate random 128 bit keystream. 
The proposed stream cipher is implemented and 
synthesized in Spartan-3 FPGA device using Xilinx 
13.2. 

Keywords – Cellular Automata; Random number 
generator; LFSR; Stream Cipher 

I. INTRODUCTION 
PSEUDORANDOM number generation by cellular 

automata (CA) has been an active field of research in the 
last decade [1], One of the underlying motivations 
stemming from the advantage offered by the CAs when 
considered from VLSI viewpoint: CAs are simple, 
regular, locally interconnected, and modular. These 
characteristic make them easy easier to implement in 
hardware than other models, thus making CAs as an 
attractive choice for on board applications. CA has been 
traditionally been used to implement RNGs in 
cryptographic devices [2] and in Built In Self-Test 
(BIST) circuits [3]. Random number generators play an 
import rule in several computational fields such as 
stochastic optimization methods. With the advent of 
massively parallel scientific computation, the parallel 
generation of pseudorandom numbers has become 
essential. With the advent massively parallel scientific 

computation, parallel generation of pseudorandom 
number has become essential. 

The above domains depend critically on the quality 
of the random numbers as measured by appropriate 
statistical tests. Moreover, when very long sequences of 
random numbers are needed, computational efficiency is 
often of prime import, i.e., The sequence must be 
produced as rapidly as possible. CAs provide a good 
solution to this problem, able to produce rapid high-
quality Random-number streams. 

One-dimensional CA random number generators 
have been extensively studied in the past [1], [3], [4], 
[5]. These studies have shown convincingly the 
suitability of CA-generated pseudorandom numbers and 
their superiority with respect to other widely used 
methods, such as linear feedback shift registers (LFSRs), 
especially in the case of delay type faults which require 
pairs of patterns in a specified order [6]. In these works, 
CA RNGs were essentially handcrafted by studying the 
structure of the bit patterns generated over time, with 
theoretical results serving as a baseline offering 
guidance. 

The mass use of hand-held devices/PDA has 
popularized the use of stream ciphers. Stream ciphers are 
much less power consuming, requires small space for 
their operations and are faster in operation than other 
cryptographic algorithms. Generally, in stream ciphers a 
secret key and a public IV are input. Key stream bits are 
generated by the cipher per cycle of operation. The 
plain-text is XORed on the encryption side with the 
generated key stream to produce the cipher-text. 
Decryption is carried out by simply XORing the cipher-
text with the key stream. 

II. CELLULAR AUTOMATA THEORY 
A cellular automaton (CA) is dynamical systems in 

which space and time are discrete. A cellular automaton 
consists of an array of cells, each of which can be in one 
of a finite number of possible states, updated 
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synchronously in discrete time steps, according to a 
local, identical interaction rule. Here, we will only 
consider Boolean automata in which the cellular state, s, 
2 f0; 1g. The state of a cell at the next time step is 
determined by the current states of a surrounding 
neighbourhood of cells. The cellular array (grid) is d-
dimensional, where d. 1; 2; 3 is used in practice; in this 
paper, we shall concentrate on d. 2, i.e., On two-
dimensional grids. The identical rule contained in each 
cell is essentially a finite state machine, usually specified 
in the form of a rule table (also known as the transition 
function), with an entry for every possible 
neighbourhood configuration of states. The cellular 
neighbourhood of a cell consists of itself and of the 
surrounding (adjacent) cells. For one-dimensional CAs, 
a cell is connected to r local neighbours (cells) on either 
side, where r is referred to as the radius (thus, each cell 
has 2r. 1 neighbours). For two-dimensional CAs, two 
types of cellular neighbourhoods are usually considered: 
five cells, consisting of the cell along with its four 
immediate non diagonal neighbours (also known as the 
von Neumann neighbourhood) and nine cells, consisting 
of the cell along with its eight surrounding neighbours 
(also known as the Moore neighbourhood). In this work, 
we only consider 5-neighbor grids, thus limiting the 
already large search-space size; moreover, results exist 
only for this neighbourhood type, which is also more 
amenable to hardware implementation. 

When considering a finite-size grid, cyclic boundary 
conditions are frequently applied, resulting in a circular 
grid for the one-dimensional case and in a toroidal one 
for the two-dimensional case. Fixed, or null, boundary 
conditions can also be used, in which the grid is 
surrounded by an outer layer of cells in a fixed state of 
zero. This case of configuration is usually easier to 
implement in hardware. 

 
Fig. 1 1D Cellular Automata 

 

III. STREAM CIPHER 
A stream cipher has a variable message input length, 

and it can be viewed as a small but changing secret 
substitution table that transforms plaintext bits at 
different positions with different substitution tables (the 
XOR operation between plaintext and key stream can be 
viewed as one-bit substitution determined by a key 
stream bit). A stream cipher consists of a state update 
function and an output function. The state of a stream 
cipher is updated continuously during encryption so that 
bits at different positions in a message are encrypted 
with different states. The output function generates key 
stream bits from the state and performs encryption or 
decryption. If the initial state of a stream cipher is not 
the same as the key, key setup is required to generate the 
initial state from the key. A key is used with different 
initialization vectors (IVs) is to generate key streams. 
The key/IV setup (resynchronization) is required to 
generate the initial state from the key and IV. 

The criteria for good stream cipher are, long period 
with no repetitions statistically random, Large linear 
complexity (based on the size of equivalent LFSR), 
Correlation immunity (have the tradeoff with linear 
complexity), Confusion (output bits depend on all key 
bits) Diffusion and Use of highly non-linear Boolean 
functions. 

 
Fig. 2 Block diagram of stream cipher 

 
 

IV. DESIGN APPROACH 

A. CA Rule Based Function 

Rule 30 is a one-dimensional binary cellular 
automaton rule introduced by Stephen Wolfram in 1983. 
Wolfram describes it as being his "all-time favourite 
rule" and details it in his book, A New Kind of Science. 
Using Wolfram's classification scheme, Rule 30 is a 
Class III rule, displaying a periodic, chaotic behaviour. 

This rule is of particular interest because it produces 
complex, seemingly random patterns from simple, well-
defined rules and offers reversible property. Because of 
this, Wolfram believes that Rule 30, and cellular 
automata in general, are the key to understanding how 
simple rules produce complex structures and behaviour 
in nature. Rule 30 has also been used as a random 
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number generator in Wolfram's program mathematical 
and has also been proposed as a possible stream cipher 
for use in cryptography. 

In all of Wolfram's elementary cellular automata, an 
infinite one-dimensional array of cellular automaton 
cells with only two states is considered, with each cell in 
some initial state. At discrete time intervals, every cell 
spontaneously changes state based on its current state 
and the state of its two neighbors. For Rule 30, the rule 
set which governs the next state of the automaton is 
given in table I (6) 

TABLE I. Rule 30 Neighborhood State 

 

The following pattern emerges from an initial state in 
a single cell with state 1 (shown as black) is surrounded 
by cells with state 0 (white). Time increases down the 
vertical axis. 

The evaluated function for CA rule 30 is 

1ii1ii1i1i1i xxxxxxx)x(f    

For Rule 45, the rule set which governs the next state 
of the automaton is evaluated as the function, 

i1i1ii1i1i1i xxxxxxx)x(f    

For Rule 57, the rule set which governs the next state 
of the automaton is evaluated as the function, 

1ii1ii1i1ii xxxxxxx)x(f    

An LFSR consists of clocked storage elements (flip-
flops) and a feedback path. The number of storage 
elements gives us the said to be of degree m. The 
feedback network computes the input for the last flip-
flop as XOR-sum of certain flip-flops in the shift register 
Simple LFSR We consider an LFSR of degree m = 3 
with flip-flops FF2, FF1, FF0, and a feedback path as 
shown in Fig. 3. The internal state bits are denoted by si 
and are shifted by one to the right with each clock tick. 
The rightmost state bit is also the current output bit. The 
leftmost state bit is computed in the feedback path, 
which is the XOR sum of some of the flip-flop values in 
the previous clock period. Since the XOR is a linear 
operation, such circuits are called linear feedback shift 

registers. If we assume an initial state of (s2= 1, s1= 0, 
s0= 0), Table 2.2 gives the complete sequence of states 
of the LFSR. Note that the rightmost column is the 
output of the LFSR. One can see from this example that 
the LFSR There is a simple formula which determines 
the functioning of this LFSR. Let’s look at how the 
output bits si are computed, assuming the initial state bits 
s0, s1, s2: 

s3≡s1+s0 mod 2                               

s4≡s2+s1 mod 2                                                                                                                    

s5≡s3+s2 mod 2                              

In general, the output bit is computed as   
si+3≡si+1+simod2 Where i= 0,1,2, . . . 

B. Mathematical Description of LFSRs 
The general form of an LFSR of degree m is shown 

in Fig. 2.4. It shows m flip-flops and m possible 
feedback locations, all combined by the XOR operation. 
Whether a feedback path is active or not, is defined by 
the feedback coefficient p0, p1, . . . , pm−1: 

 If pi = 1 (closed switch), the feedback is active. 

 If pi = 0 (open switch), the corresponding flip-
flop output is not used for the feedback. 

With this notation, we obtain an elegant 
mathematical description for the feedback path. 

 

 

If we multiply the output of flip-flop I by its 
coefficient pi, the result is either the output value if pi= 1, 
which corresponds to a closed switch, or the value zero 
if pi=0, which corresponds to an open switch. The values 
of the feedback coefficients are crucial for the output 
sequence produced by the LFSR. 

 

 

 

 

 

Fig.3 Block diagram of LFSR with tapping 

The maximum sequence length generated 
by an LFSR of degree m is 2m−1. 
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Let’s assume the LFSR is initially loaded with the 
values s0, . . . , sm−1. The next output bit of the LFSR sm, 
which is also the input to the leftmost flip-flop, can be 
computed by the XOR-sum of the products of flip-flop 
outputs and corresponding feedback coefficient: 

sm≡ sm−1pm−1+· · ·+s1p1+s0p0 mod 2  

The next LFSR output can be computed as: 

sm+1 ≡ smpm−1+· · ·+s2p1+s1p0 mod 2       

In general, the output sequence can be described as 

si+m≡




1

0

m

j
p j .sj-1 mod2  

Clearly, the output values are given through a 
combination of some previous output values. LFSRs are 
sometimes referred to as umber of recurring states, the 
output sequence of an LFSR repeats periodically. 
Moreover, an LFSR can produce output sequences of 
different lengths, depending on the feedback 
coefficients. The following theorem gives us the 
maximum length of an LFSR as a function of its degree. 

It is easy to show that this theorem holds. The state 
of an LFSR is uniquely determined by the minterm 
register bits. Given a certain state, the LFSR 
deterministically assumes its next state. Because of this, 
as soon as an LFSR assumes a previous state, it starts to 
repeat. Since an m-bit state vector can only assume 2m−1 
nonzero states, the maximum sequence length before 
repetition is 2m −1. Note that all zero state must be 
excluded. If an LFSR assumes this state, it will get 
“stuck” in it, i.e., It will never be able to leave it again. 
Note that only certain configurations (p0,. . . , pm−1) yield 
maximum length LFSRs. We give a small example for 
this below. 

V. PROPOSED STREAM CIPHER 
ARCHITECTURE 

The figure represents the simple the simplest 
architecture of the proposed steam cipher using cellular 
automata. In this architecture, the initial key 128 bit is 
transformed into unidentifiable form by the cellular 
automata (CA) rule. The 128 bit in initialization is 
applied to the linear feedback shift register (LFSR) and 
then its output is xored with CA rule based update key to 
generate a key stream per clock cycle. 

 

 

 

 

 

 

 

 

 

 
Fig. 4 Architecture of proposed stream cipher 

VI. HARDWARE IMPLEMENTATION AND 
SYNTHESIS RESULTS 

The proposed stream cipher is implemented in 
SPARTAN-3 xc3vs50-5 pq208 device using Xilinx 13.2.  
The hardware implementation of the algorithm is very 
simple as the operator used in the design of stream 
cipher is flip-flops based hardware circuits. The 
nonlinearity of the algorithm is decided by the rule 30 
CA based pseudo random number generator. The results 
of the Xilinx Spartan 3 FPGA implementations are 
shown in Table II. 

TABLE II. RESULTS OF THE XILINX SPARTAN 3 FPGA 
IMPLEMENTATION 

Stream Cipher 

Maximum 
Clock 

Frequency 
(MHz) 

Maximum 
Throughput 

(Mbps) 

Area 
(Slic
es) 

Throughput/ 
Area 

(Mbps/Slice) 

YUGAM-128 343 6255 320 19.55 
DECIM v2 185 46.25 80 0.58 

DECIM 128 174 43.5 89 0.49 
Edon 80 130 130 1284 0.10 

F-FCSR-H v2 138 1104 342 3.23 
F-FCSR-16 134 2144 473 4.53 

Grain v1 196 196 44 4.45 
Grain v1(X16) 130 2080 348 5.98 
Grain128(X32) 133 4256 534 7.97 
Mickey 128 2.0 223 223 176 1.27 

Moustique 225 225 278 0.81 
Pomaranch 49 49 648 0.08 
 

The Xilinx static timing analysis tool is used to 
determine the maximum clock frequency. Brief 
overviews of each cipher implementation are given in 
the following. The ECIM ciphers produced low area 
implementations due to the simple LFSR structure; 
however, the through-put was low due to the decimation 
factor of four. Edon80 was the largest design of the 
implemented ciphers. The F-FCSR family of ciphers 
were fairly large (342 slices and 473 slices) compared to 
the smallest ciphers, but due to the high data radix (8 
bits/cycle and 16 bits/cycle), the throughput and 
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through-put/area was relatively high. Grain ranks top in 
terms of small area and good throughput/area ratio[19]. 
It was the smallest cipher and the parallelized versions of 
Grain produced higher throughput/area ratios. Mickey 
had a medium size area but a good throughput/area ratio; 
the main disadvantage Mickey had in Xilinx FPGAs 
were that the S and R registers could not be inferred into 
Xilinx primitive shift register blocks; thus Mickey in an 
ASIC implementation may yield better results when 
compared to the other small ciphers. The same could be 
said with the F-FCSR family of ciphers. Moustique was 
of medium-to-large area with a less than one ratio of 
throughput/area from our design. Moustique was the 
only self-synchronizing cipher so this should be 
mentioned in the comparison. Pomaranch was the 
slowest design and yielded a high area. An 
implementation using a lookup table of the S-Box was 
faster (68 MHz) but also larger (1155 slices)[19]. 

VII. CONCLUSION  
Multimedia information transmission like high 

quality videos and color still images requires high speed 
processor for fast processing and transmission over the 
communication channels. As a result, designing a high 
speed processing security algorithm has become a 
challenging issue for the portable computing 
applications. As a challenge, the proposed YUGAM-128 
stream cipher is designed in a simple manner with mere 
shift registers, whose basic element is flip-flops, XOR 
and CA functions. This promises efficient 
implementation in reconfigurable FPGA with high 
throughput owing to parallelism nature. Hence, the 
algorithm suits well for the portable computing devices 
that are facilitated with GHz processors. 
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